Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of 1H-isochromen-1-ones 4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, M.; Hussain, M.T.; Rama, N.H.; Hameed, S.; Malik, A.; Khan, K.M. Synthesis and antimicrobial activities of some isocoumarin and dihydroisocoumarin derivatives. Nat. Prod. Res. 2003, 17, 207–214. [Google Scholar] [CrossRef]
- Heynekamp, J.J.; Hunsaker, L.A.; Vander Jagt, T.A.; Royer, R.E.; Decka, L.M.; Vander Jagt, D.L. Isocoumarin-based inhibitors of pancreatic cholesterol esterase. Bioorg. Med. Chem. 2008, 16, 5285–5294. [Google Scholar] [CrossRef]
- Nozawa, K.; Yamada, M.; Tsuda, Y.; Kawai, K.; Nakajima, S. Antifungal activity of oosponol, oospolactone, phyllodulcin, hydrangnol, and some other related compounds. Chem. Pharm. Bull. 1981, 29, 2689–2691. [Google Scholar] [CrossRef] [PubMed]
- Kalinova, B.; Kindl, J.; Jiros, P.; Zacek, P.; Vasickova, S.; Budesinsky, M.; Valterova, I. Composition and electrophysiological activity of constituents identified in male wing gland secretion of the bumblebee parasite aphomia sociella. J. Nat. Prod. 2009, 72, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, M.E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; De Celis, E.R.; Shayo, C.; Davio, C. Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorg. Med. Chem. 2008, 16, 2665–2675. [Google Scholar] [CrossRef]
- Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O.; Lee, K.H. Chemical Constituents of Prangos tschimganica; Structure elucidation and absolute configuration of coumarin and furanocoumarin derivatives with anti-HIV activity. Chem. Pharm. Bull. 2001, 49, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Molotkov, A.P.; Arsenov, M.A.; Kapustin, D.A.; Muratov, D.V.; Shepel, N.E.; Fedorov, Y.V.; Smol’yakov, A.F.; Knyazeva, E.I.; Lypenko, D.A.; Dmitriev, A.V.; et al. Effect of Cp-ligand methylation on Rhodium(III)-catalyzed annulations of aromatic carboxylic acids with alkynes: Synthesis of isocoumarins and PAHs for organic light-emitting devices. ChemPlusChem 2020, 85, 334–345. [Google Scholar] [CrossRef]
- Arsenov, M.A.; Fedorov, Y.V.; Muratov, D.V.; Nelyubina, Y.V.; Loginov, D.V. Synthesis of isocoumarins and PAHs with electron-withdrawing substituents: Impact of the substituent nature on the photophysical behavior. Dyes Pigm. 2022, 206, 110653–110665. [Google Scholar] [CrossRef]
- Chutia, K.; Sarmah, M.; Gogoi, P. Substituted Isocoumarins: An assemble of synthetic strategies towards 3-substituted and 3,4-disubstituted isocoumarins. Chem. Asian J. 2023, 18, e202201240. [Google Scholar] [CrossRef] [PubMed]
- Pirovano, V.; Marchetti, M.; Carbonaro, J.; Brambilla, E.; Rossi, E.; Ronda, L.; Abbiati, G. Synthesis and photophysical properties of isocoumarin-based D-π-A systems. Dyes Pigm. 2020, 173, 107917. [Google Scholar] [CrossRef]
- Han, T.; Deng, H.; Yu, C.Y.Y.; Gui, C.; Song, Z.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Functional isocoumarin-containing polymers synthesized by rhodium-catalyzed oxidative polycoupling of aryl diacid and internal diyne. Polym. Chem. 2016, 7, 2501–2510. [Google Scholar] [CrossRef]
- Mayakrishnan, S.; Arun, Y.; Maheswari, N.U.; Perumal, P.T. Rhodium(III)-catalysed decarbonylative annulation through C–H activation: Expedient access to aminoisocoumarins by weak coordination. Chem. Commun. 2018, 54, 11889–11892. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Murfin, L.C.; Wu, L.L.; Lewis, S.E.; James, T.D. Fluorescent small organic probes for biosensing. Chem. Sci. 2021, 12, 3406–3426. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, N.; Parhi, R.; Tripathi, R.K.P.; Pachuau, L.; Kaishap, P.P. Recent advances in synthesis of isocoumarins: An overview. Tetrahedron 2024, 150, 133740. [Google Scholar] [CrossRef]
- Barry, R.D. Isocoumarins. developments since 1950. Chem. Rev. 1964, 64, 229–260. [Google Scholar] [CrossRef]
- Oliver, M.A.; Gandour, R.D. The identity of 4-bromo-3-phenylisocoumarin. A facile preparation by bromolactonization of alkyl 2-(2-phenylethynyl)benzoates. J. Org. Chem. 1984, 49, 558–559. [Google Scholar] [CrossRef]
- Pal, S.; Chatare, V.; Pal, M. Isocoumarin and its derivatives: An overview on their synthesis and applications. Curr. Org. Chem. 2011, 15, 782–800. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhang, H.J.; Han, T.T.; Ruan, W.Q.; Wen, T.B. Rh(III)-catalyzed oxidative coupling of benzoic acids with geminal substituted vinyl acetates: Synthesis of 3-substituted isocoumarins. J. Org. Chem. 2015, 80, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.J.; Wang, F.; Xi, C.J. Assembly of 3-substituted isocoumarins via a CuI-catalyzed domino coupling/addition/deacylation process. J. Org. Chem. 2012, 77, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.C.; Li, Y.F.; Xuan, J.; Hu, X.Q. Practical synthesis of isocoumarins via Rh(III)-catalyzed C–H activation/annulation cascade. Beilstein J. Org. Chem. 2023, 19, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, L.Y.; Shi, X.Y. Copper-promoted intramolecular oxidative dehydrogenation for synthesizing dihydroisocoumarins and isocoumarins. Molecules 2023, 28, 6319–6328. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Qiu, G.; Zhou, H.; Xie, W.; Liu, J.B. Regioselective cyclization of 2-alkynylbenzoic acid in water for the synthesis of isocoumarin. Tetrahedron 2019, 75, 3850–3855. [Google Scholar] [CrossRef]
- Jang, Y.J.; Chen, G.Y.; Jhan, Y.L.; Lo, P.T.; Hsu, W.Y.; Wang, K.; Hsu, Y.T.; Lee, C.L.; Yang, Y.L.; Wu, Y.C. Chemo- and regioselective construction of functionalized isocoumarin, flavone, and isoquinolinedione via a one-pot reaction of o-quinol acetate and soft nucleophiles. Adv. Synth. Catal. 2023, 365, 2900–2911. [Google Scholar] [CrossRef]
- Chen, Z.; Nieves-Quinones, Y.; Waas, J.R.; Singleton, D.A. Isotope effects, dynamic matching, and solvent dynamics in a Wittig reaction. betaines as bypassed intermediates. J. Am. Chem. Soc. 2014, 136, 13122–13125. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.P.; Cao, Z.Y.; Wang, X.; Chen, L.; Zhou, F.; Zhu, F.; Wang, C.H.; Zhou, J. Activation of chiral (salen)AlCl complex by phosphorane for highly enantioselective cyanosilylation of ketones and enones. J. Am. Chem. Soc. 2016, 138, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Liu, Y.B.; Gong, M.; Li, Y.B.; Huang, M.M.; Wu, Y.J. A facile visible-light-induced one-pot synthesis of 3-alkyl coumarins from simple salicylaldehydes. Tetrahedron 2023, 132, 133249. [Google Scholar] [CrossRef]
- Lee, C.J.; Chang, T.H.; Yu, J.K.; Reddy, G.M.; Hsiao, M.Y.; Lin, W.W. Synthesis of functionalized furans via chemoselective reduction/Wittig reaction using catalytic triethylamine and phosphine. Org. Lett. 2016, 18, 3758–3761. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.; Voituriez, A. Synthesis of 9H-pyrrolo[1,2-a]indole and 3H-pyrrolizine derivatives via a phosphine-catalyzed umpolung addition/intramolecular Wittig reaction. J. Org. Chem. 2016, 81, 4371–4377. [Google Scholar] [CrossRef] [PubMed]
- Longwitz, L.; Spannenberg, A.; Werner, T. Phosphetane oxides as redox cycling catalysts in the catalytic Wittig reaction at room temperature. ACS Catal. 2019, 9, 9237–9244. [Google Scholar] [CrossRef]
- Schneider, L.M.; Schmiedel, V.M.; Pecchioli, T.; Lentz, D.; Merten, C.; Christmann, M. Asymmetric synthesis of carbocyclic propellanes. Org. Lett. 2017, 19, 2310–2313. [Google Scholar] [CrossRef] [PubMed]
- Grandane, A.; Longwitz, L.; Roolf, C.; Spannenberg, A.; Escobar, H.M.; Junghanss, C.; Suna, E.; Werner, T. Intramolecular base-free catalytic Wittig reaction: Synthesis of benzoxepinones. J. Org. Chem. 2018, 84, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Chien, P.C.; Chen, Y.R.; Chen, Y.J.; Chang, C.F.; Marri, G.; Lin, W.W. Synthesis of Furo[2,3-f]dibenzotropones via Intramolecular Wittig Reaction of Alkylidene Dibenzo-β-tropolones. Adv. Synth. Catal. 2023, 366, 420–425. [Google Scholar] [CrossRef]
- Sun, M.; Wan, Q.; Ding, M.W. New facile synthesis of furan-2(3H)-ones and 2,3,5-trisubstituted furans via intramolecular Wittig reaction of acid anhydride. Tetrahedron 2019, 75, 3441–3447. [Google Scholar] [CrossRef]
- Kayser, M.M.; Bxeau, L. Neighboring effects on regioselectivity of Wittig reactions with maleic anhydrides. Tetrahedron Lett. 1988, 29, 6203–6206. [Google Scholar] [CrossRef]
- Wang, L.; Ren, Z.L.; Ding, M.W. Synthesis of 2,3-dihydro-1H-2-benzazepin-1-ones and 3H-2-benzoxepin-1-ones by isocyanide-based multicomponent reaction/Wittig sequence starting from phosphonium salt precursors. J. Org. Chem. 2015, 80, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.H.; Wang, H.M.; Ding, M.W. Unexpected synthesis of 5,6-dihydropyridin-2(1H)-ones by a domino Ugi/aldol/hydrolysis reaction starting from baylis–hillman phosphonium Salts. Org. Lett. 2015, 17, 2234–2237. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.L.; Guan, Z.R.; Kong, H.H.; Ding, M.W. Multifunctional odorless isocyano(triphenylphosphoranylidene)-acetates: Synthesis and direct one-pot four-component Ugi/Wittig cyclization to multisubstituted oxazoles. Org. Chem. Front. 2017, 4, 2044–2048. [Google Scholar] [CrossRef]
- Yan, Y.M.; Rao, Y.; Ding, M.W. One-pot synthesis of indoles by a sequential Ugi-3CR/Wittig reaction starting from odorless isocyanide-substituted phosphonium salts. J. Org. Chem. 2017, 82, 2772–2776. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhao, L.; Ding, M.W. One-pot-three-component synthesis of 2-(1,2,3,4-tetrahydroisoquinolin-1-yl)oxazoles via DEAD-promoted oxidative Ugi/Wittig reaction. J. Org. Chem. 2019, 84, 14313–14319. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhi, Y.M.; Yao, G.; Zhang, J.A.; Feng, Q.X.; He, H.T.; Pang, Y.L.; Shi, H.; Ding, M.W. One-pot synthesis of polysubstituted pyrroles via sequential ketenimine formation/Ag(I)-catalyzed alkyne cycloisomerisation starting from ylide adducts. Chin. J. Chem. 2021, 39, 1553–1557. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Cao, Z.; He, Y.R.; Ye, T.T.; Gao, Y.S.; Li, D.H.; Liu, Q.M.; Zhou, W.W.; Fang, W.Y. Multi-stimuli-responsive fluorescence of bibranched bromo-substituted cyanostilbene derivative with aggregation induced emission enhancement and green light-emitting diode. Results Opt. 2022, 8, 100264. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Dai, J.; Yang, T.S.; Wang, Z.J.; Gao, Y.; Xia, J.; Chen, Y.; Sun, M. Multi-stimuli fluorescence responsiveness of α-cyanostilbene derivative: AIEE, stimuli response to polarity, acid, force and light, applications in anti-counterfeiting and single phosphor w-OLED. Dyes Pigm. 2024, 222, 111906. [Google Scholar] [CrossRef]
- Ren, T.B.; Xu, W.; Zhang, W.; Zhang, X.X.; Wang, Z.Y.; Zhen, X.; Lin, Y.; Zhang, X.B. A general method to increase stokes shift by introducing alternating vibronic structures. J. Am. Chem. Soc. 2018, 140, 7716–7722. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.L.; Liang, Z.Y.; Guo, X.F.; Wang, H. A D-π-A-based near-infrared fluorescent probe with large Stokes shift for the detection of cysteine in vivo. Talanta 2024, 268, 125354. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Dong, H.L.; Jiang, L.; Hu, W.P. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.B.; Xiao Li, J.X.; Zhu, C.L.; Wu, W.Q.; Jiang, H.F. Palladium-Catalyzed Sequential Nucleophilic Addition/Oxidative Annulation of Bromoalkynes with Benzoic Acids to Construct Functionalized Isocoumarins. Org. Lett. 2017, 19, 4440–4443. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.R.; Irudayanathan, F.M.; Moon, J.H.; Lee, S. Regioselective One-Pot Synthesis of Isocoumarins and Phthalides from 2-Iodobenzoic Acids and Alkynes by Temperature Control. Adv. Synth. Catal. 2013, 355, 3221–3230. [Google Scholar] [CrossRef]
Entry | Solvent | Temp (°C) | Base | Time | Yield (%) |
1 | DCM | 25 | DMAP | 12 h | 0 |
2 | DCM | 25 | NEt3 | 12 h | 79 |
3 | DCM | 25 | DBU | 12 h | 20 |
4 | DCM | 25 | t-BuOK | 12 h | 10 |
5 | DCM | 25 | K2CO3 | 12 h | 50 |
6 | DCM | 25 | NaOH | 12 h | 10 |
7 | THF | 25 | NEt3 | 12 h | 38 |
8 | CH3CN | 25 | NEt3 | 12 h | 42 |
9 | DCE | 25 | NEt3 | 12 h | 53 |
10 | 1,4-dioxane | 25 | NEt3 | 12 h | 57 |
11 | toluene | 25 | NEt3 | 12 h | 77 |
12 | toluene | 80 | NEt3 | 6 h | 80 |
13 | toluene | 110 | NEt3 | 2 h | 82 |
Entry | R1 | R2 | Time | Yield (%) | Entry | R1 | R2 | Time | Yield (%) |
4a | H | Ph | 2 h | 85 | 4l | 4-Cl | Ph | 2 h | 86 |
4b | H | 4-CH3C6H4 | 2 h | 84 | 4m | 4-Cl | 4-CH3C6H4 | 2 h | 84 |
4c | H | 4-FC6H4 | 2 h | 90 | 4n | 4-Cl | 4-CH3OC6H4 | 2.5 h | 82 |
4d | H | 4-CH3OC6H4 | 2.5 h | 83 | 4o | 4-Cl | 4-t-BuC6H4 | 2.5 h | 81 |
4e | H | 3-CH3C6H4 | 2 h | 82 | 4p | 4-Cl | 3,4,5-(CH3O)3C6H4 | 3 h | 80 |
4f | H | 4-BrC6H4 | 1.5 h | 89 | 4q | 4-Cl | naphthalen-1-yl | 2 h | 86 |
4g | H | 4-t-BuC6H4 | 2.5 h | 78 | 4r | 4-Cl | C6H4CH=CH | 3 h | 81 |
4h | H | C6H4CH=CH | 3 h | 81 | 4s | 4-Cl | 2-CH3C6H4 | 3 h | 75 |
4i | H | 4-CF3C6H4 | 1 h | 72 | 4t | 5-Cl | thiophene-2-yl | 2.5 h | 80 |
4j | H | 2-CH3C6H4 | 3 h | 79 | 4u | 5-Cl | CH3CH2 | 4 h | 60 |
4k | H | naphthalen-1-yl | 2 h | 85 |
Comps. | Experimental Value | Theoretical Value | ||||||
---|---|---|---|---|---|---|---|---|
λa | ε | λe | ∆ν | Φ | λcalc | fosc | Major Contribution | |
4a | 332 | 1.0 | 409 | 5670 | 1% | 338 | 0.3801 | H → L (89%) |
289 | 3.8 | 300 | 0.4871 | H → L+1 (85%) | ||||
4h | 365 | 1.8 | 427 | 3978 | 14% | 373 | 0.9345 | H → L (89%) |
322 | 2.3 | 326 | 0.5218 | H → L+1 (87%) | ||||
278 | 3.2 | 277 | 0.0204 | H-2 → L+1 (61%) | ||||
4j | 335 | 0.8 | 404 | 5098 | 2% | 342 | 0.4632 | H → L (92%) |
290 | 2.9 | 305 | 0.5353 | H → L+1 (90%) | ||||
4k | 329 | 2.6 | 416 | 6356 | 5% | 325 | 0.1213 | H → L+1 (92%) |
280 | 3.2 | 276 | 0.0827 | H-2 → L+1 (50%) | ||||
4p | 361 | 1.7 | 458 | 5866 | 12% | 367 | 0.4832 | H → L (92%) |
315 | 2.4 | 320 | 0.5485 | H → L+1 (87%) | ||||
281 | 3.1 | 287 | 0.3640 | H-2 → L+1 (95%) | ||||
4u | 328 | 0.5 | 420 | 6678 | --- | 308 | 0.1048 | H → L (90%) |
276 | 3.4 | 266 | 0.1759 | H → L+1 (77%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Zeng, C.-Y.; Bu, L.-L.; Xu, M.; Chen, K.; Liu, J.-L.; Zhang, T.; Dai, J.-Y.; Hong, J.-X.; Ding, M.-W. Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications. Molecules 2024, 29, 2449. https://doi.org/10.3390/molecules29112449
Sun M, Zeng C-Y, Bu L-L, Xu M, Chen K, Liu J-L, Zhang T, Dai J-Y, Hong J-X, Ding M-W. Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications. Molecules. 2024; 29(11):2449. https://doi.org/10.3390/molecules29112449
Chicago/Turabian StyleSun, Mei, Chong-Yang Zeng, Lu-Lu Bu, Mai Xu, Kai Chen, Jia-Lin Liu, Tao Zhang, Jia-You Dai, Jia-Xin Hong, and Ming-Wu Ding. 2024. "Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications" Molecules 29, no. 11: 2449. https://doi.org/10.3390/molecules29112449
APA StyleSun, M., Zeng, C.-Y., Bu, L.-L., Xu, M., Chen, K., Liu, J.-L., Zhang, T., Dai, J.-Y., Hong, J.-X., & Ding, M.-W. (2024). Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications. Molecules, 29(11), 2449. https://doi.org/10.3390/molecules29112449