Progress on the Synthesis of the Aromathecin Family of Compounds: An Overview
Abstract
:1. Introduction
- Category 1: by constructing a pyridone moiety (D-ring) on the pyrroloquinoline ring (A/B/C-ring).
- Category 2: by constructing a pyridine moiety (B-ring) on the pyrroloisoquinolone ring (C/D/E-ring)
- Category 3: by constructing an indolizidinone moiety (C/D-ring) in a tandem reaction.
- Category 4: by constructing a pyrrolidine moiety (C-ring) on the isoquinolone ring (D/E-ring).
2. Review of Synthetic Methods
2.1. Category 1
2.2. Category 2
2.3. Category 3
2.4. Category 4
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 1966, 88, 3888–8890. [Google Scholar] [CrossRef]
- Michael, J.P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep. 2005, 22, 603–626. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.; Huang, R. Isolation, total synthesis and biological activity of phenanthroindolizidine and phenanthroquinolizidine alkaloids. Synthesis 2001, 16, 2365–2378. [Google Scholar]
- Adams, D.J.; Dewhirst, M.W.; Flowers, J.L.; Gamcsik, M.P.; Colvin, O.M.; Manikumar, G.; Wani, M.C.; Wall, M.E. Camptothecin analogues with enhanced antitumor activity at acidic pH. Cancer Chemother. Pharmacol. 2000, 46, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Shamma, M.; Novak, L. Synthesis of approaches to camptothecin. Tetrahedron 1969, 25, 2275–2279. [Google Scholar] [CrossRef]
- Cheng, K.; Rahier, N.J.; Eisenhauer, B.M.; Gao, R.; Thomas, S.J.; Hecht, S.M. 14-Azacamptothecin: A Potent Water-Soluble Topoisomerase I Poison. J. Am. Chem. Soc. 2005, 127, 838–839. [Google Scholar] [CrossRef]
- Lin, L.Z.; Cordell, G.A. Quinoline Alkaloids from Camptotheca acuminata. Phytochemistry 1989, 28, 1295–1297. [Google Scholar] [CrossRef]
- Iwasa, K.; Moriyasu, M.; Yamori, T.; Turuo, T.; Lee, D.-U.; Wiegrebe, W. In Vitro Cytotoxicity of the Protoberberine-Type Alkaloids. J. Nat. Prod. 2001, 64, 896–898. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Montgomery, C.T.; Freyer, A.J.; Guinaudeau, H.; Shamma, M.; Tantisewie, B.; Pharadai, K. The protoberberine alkaloids of Stephania suberosa. Phytochemistry 1987, 26, 547–549. [Google Scholar] [CrossRef]
- Russel, J.H.; Hunziker, H. Synthesis of septicine. Tetrahedron Lett. 1969, 10, 4035–4036. [Google Scholar] [CrossRef]
- Ratnagiriswaran, A.N.; Venkatachalam, K. The chemical examination of Tylophora asthmatica and the isolation of the alkaloids tylophorine and tylophorinine. Indian J. Med. Res. 1935, 22, 433–441. [Google Scholar]
- Gopalakrishnan, C.; Shankaranarayanan, D.; Nazimudeen, S.K.; Kameswaran, L. Effect of tylophorine, a major alkaloid of Tylophora indica, on immunopathological and inflammatory reactions. Indian J. Med. Res. 1980, 71, 940–948. [Google Scholar] [PubMed]
- Gao, W.; Bussom, S.; Grill, S.P.; Gullen, E.A.; Hu, Y.C.; Huang, X.; Zhong, S.; Kaczmarek, C.; Gutierrez, J.; Francis, S.; et al. Structure–activity studies of phenanthroindolizidine alkaloids as potential antitumor agents. Bioorg. Med. Chem. Lett. 2007, 17, 4338–4342. [Google Scholar] [CrossRef] [PubMed]
- Gellert, E.; Riggs, N.V. Crytopleurine: And alkaloid of Cryptocarya pleurosperma White & Francis. Aust. J. Chem. 1954, 7, 113–120. [Google Scholar]
- Bhutani, K.K.; Sharma, G.L.; Ali, M. Plant Based Antiamoebic Drugs; Part I. Antiamoebic activity of phenanthroindolizidine alkaloids; common structural determinants of activity with emetine. Planta Medica 1987, 53, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Zhang, R.; Yu, Z.; Ouyang, D. The interaction between tylophorine B and TMV RNA. Bioorg. Med. Chem. Lett. 2006, 16, 4300–4304. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Wang, Z.; Meng, X.; Wu, M.; Li, Y.; Wu, X.; Zhao, L.; Wang, P.; Yin, Z.; Li-Ling, J.; et al. Synthesis of Novel Tylophorine Derivatives and Evaluation of Their Anti-Inflammatory Activity. ACS Med. Chem. Lett. 2014, 5, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Chemler, S.R. Phenanthroindolizidines and Phenanthroquinolizidines: Promising Alkaloids for Anti-Cancer Therapy. Curr. Bioact. Compd. 2009, 5, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Walraven, H.G.M.; Pandit, U.K. A facile two synthon approach to the camptothecin skeleton. Tetrahedron 1980, 36, 321–327. [Google Scholar] [CrossRef]
- Zalkow, L.H.; Nabors, J.B.; French, K.; Bisarya, S.C. Studies in the Synthesis of Camptothecin. An Efficient Synthesis of 2,3-D-hydro-1H-pyrrolo[3,4-b]quinoline. J. Chem. Soc. C Org. 1971, 21, 3551–3554. [Google Scholar] [CrossRef]
- Meyers, A.I.; Nolen, R.L.; Collington, E.W.; Narwid, T.A.; Strickland, R.C. Total synthesis of camptothecin and desethyldesoxycamptothecin. J. Org. Chem. 1973, 38, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Fox, B.M.; Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Staker, B.L.; Stewart, L.; Cushman, M. Design, Synthesis, and Biological Evaluation of Cytotoxic 11-Alkenylindenoisoquinoline Topoisomerase I Inhibitors and Indenoisoquinoline−Camptothecin Hybrids. J. Med. Chem. 2003, 46, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- Claus, A.; Steinitz, J. Alkyl Derivatives of b-Quinaldic Acid. Justus Liebigs Ann. Chem. 1894, 282, 107–130. [Google Scholar] [CrossRef]
- Chavan, S.P.; Pasupathy, K.; Sivappa, R.; Venkatraman, M.S. Facile Syntheses of ABC Ring Skeleton of Camptothecin and Related Alkaloids. Synth. Commun. 2004, 34, 3099–3110. [Google Scholar] [CrossRef]
- Li, K.; Ou, J.; Gao, S. Total Synthesis of Camptothecin and Related Natural Products by a Flexible Strategy. Angew. Chem. Int. Ed. 2016, 55, 14778–14783. [Google Scholar] [CrossRef] [PubMed]
- Babjak, M.; Kanazawa, A.; Andersona, R.J.; Greene, A.E. Concise synthesis of 22-hydroxyacuminatine, cytotoxic camptothecinoid from Camptotheca acuminata, by pyridone benzannulation. Org. Biomol. Chem. 2006, 4, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Grillet, F.; Baumlová, B.; Preévost, G.; Constant, J.-F.; Chaumeron, S.; Bigg, D.C.H.; Greenea, A.E.; Kanazawa, A. Synthesis and bioevaluation of 22-hydroxyacuminatine analogs. Bioorg. Med. Chem. Lett. 2008, 18, 2143–2146. [Google Scholar] [CrossRef] [PubMed]
- Pin, F.; Comesse, S.; Sanselme, M.; Daïch, A. A Domino N-Amidoacylation/Aldol-Type Condensation Approach to the Synthesis of the Topo-I Inhibitor Rosettacin and Derivatives. J. Org. Chem. 2008, 73, 1975–1978. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Park, C.-M. Rhodium(III)-Catalyzed Intramolecular Annulation through C-H Activation: Total Synthesis of (±)-Antofine, (±)-Septicine, (±)-Tylophorine, and Rosettacin. Angew. Chem. Int. Ed. 2012, 51, 9372–9376. [Google Scholar] [CrossRef] [PubMed]
- Lerchen, A.; Knecht, T.; Koy, M.; Daniliuc, C.G.; Glorius, F. A General Cp*CoIII-Catalyzed Intramolecular C-H Activation Approach for the Efficient Total Syntheses of Aromathecin, Protoberberine, and Tylophora Alkaloids. Chem. Eur. J. 2017, 23, 12149–12152. [Google Scholar] [CrossRef]
- Song, L.; Tian, G.; He, Y.; Van der Eycken, E.V. Rhodium(III)-catalyzed intramolecular annulation through C-H activation: Concise synthesis of rosettacin and oxypalmatine. Chem. Commun. 2017, 53, 12394–12397. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Tian, G.; Van der Eycken, E.V. Rhodium(III)-catalyzed intermolecular cascade annulation through C-H activation: Concise synthesis of rosettacin. Mol. Catal. 2018, 459, 129–134. [Google Scholar] [CrossRef]
- Song, L.; Zhang, X.; Tian, G.; Robeyns, K.; Van Meervelt, L.; Harvey, J.N.; Van der Eycken, E.V. Intramolecular cascade annulation triggered by C-H activation via rhodium hydride intermediate. Mol. Catal. 2019, 463, 30–36. [Google Scholar] [CrossRef]
- Baguia, H.; Deldaele, C.; Romero, E.; Michelet, B.; Evano, G. Copper-Catalyzed Photoinduced Radical Domino Cyclization of Ynamides and Cyanamides: A Unified Entry to Rosettacin, Luotonin A, and Deoxyvasicinone. Synthesis 2018, 50, 3022–3030. [Google Scholar]
- Raji Reddy, C.; Mallesh, K. Rh(III)-Catalyzed Cascade Annulations to Access Isoindolo[2,1-b]isoquinolin-5(7H)-ones via C-H Activation: Synthesis of Rosettacin. Org. Lett. 2018, 20, 150–153. [Google Scholar] [CrossRef] [PubMed]
- El Blidi, L.; Namoune, A.; Bridoux, A.; Nimbarte, V.D.; Lawson, A.M.; Comesse, S.; Daïch, A. Expeditious Synthesis of the Topoisomerase I Inhibitors Isoindolo[2,1-b]isoquinolin-7(5H)-one and the Alkaloid Rosettacin Based on Aryl Radical Cyclization of Enamide Generated by Using N-Acyliminium Chemistry. Synthesis 2015, 47, 3583–3592. [Google Scholar]
- Wang, G.; Hu, W.; Hu, Z.; Zhang, Y.; Yao, W.; Li, L.; Fu, Z.; Huang, W. Carbene-catalyzed aerobic oxidation of isoquinolinium salts: Efficient synthesis of isoquinolinones. Green Chem. 2018, 20, 3302–3307. [Google Scholar] [CrossRef]
- Mizuno, S.; Nishiyama, T.; Endo, M.; Sakoguchi, K.; Yoshiura, T.; Bessho, H.; Motoyashiki, T.; Hatae, N.; Choshi, T. Novel Approach to the Construction of Fused Indolizine Scaffolds: Synthesis of Rosettacin and the Aromathecin Family of Compounds. Molecules 2023, 28, 4059. [Google Scholar] [CrossRef]
- Nishiyama, T.; Hironaka, M.; Taketomi, M.; Taguchi, R.; Kotouge, R.; Shigemori, Y.; Hatae, N.; Ishikura, M.; Choshi, T. Total Synthesis of Two 8-Oxoprotoberberine Alkaloids: Alangiumkaloids A and B. Eur. J. Org. Chem. 2018, 2018, 673–678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishiyama, T.; Mizuno, S.; Hieda, Y.; Choshi, T. Progress on the Synthesis of the Aromathecin Family of Compounds: An Overview. Molecules 2024, 29, 2380. https://doi.org/10.3390/molecules29102380
Nishiyama T, Mizuno S, Hieda Y, Choshi T. Progress on the Synthesis of the Aromathecin Family of Compounds: An Overview. Molecules. 2024; 29(10):2380. https://doi.org/10.3390/molecules29102380
Chicago/Turabian StyleNishiyama, Takashi, Shota Mizuno, Yuhzo Hieda, and Tominari Choshi. 2024. "Progress on the Synthesis of the Aromathecin Family of Compounds: An Overview" Molecules 29, no. 10: 2380. https://doi.org/10.3390/molecules29102380
APA StyleNishiyama, T., Mizuno, S., Hieda, Y., & Choshi, T. (2024). Progress on the Synthesis of the Aromathecin Family of Compounds: An Overview. Molecules, 29(10), 2380. https://doi.org/10.3390/molecules29102380