Synergistic Modulation of Sn-Based Perovskite Solar Cells with Crystallization and Interface Engineering
Abstract
:1. Introduction
2. Results
2.1. Crystallization Engineering
2.2. Interface Engineering
3. Materials and Methods
3.1. Materials
3.2. Device Fabrication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ichwani, R.; Koech, R.; Oyewole, O.K.; Huda, A.; Oyewole, D.O.; Cromwell, J.; Martin, J.L.; Grimm, R.L.; Soboyejo, W.O. Interfacial fracture of hybrid organic-inorganic perovskite solar cells. Extreme Mech. Lett. 2022, 50, 101515. [Google Scholar] [CrossRef]
- Tong, Y.; Najar, A.; Wang, L.; Liu, L.; Du, M.Y.; Yang, J.; Li, J.X.; Wang, K.; Liu, S.Z. Wide-bandgap organic-inorganic lead halide perovskite solar cells. Adv. Sci. 2022, 9, 2105085. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.T.; Zhao, W.E.; Liu, X.; Liu, S.Z. Tailoring the interfacial termination via dipole interlayer for high-efficiency perovskite solar cells. Adv. Energy Mater. 2023, 13, 2204192. [Google Scholar] [CrossRef]
- Guo, J.J.; Sun, J.G.; Hu, L.; Fang, S.W.; Ling, X.F.; Zhang, X.L.; Wang, Y.; Huang, H.H.; Han, C.X.; Cazorla, C.; et al. Indigo: A Natural Molecular Passivator for Efficient Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2202288. [Google Scholar] [CrossRef]
- Yang, W.; Cao, J.; Chen, J.; Wang, K.; Dong, C.; Wang, Z.; Liao, L. Nicotinamide-Modified PEDOT:PSS for High Performance Indoor and Outdoor Tin Perovskite Photovoltaics. Sol. RRL 2021, 5, 2100713. [Google Scholar] [CrossRef]
- Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal halide perovskite for next-generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ye, F.; Wang, X.; Chen, R.; Zhang, H.; Zhan, L.; Jiang, X.; Li, Y.; Ji, X.; Liu, S.; et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 2023, 380, 404–409. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Zeng, H.; Liu, Y.; Han, B.; Li, M.; Li, L.; Zheng, X.; Guo, R.; Luo, L.; Li, Z.; et al. Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science 2023, 379, 288–294. [Google Scholar] [CrossRef]
- Peng, W.; Mao, K.; Cai, F.; Meng, H.; Zhu, Z.; Li, T.; Yuan, S.; Xu, Z.; Feng, X.; Xu, J.; et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 2023, 379, 683–690. [Google Scholar] [CrossRef]
- Bi, H.; Chen, M.; Wang, L.; Zhang, Z.; Ding, C.; Kapil, G.; Sahamir, S.R.; Sanehira, Y.; Baranwal, A.K.; Kitamura, T.; et al. Pb-free perovskite solar cells composed of Sn/Ge(1:1) alloyed perovskite layer prepared by spin-coating. Appl. Phys. Express 2023, 16, 036501. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Yang, F.; Yang, J.; Grace, A.N.; Li, J.; Tripathi, S.; Jain, S.M. Dopants for Enhanced Performance of Tin-Based Perovskite Solar Cells—A Short Review. Coatings 2021, 11, 1045. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, C.; Yu, F.; Kamata, Y.; Hayase, S.; Ma, T. Synthesis of Sb(V) Complexes with Pyridyl Cations and Application for Lead-free Perovskite Solar Cells. Chem. Lett. 2020, 49, 944–946. [Google Scholar] [CrossRef]
- Baranwal, A.K.; Masutani, H.; Sugita, H.; Kanda, H.; Kanaya, S.; Shibayama, N.; Sanehira, Y.; Ikegami, M.; Numata, Y.; Yamada, K.; et al. Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures. Nano Converg. 2017, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, F.; Gong, J.; Zhang, T.; Gao, F.; Zhang, W.-H.; Liu, M. Advances in Tin(II)-Based Perovskite Solar Cells: From Material Physics to Device Performance. Smart Struct. 2022, 3, 2100102. [Google Scholar] [CrossRef]
- Wu, T.H.; Liu, X.; Luo, X.H.; Lin, X.S.; Cui, D.Y.; Wang, Y.B.; Segawa, H.; Zhang, Y.Q.; Han, L.Y. Lead-free tin perovskite solar cells. Joule 2021, 5, 863–886. [Google Scholar] [CrossRef]
- Gu, S.; Lin, R.X.; Han, Q.L.; Gao, Y.; Tan, H.R.; Zhu, J. Tin and Mixed Lead-Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells. Adv. Mater. 2020, 32, 1907392. [Google Scholar] [CrossRef] [PubMed]
- Saffari, M.; Zarei, M.; Tagani, M.B.; Soleimani, H.R. Cs2XI2Cl2 (X = Pb, Sn) All-Inorganic Layered Ruddlesden-Popper Mixed Halide Perovskite Single Junction and Tandem Solar Cells: Ultra-High Carrier Mobility and Excellent Power Conversion Efficiency. Energy Technol. 2023, 11, 2201050. [Google Scholar] [CrossRef]
- Liu, T.; Guo, X.; Liu, Y.J.; Hou, M.C.; Yuan, Y.H.; Mai, X.M.; Fedorovich, K.V.; Wang, N. 4-Trifluorophenylammonium Iodide-Based Dual Interfacial Modification Engineering toward Improved Efficiency and Stability of SnO2-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 6777–6787. [Google Scholar] [CrossRef]
- Li, H.S.; Zang, Z.H.; Wei, Q.; Jiang, X.Y.; Ma, M.Y.; Xing, Z.S.; Wang, J.T.; Yu, D.N.; Wang, F.; Zhou, W.J.; et al. High-member low-dimensional Sn-based perovskite solar cells. Sci. China Chem. 2023, 66, 459–465. [Google Scholar] [CrossRef]
- Cao, J.P.; Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 1286–1325. [Google Scholar] [CrossRef]
- Miyasaka, T.; Kulkarni, A.; Kim, G.M.; Oz, S.; Jena, A.K. Perovskite Solar Cells: Can We Go Organic-Free, Lead-Free, and Dopant-Free? Adv. Energy Mater. 2020, 10, 1902500. [Google Scholar] [CrossRef]
- Ke, W.J.; Stoumpos, C.C.; Kanatzidis, M.G. “Unleaded” Perovskites: Status Quo and Future Prospects of Tin-Based Perovskite Solar Cells. Energy Mater. 2019, 31, 1803230. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Hao, M.W.; Zhang, Y.; Ma, X.; Dong, J.C.; Lu, F.F.; Wang, J.; Wang, N.; Zhou, Y.Y. Chemo-thermal surface dedoping for high-performance tin perovskite solar cells. Matter 2022, 5, 683–693. [Google Scholar] [CrossRef]
- Ryu, J.; Bahadur, J.; Hayase, S.; Jeong, S.M.; Kang, D.W. Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering. Energy 2023, 278, 127917. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Li, T.H.; Chen, X.; Zhang, L.W. High-performance flexible lead-free perovskite solar cells based on tin-halide perovskite films doped by reductant metal halide. Mater. Lett. 2022, 321, 132460. [Google Scholar] [CrossRef]
- Wang, M.H.; Wang, W.; Shen, Y.F.; Ma, J.; Shen, W.; Cao, K.; Liu, L.H.; Chen, S.F. Stirring-Time Control Approach to Manage Colloid Nucleation Size for the Fabrication of High-Performance Sn-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 53960–53970. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.Y.; Dong, H.; Li, P.Z.; Cao, X.R.; Li, H.M.; Li, J.R.; Wu, Z.X. Formamidine Acetate Induces Regulation of Crystallization and Stabilization in Sn-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 33218–33225. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Huang, J.T.; Zhao, A.D.; Li, Y.F.; Wei, M.D. An inorganic stable Sn-based perovskite film with regulated nucleation for solar cell application. J. Mater. Chem. C 2020, 8, 8840–8845. [Google Scholar] [CrossRef]
- Li, X.L.; Gao, L.L.; Chu, Q.Q.; Li, Y.; Ding, B.; Yang, G.J. Green Solution-Processed Tin-Based Perovskite Films for Lead-Free Planar Photovoltaic Devices. ACS Appl. Mater. Interfaces 2019, 11, 3053–3060. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Guo, P.; Zhou, N.; Marks, T.J.; Chang, R.P.H.; Kanatzidis, M.G. Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 11445–11452. [Google Scholar] [CrossRef]
- Gupta, S.; Cahen, D.; Hodes, G. How SnF2 Impacts the Material Properties of Lead-Free Tin Perovskites. J. Phys. Chem. C 2018, 122, 13926–13936. [Google Scholar] [CrossRef]
- Wang, T.; Yan, F. Reducing Agents for Improving the Stability of Sn-based Perovskite Solar Cells. Chem. Asian J. 2020, 15, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wang, B.; Yan, X.; Guan, Q.; Chen, H.; Shu, Z.; Wen, D.; Cai, Y. Efficient passivation of surface defects by lewis base in lead-free tin-based perovskite solar cells. Mater. Today Energy 2022, 27, 101038. [Google Scholar] [CrossRef]
- Shukla, R.; Kumar, R.R.; Punetha, D.; Pandey, S.K. Design Perspective, Fabrication, and Performance Analysis of Formamidinium Tin Halide Perovskite Solar Cell. IEEE J. Phycol. 2023, 13, 404–410. [Google Scholar] [CrossRef]
- Kumar, M.H.; Dharani, S.; Leong, W.L.; Boix, P.P.; Prabhakar, R.R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127. [Google Scholar] [CrossRef]
- Hartmann, C.; Gupta, S.; Bendikov, T.; Kozina, X.; Kunze, T.; Félix, R.; Hodes, G.; Wilks, R.G.; Cahen, D.; Bär, M. Impact of SnF2 Addition on the Chemical and Electronic Surface Structure of CsSnBr3. ACS Appl. Mater. Interfaces 2012, 12, 12353–12361. [Google Scholar] [CrossRef]
- Koh, T.M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W.L.; Boix, P.P.; Grimsdale, A.C.; Mhaisalkar, S.G.; Mathews, N. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 2015, 3, 14996–15000. [Google Scholar] [CrossRef]
- Zillner, J.; Boyen, H.G.; Schulz, P.; Hanisch, J.; Gauquelin, N.; Verbeeck, J.; Küffner, J.; Desta, D.; Eisele, L.; Ahlswede, E.; et al. The Role of SnF2 Additive on Interface Formation in All Lead-Free FASnI3 Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2109649. [Google Scholar] [CrossRef]
- Liao, W.Q.; Zhao, D.W.; Yu, Y.; Grice, C.R.; Wang, C.L.; Cimaroli, A.J.; Schulz, P.; Meng, W.W.; Zhu, K.; Xiong, R.G.; et al. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Adv. Mater. 2016, 28, 9333–9340. [Google Scholar] [CrossRef]
- Zhao, Z.R.; Gu, F.D.; Li, Y.L.; Sun, W.H.; Ye, S.Y.; Rao, H.X.; Liu, Z.W.; Bian, Z.Q.; Huang, C.H. Mixed-Organic-Cation Tin Iodide for Lead-Free perovskite Solar Cells with an Efficiency of 8.12%. Adv. Sci. 2017, 4, 1700204. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Wu, Z.X.; Jiao, B.; Dong, H.; Ran, C.X.; Piao, C.C.; Lei, T.; Song, T.B.; Ke, W.J.; Yokoyama, T.; et al. Multichannel Interdiffusion Driven FASnI3 Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Lead-Free Perovskite Solar Cells. Adv. Mater. 2017, 29, 1606964. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, T.; Terakawa, S.; Matsushima, T.; Qin, C.; Yahiro, M.; Adachi, C. Fabrication of high coverage MASnI3 perovskite films for stable, planar heterojunction solar cells. J. Mater. Chem. C 2017, 5, 1121–1127. [Google Scholar] [CrossRef]
- Guo, P.; Dong, J.; Xu, C.; Yao, Y.; You, J.; Bian, H.; Zeng, W.; Zhou, G.; He, X.; Wang, M.; et al. Fabrication of an ultrathin PEG-modified PEDOT:PSS HTL for high-efficiency Sn–Pb perovskite solar cells by an eco-friendly solvent etching technique. J. Mater. Chem. A 2023, 11, 7246–7255. [Google Scholar] [CrossRef]
- Xiao, M.; Gu, S.; Zhu, P.; Tang, M.; Zhu, W.; Lin, R.; Chen, C.; Xu, W.; Yu, T.; Zhu, J. Tin-Based Perovskite with Improved Coverage and Crystallinity through Tin-Fluoride-Assisted Heterogeneous Nucleation. Adv. Opt. Mater. 2017, 6, 1700615. [Google Scholar] [CrossRef]
- Jiang, K.; Wu, F.; Zhang, G.; Chow, P.C.Y.; Ma, C.; Li, S.; Wong, K.S.; Zhu, L.; Yan, H. Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss. J. Mater. Chem. A 2019, 7, 21662–21667. [Google Scholar] [CrossRef]
- Song, D.; Li, H.; Xu, Y.; Yu, Q. Amplifying Hole Extraction Characteristics of PEDOT:PSS via Post-treatment with Aromatic Diammonium Acetates for Tin Perovskite Solar Cells. ACS Energy Lett. 2023, 8, 3280–3287. [Google Scholar] [CrossRef]
SnF2 | Voc (mV) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
0 M | 204.7 | 16.15 | 48.45 | 1.60 |
0.02 M | 346.2 | 17.88 | 37.23 | 2.30 |
0.03 M | 439.6 | 19.04 | 55.93 | 4.68 |
0.04 M | 382.3 | 16.77 | 40.02 | 2.57 |
Device | Voc (mV) | Jsc (mA/cm2) | FF (%) | PCE (%) | Average PCE (%) |
---|---|---|---|---|---|
PEDOT | 553.9 | 19.40 | 54.53 | 5.86 | 5.13% |
PEDOT + CsI | 608.3 | 21.77 | 56.90 | 7.53 | 6.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Song, Y.; Liu, M.; Zhang, H. Synergistic Modulation of Sn-Based Perovskite Solar Cells with Crystallization and Interface Engineering. Molecules 2024, 29, 2557. https://doi.org/10.3390/molecules29112557
Sun Y, Song Y, Liu M, Zhang H. Synergistic Modulation of Sn-Based Perovskite Solar Cells with Crystallization and Interface Engineering. Molecules. 2024; 29(11):2557. https://doi.org/10.3390/molecules29112557
Chicago/Turabian StyleSun, Yunzhao, Yaoyao Song, Mengfan Liu, and Huiyin Zhang. 2024. "Synergistic Modulation of Sn-Based Perovskite Solar Cells with Crystallization and Interface Engineering" Molecules 29, no. 11: 2557. https://doi.org/10.3390/molecules29112557
APA StyleSun, Y., Song, Y., Liu, M., & Zhang, H. (2024). Synergistic Modulation of Sn-Based Perovskite Solar Cells with Crystallization and Interface Engineering. Molecules, 29(11), 2557. https://doi.org/10.3390/molecules29112557