Functional and Structural Properties of Type V Collagen from the Skin of the Shortbill Spearfish (Tetrapturus angustirostris)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Collagen Identification
2.2. Physicochemical Properties of Shortbill Spearfish Type V Procollagens
2.3. Primary Structure Analysis of Shortbill Spearfish Type V Procollagens
2.4. Secondary and Tertiary Structure Prediction of Shortbill Spearfish Type V Collagens
2.5. Multiple Sequence Alignment and Phylogenetic Analysis
2.6. Potential Bioactivity of Type V Collagen by In Silico Method
3. Materials and Methods
3.1. Materials
3.2. Fish Skin Pretreatment
3.3. Preparation of Type V Collagen
3.4. SDS–Polyacrylamide Gel Electrophoresis (SDS-PAGE) Pattern
3.5. cDNA Cloning of Procollagens
3.5.1. RNA Extraction and cDNA Synthesis
3.5.2. Cloning of cDNA Encoding Procollagens
3.6. Bioinformatics Analysis
3.7. Assessment of Bioactive Peptides in Type V Collagen
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed]
- Safandowska, M.; Pietrucha, K. Effect of fish collagen modification on its thermal and rheological properties. Int. J. Biol. Macromol. 2013, 53, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.B.; Fonseca, F.L.A.; Sharp, M.H.; Ottinger, C.R. Functional characterization of undenatured type II collagen supplements: Are they interchangeable? J. Diet. Suppl. 2022, 19, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zheng, L.; Su, G.; Luo, D.; Lai, C.; Zhao, M. Protein solubility, secondary structure and microstructure changes in two types of undenatured type II collagen under different gastrointestinal digestion conditions. Food Chem. 2021, 343, 128555. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, M.; Wu, J.; Zhang, H.; Yang, L.; Lun, D.; Hu, Y.; Liu, B. Picrosirius—Polarization Method for Collagen Fiber Detection in Tendons: A Mini—Review. Orthop. Surg. 2021, 13, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Rezvani Ghomi, E.; Nourbakhsh, N.; Akbari Kenari, M.; Zare, M.; Ramakrishna, S. Collagen—based biomaterials for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1986–1999. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Overmass, M.; Fan, J.; Hodge, C.; Sutton, G.; Lovicu, F.J.; You, J. Application of collagen I and IV in bioengineering transparent ocular tissues. Front. Surg. 2021, 8, 639500. [Google Scholar] [CrossRef] [PubMed]
- Warady, B.A.; Agarwal, R.; Bangalore, S.; Chapman, A.; Levin, A.; Stenvinkel, P.; Toto, R.D.; Chertow, G.M. Alport syndrome classification and management. Kidney Med. 2020, 2, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, C.; Rheault, M.N. Genetic basis of type IV collagen disorders of the kidney. Clin. J. Am. Soc. Nephrol. 2021, 16, 1101–1109. [Google Scholar] [CrossRef]
- Dennis, E.P.; Greenhalgh—Maychell, P.L.; Briggs, M.D. Multiple epiphyseal dysplasia and related disorders: Molecular genetics, disease mechanisms, and therapeutic avenues. Dev. Dyn. 2021, 250, 345–359. [Google Scholar] [CrossRef]
- Burgeson, R.E.; El Adli, F.A.; Kaitila, I.I.; Hollister, D.W. Fetal membrane collagens: Identification of two new collagen alpha chains. Proc. Natl. Acad. Sci. USA 1976, 73, 2579–2583. [Google Scholar] [CrossRef] [PubMed]
- Birk, D.E.; Brückner, P. Collagens, suprastructures, and collagen fibril assembly. In The Extracellular Matrix: An Overview, Springer: Berlin/Heidelberg, Germany, 2010; pp. 77–115.
- Vogel, W.F. Collagen-receptor signaling in health and disease. Eur. J. Dermatol. 2001, 11, 506–514. [Google Scholar] [PubMed]
- Mak, K.M.; Png, C.Y.M.; Lee, D.J. Type V collagen in health, disease, and fibrosis. Anat. Rec. 2016, 299, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Wenstrup, R.J.; Florer, J.B.; Brunskill, E.W.; Bell, S.M.; Chervoneva, I.; Birk, D.E. Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem. 2004, 279, 53331–53337. [Google Scholar] [CrossRef] [PubMed]
- Leeming, D.; Karsdal, M. Type V collagen. In Biochemistry of Collagens, Laminins and Elastin; Elsevier: Amsterdam, The Netherlands, 2024; pp. 55–60. [Google Scholar]
- Tan, Y.; Chen, Q.; Xing, Y.; Zhang, C.; Pan, S.; An, W.; Xu, H. High expression of COL5A2, a member of COL5 family, indicates the poor survival and facilitates cell migration in gastric cancer. Biosci. Rep. 2021, 41, BSR20204293. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Ge, G.; Wang, D.; Gopalakrishnan, B.; Butz, D.H.; Colman, R.J.; Nagy, A.; Greenspan, D.S. α3 (V) collagen is critical for glucose homeostasis in mice due to effects in pancreatic islets and peripheral tissues. J. Clin. Investig. 2011, 121, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Rick, T.; Harvey, V.L.; Buckley, M. Collagen fingerprinting and the chumash billfish fishery, Santa Barbara Channel, California, USA. Archaeol. Anthropol. Sci. 2019, 11, 6639–6648. [Google Scholar] [CrossRef]
- Pepperell, J.G. Movements and Variations in Early Year Class Strength of Black Marlin, Makaira Indica Off Eastern Australia; Fisheries Research Institute: Keelung, Taiwan, 1988. [Google Scholar]
- Gentner, B. Economic Analysis of International Billfish Markets; Gentner Consulting Group: Silver Spring, MD, USA, 2007. [Google Scholar]
- Cobas, N.; Gómez-Limia, L.; Franco, I.; Martínez, S. Amino acid profile and protein quality related to canning and storage of swordfish packed in different filling media. J. Food Compos. Anal. 2022, 107, 104328. [Google Scholar] [CrossRef]
- Nishimoto, M.; Sakamoto, R.; Mizuta, S.; Yoshinaka, R. Identification and characterization of molecular species of collagen in ordinary muscle and skin of the Japanese flounder Paralichthys olivaceus. Food Chem. 2005, 90, 151–156. [Google Scholar] [CrossRef]
- Kimura, S. Wide distribution of the skin type I collagen alpha 3 chain in bony fish. Comp. Biochem. Physiology. B Comp. Biochem. 1992, 102, 255–260. [Google Scholar] [CrossRef]
- Sun, L.; Hou, H.; Li, B.; Zhang, Y. Characterization of acid-and pepsin-soluble collagen extracted from the skin of Nile tilapia (Oreochromis niloticus). Int. J. Biol. Macromol. 2017, 99, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Toriumi, S.; Ura, K.; Takagi, Y. Feasibility of collagens obtained from bester sturgeon Huso huso× Acipenser ruthenus for industrial use. Aquaculture 2020, 529, 735641. [Google Scholar] [CrossRef]
- Duan, R.; Zhang, J.; Du, X.; Yao, X.; Konno, K. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem. 2009, 112, 702–706. [Google Scholar] [CrossRef]
- Han, Q.-Y.; Koyama, T.; Watabe, S.; Nagashima, Y.; Ishizaki, S. Isolation and Characterization of Collagen and Collagen Peptides with Hyaluronidase Inhibition Activity Derived from the Skin of Marlin (Istiophoridae). Molecules 2023, 28, 889. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liang, Q.; Wang, Z.; Xu, J.; Liu, Y.; Ma, H. Preparation and characterisation of type I and V collagens from the skin of Amur sturgeon (Acipenser schrenckii). Food Chem. 2014, 148, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Vuorio, E.; De Crombrugghe, B. The family of collagen genes. Annu. Rev. Biochem. 1990, 59, 837–872. [Google Scholar] [CrossRef] [PubMed]
- Gauza-Włodarczyk, M.; Kubisz, L.; Włodarczyk, D. Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int. J. Biol. Macromol. 2017, 104, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Azuma, N.; Hagihara, S.; Adachi, S.; Ura, K.; Takagi, Y. Characterization of type I and II procollagen α1chain in Amur sturgeon (Acipenser schrenckii) and comparison of their gene expression. Gene 2016, 579, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-H.; Mizuta, S.; Yokoyama, Y.; Yoshinaka, R. Purification and characterization of molecular species of collagen in the skin of skate (Raja kenojei). Food Chem. 2007, 100, 921–925. [Google Scholar] [CrossRef]
- Jollès, P.; Caen, J.P. Technology, Parallels between milk clotting and blood clotting: Opportunities for milk-derived products. Trends Food Sci. 1991, 2, 42–43. [Google Scholar] [CrossRef]
- Engel, J.; Bächinger, H.P. Structure, stability and folding of the collagen triple helix. In Collagen: Primer in Structure, Processing Aassembly; Springer: Berlin/Heidelberg, Germany, 2005; pp. 7–33. [Google Scholar]
- Gaill, F.; Mann, K.; Wiedemann, H.; Engel, J.; Timpl, R. Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents. J. Mol. Biol. 1995, 246, 284–294. [Google Scholar] [CrossRef]
- Tanaka, T.; Takahashi, K.; Adachi, K.; Ohta, H.; Yoshimura, Y.; Agawa, Y.; Sawada, Y.; Takaoka, O.; Biswas, A.K.; Takii, K. Molecular cloning and expression profiling of procollagen α1 (I) of cultured Pacific bluefin tuna. Fish. Sci. 2014, 80, 603–612. [Google Scholar] [CrossRef]
- Chu, M.-L.; Conway, D.; Pan, T.; Baldwin, C.; Mann, K.; Deutzmann, R.; Timpl, R. Amino acid sequence of the triple-helical domain of human collagen type VI. J. Biol. Chem. 1988, 263, 18601–18606. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Takenouchi, Y.; Kunisaki, N.; Kimura, S. Complete primary structure of rainbow trout type I collagen consisting of α1 (I) α2 (I) α3 (I) heterotrimers. Eur. J. Biochem. 2001, 268, 2817–2827. [Google Scholar] [CrossRef]
- Von der Mark, K. Structure, biosynthesis and gene regulation of collagens in cartilage and bone. In Dynamics of Bone and Cartilage Metabolism: Principles and Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2006; pp. 3–40. [Google Scholar]
- Bernard, M.; Yoshioka, H.; Rodriguez, E.; Van der Rest, M.; Kimura, T.; Ninomiya, Y.; Olsen, B.; Ramirez, F. Cloning and sequencing of pro-alpha 1 (XI) collagen cDNA demonstrates that type XI belongs to the fibrillar class of collagens and reveals that the expression of the gene is not restricted to cartilagenous tissue. J. Biol. Chem. 1988, 263, 17159–17166. [Google Scholar] [CrossRef]
- Isenberg, J.S.; Frazier, W.A.; Krishna, M.C.; Wink, D.A.; Roberts, D.D. Enhancing cardiovascular dynamics by inhibition of thrombospondin-1/CD47 signaling. Curr. Drug Targets 2008, 9, 833–841. [Google Scholar] [CrossRef]
- Sharma, U.; Carrique, L.; Vadon-Le Goff, S.; Mariano, N.; Georges, R.-N.; Delolme, F.; Koivunen, P.; Myllyharju, J.; Moali, C.; Aghajari, N. Structural basis of homo-and heterotrimerization of collagen I. Nat. Commun. 2017, 8, 14671. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Lin, K.; Zhang, L.; Han, X.; Xin, L.; Meng, Z.; Gong, P.; Cheng, D. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chem. 2018, 254, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- DeLano, W.L. The PyMOL Molecular Graphics System. 2002. Available online: http://www.pymol.org/ (accessed on 2 January 2024).
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef]
Encoding Gene Name | Amino Acid Residues | Molecular Mass (kDa) | pI | Instability Index |
---|---|---|---|---|
Tacol5a1 | 1997 | 198.44 | 5.06 | 32.61 |
Tacol5a2 | 1495 | 145.06 | 6.75 | 26.47 |
Tacol5a3 | 1869 | 189.15 | 5.76 | 30.56 |
Triple Helix Region Length | Gly-Pro-Pro Content | Gly-Gly Content | Accession Number | |
---|---|---|---|---|
α1(I) and α2(I) procollagens | ||||
Shortbill spearfish Tacol1a1 | 1014 | 29 | 13 | OR700191 |
Shortbill spearfish Tacol1a2 | 1015 | 26 | 14 | OR700192 |
α1(V) procollagen | ||||
Shortbill spearfish Tacol5a1 | 1014 | 43 | 4 | |
Zebrafish | 1014 | 42 | 3 | ADG36303.1 |
Broadbill Swordfish | 1014 | 43 | 6 | XP040014133.1 |
Human | 1014 | 49 | 7 | NP000084.3 |
Mouse | 1014 | 44 | 7 | EDL08374.1 |
Chicken | 1014 | 48 | 3 | NP990121.2 |
Shortbill spearfish α2(V) procollagen | ||||
Tacol5a2 | 1017 | 35 | 6 | |
Zebrafish | 1017 | 34 | 11 | NP001139254.1 |
Broadbill Swordfish | 1017 | 32 | 4 | XP040004036.1 |
Human | 1017 | 30 | 6 | NP000384.2 |
Mouse | 1017 | 30 | 6 | NP031763.2 |
Chicken | 1017 | 30 | 11 | XP040532372.1 |
α3(V) procollagen | ||||
Shortbill spearfish Tacol5a3 | 1011 | 31 | 11 | |
Zebrafish | 1011 | 32 | 11 | NP001177685.1 |
Broadbill Swordfish | 1011 | 30 | 10 | XP_040013352.1 |
Human | 1011 | 41 | 4 | NP001845.3 |
Mouse | 1011 | 43 | 5 | AAF59901.1 |
Chicken | 1011 | 40 | 6 | XP422303.4 |
% | Alpha Helix | Beta Sheet | Turn | Coil |
---|---|---|---|---|
Tacol5a1 | 9.81 | 13.32 | 5.81 | 71.06 |
Tacol5a2 | 3.81 | 11.64 | 4.75 | 79.80 |
Tacol5a3 | 12.52 | 11.56 | 6.37 | 69.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Q.; Koyama, T.; Watabe, S.; Ishizaki, S. Functional and Structural Properties of Type V Collagen from the Skin of the Shortbill Spearfish (Tetrapturus angustirostris). Molecules 2024, 29, 2518. https://doi.org/10.3390/molecules29112518
Han Q, Koyama T, Watabe S, Ishizaki S. Functional and Structural Properties of Type V Collagen from the Skin of the Shortbill Spearfish (Tetrapturus angustirostris). Molecules. 2024; 29(11):2518. https://doi.org/10.3390/molecules29112518
Chicago/Turabian StyleHan, Qiuyu, Tomoyuki Koyama, Shugo Watabe, and Shoichiro Ishizaki. 2024. "Functional and Structural Properties of Type V Collagen from the Skin of the Shortbill Spearfish (Tetrapturus angustirostris)" Molecules 29, no. 11: 2518. https://doi.org/10.3390/molecules29112518
APA StyleHan, Q., Koyama, T., Watabe, S., & Ishizaki, S. (2024). Functional and Structural Properties of Type V Collagen from the Skin of the Shortbill Spearfish (Tetrapturus angustirostris). Molecules, 29(11), 2518. https://doi.org/10.3390/molecules29112518