Efficient Removal of Nickel from Wastewater Using Copper Sulfate–Ammonia Complex Modified Activated Carbon: Adsorption Performance and Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physiochemical Properties of Adsorbents
2.2. Ni(II) Adsorption Isotherm
2.3. Ni(II) Adsorption Kinetics
2.4. Effect of Ionic Strength on Ni(II) Adsorption
2.5. Effect of pH on Ni(II) Adsorption
2.6. Adsorption Mechanisms
2.6.1. Complexation with Oxygen-Containing and Nitrogen-Containing Functional Groups
2.6.2. Cation Exchange
2.6.3. Electrostatic Interaction
2.7. Environmental Implications
3. Materials and Methods
3.1. Reagents and Materials
3.2. Adsorbents Preparation
3.3. Adsorbent Properties
3.4. Batch Adsorption Experiments
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Zhang, S.; Yang, C.; Yin, H.; Liu, W.; Lu, K. Simultaneous removal of Ni(II) and Cr(VI) from aqueous solution by froth flotation using PNIPAM-CS intelligent nano-hydrogels as collector. J. Mol. Liq. 2021, 342, 117551. [Google Scholar] [CrossRef]
- Sajjadi, B.; Shrestha, R.M.; Chen, W.-Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Double-layer magnetized/functionalized biochar composite: Role of microporous structure for heavy metal removals. J. Water Process Eng. 2021, 39, 101677. [Google Scholar] [CrossRef]
- Ates, N.; Basak, A. Selective removal of aluminum, nickel and chromium ions by polymeric resins and natural zeolite from anodic plating wastewater. Int. J. Environ. Health Res. 2021, 31, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, I.; Karayannis, A.; Kollias, K.; Xenidis, A.; Papassiopi, N. Investigation of potential soil contamination with Cr and Ni in four metal finishing facilities at Asopos industrial area. J. Hazard. Mater. 2015, 281, 20–26. [Google Scholar] [CrossRef]
- Nie, F.; Guan, K.; Zou, C.; Xu, Z.; Liu, Z. Synthesis of magnetic rice husk biochar and its application in the adsorption of Ni(II) from aqueous solutions. Biomass Convers. Biorefinery 2023, 1–13. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, M.; Kumar, R.; Akhtar, M.S.; Umar, A.; Alkhanjaf, A.A.M.; Baskoutas, S. Recent advances and mechanisms of microbial bioremediation of nickel from wastewater. Environ. Sci. Pollut. Res. Int. 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.-L.; Wang, Y.; Wang, W.-H.; Zhao, J.-X.; Feng, L.-L.; Li, J.-J.; Zhao, J.-C. Application of biochars obtained through the pyrolysis of Lemna minor in the treatment of Ni-electroplating wastewater. J. Water Process Eng. 2020, 37, 101464. [Google Scholar] [CrossRef]
- Moghbeli, M.R.; Khajeh, A.; Alikhani, M. Nanosilica reinforced ion-exchange polyHIPE type membrane for removal of nickel ions: Preparation, characterization and adsorption studies. Chem. Eng. J. 2017, 309, 552–562. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Yuan, J.; Zwain, H.M.; Mojiri, A.; Gholami, Z.; Gholami, F.; Wang, W.; Giwa, A.S.; Yu, Y.; et al. Nickel ion removal from aqueous solutions through the adsorption process: A review. Rev. Chem. Eng. 2021, 37, 755–778. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhai, G.; Zhang, J.; Zhang, C.; Bao, N.; Cheng, C. Preparation of activated carbon from lotus stalks with the mixture of phosphoric acid and pentaerythritol impregnation and its application for Ni(II) sorption. Chem. Eng. J. 2012, 209, 155–162. [Google Scholar] [CrossRef]
- Iamsaard, K.; Weng, C.H.; Yen, L.T.; Tzeng, J.H.; Poonpakdee, C.; Lin, Y.T. Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation. Bioresour. Technol. 2022, 344, 126131. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, S.; Dong, C.; Meng, Z.; Wang, X. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresour. Technol 2020, 303, 122853. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Gu, W.; Fang, W.; Ji, X.; Bie, R. Removal of metal impurities in rice husk and characterization of rice husk ash under simplified acid pretreatment process. Environ. Prog. Sustain. Energy 2017, 36, 830–837. [Google Scholar] [CrossRef]
- Quan, C.; Wang, W.; Su, J.; Gao, N.; Wu, C.; Xu, G. Characteristics of activated carbon derived from Camellia oleifera cake for nickel ions adsorption. Biomass Bioenergy 2023, 171, 106748. [Google Scholar] [CrossRef]
- Guo, Z.; Bian, X.; Zhang, J.; Liu, H.; Cheng, C.; Zhang, C.; Wang, J. Activated carbons with well-developed microporosity prepared from Phragmites australis by potassium silicate activation. J. Taiwan Inst. Chem. Eng. 2014, 45, 2801–2804. [Google Scholar] [CrossRef]
- Feng, N.; Guo, X.; Liang, S.; Zhu, Y.; Liu, J. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater. 2011, 185, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Sequeda, J.F.; Loredo-Cancino, M.; Águeda-Maté, V.I.; Martínez-Vargas, D.X. Tailoring Nitrogen-Doped Activated Carbons: Central Composite Design for Enhanced CO2 Adsorption. ChemistrySelect 2024, 9, e202302805. [Google Scholar] [CrossRef]
- Zhang, T.; Zuo, S. Nitrogen-doped metal-free granular activated carbons as economical and easily separable catalysts for peroxymonosulfate and hydrogen peroxide activation to degrade bisphenol A. Environ. Sci. Pollut. Res. Int. 2024, 31, 25751–25768. [Google Scholar] [CrossRef]
- Wang, L.; Wen, H.; Guo, L.; Liang, A.; Liu, T.; Zhao, D.; Dong, L. The Effect of Nitrogen Functional Groups on Pb(0), PbO, and PbCl(2) Adsorption over a Carbonaceous Surface. Molecules 2024, 29, 511. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhao, Y.; Xu, C.; Liu, Y.; Wu, W.; Zhao, D. Enhanced removal of Pb2+, Cd2+ and Zn2+ ions on porous carbon from aqueous solutions by capacitive deionization: Performance study and underlying mechanism. Surf. Interfaces 2024, 45, 103858. [Google Scholar] [CrossRef]
- Dinh, V.C.; Hou, C.H.; Dao, T.N. O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: The role of O, N functional groups. Chemosphere 2022, 293, 133622. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; An, Z.; Zhang, R.; Wei, X.; Lai, B. Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon. J. Clean. Prod. 2021, 293, 126215. [Google Scholar] [CrossRef]
- Yang, G.X.; Jiang, H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014, 48, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.J.; Xiao, Y.Z.; Chung, A.; Hsi, H.C. Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption. Sci. Total Environ. 2023, 855, 158870. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Chiu, C.-H.; Chuang, M.-W.; Hsi, H.-C. Influences of Copper(II) Chloride Impregnation on Activated Carbon for Low-Concentration Elemental Mercury Adsorption from Simulated Coal Combustion Flue Gas. Aerosol Air Qual. Res. 2017, 17, 1637–1648. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zhang, J.; Zheng, C. Removal of elemental mercury from flue gas by recyclable CuCl 2 modified magnetospheres catalyst from fly ash. Part 3. Regeneration performance in realistic flue gas atmosphere. Fuel 2016, 173, 1–7. [Google Scholar] [CrossRef]
- Moreno-Pirajan, J.C.; Tirano, J.; Salamanca, B.; Giraldo, L. Activated carbon modified with copper for adsorption of propanethiol. Int. J. Mol. Sci. 2010, 11, 927–942. [Google Scholar] [CrossRef]
- Donohue, M.D.; Aranovich, G.L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76, 16. [Google Scholar] [CrossRef]
- Wang, G.; Yang, R.; Liu, Y.; Wang, J.; Tan, W.; Liu, X.; Jin, Y.; Qu, J. Adsorption of Cd(II) onto Auricularia auricula spent substrate biochar modified by CS2: Characteristics, mechanism and application in wastewater treatment. J. Clean. Prod. 2022, 367, 132882. [Google Scholar] [CrossRef]
- Kang, Y.; Guo, Z.; Zhang, J.; Xie, H.; Liu, H.; Zhang, C. Enhancement of Ni(II) removal by urea-modified activated carbon derived from Pennisetum alopecuroides with phosphoric acid activation. J. Taiwan Inst. Chem. Eng. 2016, 60, 335–341. [Google Scholar] [CrossRef]
- Cui, X.; Hao, H.; Zhang, C.; He, Z.; Yang, X. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Sci. Total Environ. 2016, 539, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Huang, X.; Yang, X.; Peng, P.; Li, Z.; Jin, C. Enhanced Transformation of Cr(VI) by Heterocyclic-N within Nitrogen-Doped Biochar: Impact of Surface Modulatory Persistent Free Radicals (PFRs). Environ. Sci. Technol. 2020, 54, 8123–8132. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wu, L.; Zheng, Z.; Chen, J.; Lu, T.; Lu, M.; Chen, W.; Qi, Z. Sorption of Cd(II) and Ni(II) on biochars produced in nitrogen and air-limitation environments with various pyrolysis temperatures: Comparison in mechanism and performance. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 635, 128100. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, Y.; Wang, Y.; Lv, J.; Dai, P.; Zhang, J.; Huang, Y.; Lv, W. Contributions of Various Cd(II) Adsorption Mechanisms by Phragmites australis-Activated Carbon Modified with Mannitol. ACS Omega 2022, 7, 10502–10515. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Huang, S.; Wu, J.; Lin, Z. Competitive adsorption and immobilization of Cd, Ni, and Cu by biochar in unsaturated soils under single-, binary-, and ternary-metal systems. J. Hazard. Mater. 2023, 451, 131106. [Google Scholar] [CrossRef]
- An, Q.; Jin, N.; Deng, S.; Zhao, B.; Liu, M.; Ran, B.; Zhang, L. Ni(II), Cr(VI), Cu(II) and nitrate removal by the co-system of Pseudomonas hibiscicola strain L1 immobilized on peanut shell biochar. Sci. Total Environ. 2022, 814, 152635. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Huang, M.; Huang, C.-p. Specific chemical adsorption of selected divalent heavy metal ions onto hydrous γ-Fe2O3-biochar from dilute aqueous solutions with pH as a master variable. Chem. Eng. J. 2023, 451, 138921. [Google Scholar] [CrossRef]
- Tehreem, S.; Yousra, M.; Alamer, K.H.; Alsudays, I.M.; Sarwar, S.; Kamal, A.; Naeem, S. Analysis of the role of various biochar in the remediation of heavy metals in contaminated water and its kinetics study. J. Saudi Chem. Soc. 2022, 26, 101518. [Google Scholar] [CrossRef]
- Mészároš, L.; Šuránek, M.; Melichová, Z.; Frišták, V.; Ďuriška, L.; Kaňuchová, M.; Soja, G.; Pipíška, M. Green biochar-based adsorbent for radiocesium and Cu, Ni, and Pb removal. J. Radioanal. Nucl. Chem. 2023, 332, 4141–4155. [Google Scholar] [CrossRef]
- Gao, W.; He, W.; Zhang, J.; Chen, Y.; Zhang, Z.; Yang, Y.; He, Z. Effects of biochar-based materials on nickel adsorption and bioavailability in soil. Sci. Rep. 2023, 13, 5880. [Google Scholar] [CrossRef]
- Su, P.; Zhang, J.; Tang, J.; Zhang, C. Preparation of nitric acid modified powder activated carbon to remove trace amount of Ni(II) in aqueous solution. Water Sci. Technol. 2019, 80, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Elbehiry, F.; Darweesh, M.; Al-Anany, F.S.; Khalifa, A.M.; Almashad, A.A.; El-Ramady, H.; El-Banna, A.; Rajput, V.D.; Jatav, H.S.; Elbasiouny, H. Using Biochar and Nanobiochar of Water Hyacinth and Black Tea Waste in Metals Removal from Aqueous Solutions. Sustainability 2022, 14, 118. [Google Scholar] [CrossRef]
- Ji, B.; Wang, J.; Song, H.; Chen, W. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. J. Environ. Chem. Eng. 2019, 7, 103036. [Google Scholar] [CrossRef]
- Hong, S.H.; Shin, M.C.; Lee, J.; Lee, C.G.; Song, D.S.; Um, B.H.; Park, S.J. Recycling of bottom ash derived from combustion of cattle manure and its adsorption behaviors for Cd(II), Cu(II), Pb(II), and Ni(II). Environ. Sci. Pollut. Res. Int. 2021, 28, 14957–14968. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wu, P.; Shu, L.; Guo, Q.; Huang, D.; Liu, H. Isotherm, kinetics, and adsorption mechanism studies of diethylenetriaminepentaacetic acid-modified banana/pomegranate peels as efficient adsorbents for removing Cd(II) and Ni(II) from aqueous solution. Environ. Sci. Pollut. Res. Int. 2022, 29, 3051–3061. [Google Scholar] [CrossRef] [PubMed]
- Charoenchai, M.; Tangbunsuk, S. Effect of ternary polymer composites of macroporous adsorbents on adsorption properties for heavy metal removal from aqueous solution. Environ. Sci. Pollut. Res. Int. 2022, 29, 84006–84018. [Google Scholar] [CrossRef]
- Do, T.T.; Van, H.-T.; Nguyen, T.D.; Nguyen, L.H.; Ta, N.B. Box–Behnken design to optimize Ni(II) adsorption using coffee husk-derived biochar compositing with MnFe2O4. Chem. Pap. 2023, 77, 5773–5786. [Google Scholar] [CrossRef]
- Chang, Y.S.; Au, P.I.; Mubarak, N.M.; Khalid, M.; Jagadish, P.; Walvekar, R.; Abdullah, E.C. Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite. Environ. Sci. Pollut. Res. Int. 2020, 27, 33270–33296. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.N.; Yadav, A. Effective removal of Ni(II) ions from its aqueous solution by utilizing Euphorbia thymifolia as an adsorbent. Environ. Sci. Pollut. Res. Int. 2023, 30, 98787–98795. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, T.; Zhang, Y.; Pan, W.P. The distribution of Pb(II)/Cd(II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment. Bioresour. Technol. 2019, 291, 121859. [Google Scholar] [CrossRef] [PubMed]
- Guler, U.A.; Sarioglu, M. Single and binary biosorption of Cu(II), Ni(II) and methylene blue by raw and pretreated Spirogyra sp.: Equilibrium and kinetic modeling. J. Environ. Chem. Eng. 2013, 1, 369–377. [Google Scholar] [CrossRef]
- Cho, D.W.; Chon, C.M.; Yim, G.J.; Ryu, J.; Jo, H.; Kim, S.J.; Jang, J.Y.; Song, H. Adsorption of potentially harmful elements by metal-biochar prepared via Co-pyrolysis of coffee grounds and Nano Fe(III) oxides. Chemosphere 2023, 319, 136536. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu(+2) and Ni(+2) from water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef] [PubMed]
- Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 2017, 307, 353–363. [Google Scholar] [CrossRef]
- Kamboj, V.; Tiwari, D.P. Removal of heavy metal (Cu, Cr, and Ni) ions from aqueous solution using derived activated carbon from water hyacinth. Biomass Convers. Biorefinery 2022, 14, 5075–5083. [Google Scholar] [CrossRef]
- Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process Eng. 2020, 37, 101339. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Fu, J.; Chen, B.; Fu, Y.; Chen, X. Recovery of copper and tin from waste tinned copper wires by ultrasonic assisted chemical replacement. Chem. Pap. 2023, 77, 3847–3854. [Google Scholar] [CrossRef]
- Zou, X.; Xie, J.; Wang, C.; Jiang, G.; Tang, K.; Chen, C. Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: Investigations and challenges. Chin. Chem. Lett. 2023, 34, 107908. [Google Scholar] [CrossRef]
- Zhou, B.; Zhan, G.; Yao, Y.; Zhang, W.; Zhao, S.; Quan, F.; Fang, C.; Shi, Y.; Huang, Y.; Jia, F.; et al. Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device. Water Res. 2023, 242, 120256. [Google Scholar] [CrossRef] [PubMed]
- Boehm, H.P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 5. [Google Scholar] [CrossRef]
- Villanueva, M.E.; Salinas, A.; Copello, G.J.; Díaz, L.E. Point of zero charge as a factor to control biofilm formation of Pseudomonas aeruginosa in sol-gel derivatized aluminum alloy plates. Surf. Coat. Technol. 2014, 254, 145–150. [Google Scholar] [CrossRef]
- Anbazhagan, S.; Thiruvengadam, V.; Sukeri, A. An Amberlite IRA-400 Cl− ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: Adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory. RSC Adv. 2021, 11, 4478–4488. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, C.; Liu, X.; Ren, W.; Huang, X.; He, M.; Ouyang, W. Efficient removal of acetochlor pesticide from water using magnetic activated carbon: Adsorption performance, mechanism, and regeneration exploration. Sci. Total Environ. 2021, 778, 146353. [Google Scholar] [CrossRef] [PubMed]
- Heidari, A.; Younesi, H.; Mehraban, Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 2009, 153, 70–79. [Google Scholar] [CrossRef]
- Liu, P.; Rao, D.; Zou, L.; Teng, Y.; Yu, H. Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars. Sci. Total Environ. 2021, 767, 145447. [Google Scholar] [CrossRef]
Model | Parameters | Unit | Samples | |
---|---|---|---|---|
PAC | [Cu(NH3)4]-PAC | |||
Langmuir | qmax | mg/g | 46.512 | 76.336 |
KL | L/mg | 0.347 | 0.143 | |
R2 | 0.999 | 0.979 | ||
Freundlich | KF | mg(1−1/n) L1/n/g | 26.073 | 25.196 |
1/n | 0.133 | 0.249 | ||
R2 | 0.972 | 0.964 | ||
Temkin | AT | L/mg | 1.221 | 1.858 |
b | J/mol | 99.232 | 127.145 | |
R2 | 0.978 | 0.917 |
Kinetic Models | Parameters | Unit | PAC | [Cu(NH3)4]-PAC |
---|---|---|---|---|
Experimental | qe, exp | mg/g | 36.256 | 41.640 |
Pseudo-first-order | qe, cal | mg/g | 4.065 | 12.185 |
k1 | 1/min | 0.007 | 0.013 | |
R2 | 0.666 | 0.887 | ||
Pseudo-second-order | qe, cal | mg/g | 36.364 | 42.017 |
k2 | g/(mg·h) | 0.011 | 0.005 | |
R2 | 1.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yan, X.; Zhang, Y.; Qin, X.; Yu, X.; Jiang, L.; Li, B. Efficient Removal of Nickel from Wastewater Using Copper Sulfate–Ammonia Complex Modified Activated Carbon: Adsorption Performance and Mechanism. Molecules 2024, 29, 2405. https://doi.org/10.3390/molecules29102405
Wang Y, Yan X, Zhang Y, Qin X, Yu X, Jiang L, Li B. Efficient Removal of Nickel from Wastewater Using Copper Sulfate–Ammonia Complex Modified Activated Carbon: Adsorption Performance and Mechanism. Molecules. 2024; 29(10):2405. https://doi.org/10.3390/molecules29102405
Chicago/Turabian StyleWang, Yifei, Xiaoxiao Yan, Yidi Zhang, Xiaoxin Qin, Xubiao Yu, Li Jiang, and Bing Li. 2024. "Efficient Removal of Nickel from Wastewater Using Copper Sulfate–Ammonia Complex Modified Activated Carbon: Adsorption Performance and Mechanism" Molecules 29, no. 10: 2405. https://doi.org/10.3390/molecules29102405
APA StyleWang, Y., Yan, X., Zhang, Y., Qin, X., Yu, X., Jiang, L., & Li, B. (2024). Efficient Removal of Nickel from Wastewater Using Copper Sulfate–Ammonia Complex Modified Activated Carbon: Adsorption Performance and Mechanism. Molecules, 29(10), 2405. https://doi.org/10.3390/molecules29102405