Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Electrochemical Characterization
3. Experimental Section
3.1. Chemicals
3.2. Synthesis of Catalysts
3.2.1. Preparation of Silica Nanospheres
3.2.2. Preparation of Polyelectrolyte-Modified Silica Nanospheres (PP-SiO2)
3.2.3. Preparation of FexCo-HNC-T
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karumba, S.; Sethuvenkatraman, S.; Dedeoglu, V.; Jurdak, R.; Kanhere, S.S. Barriers to blockchain-based decentralised energy trading: A systematic review. Int. J. Sustain. Energy 2023, 42, 41–71. [Google Scholar] [CrossRef]
- Luo, X.J.; Ren, C.H.; Song, J.; Luo, H.; Xiao, K.; Zhang, D.W.; Hao, J.J.; Deng, Z.F.; Dong, C.F.; Li, X.G. Design and fabrication of bipolar plates for PEM water electrolyser. J. Mater. Sci. Tech. 2023, 146, 19–41. [Google Scholar] [CrossRef]
- Liu, H.M.; Liu, Q.L.; Wang, Y.R.; Wang, Y.F.; Chou, S.L.; Hu, Z.Z.; Zhang, Z.Q. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chin. Chem. Lett. 2022, 33, 683–692. [Google Scholar] [CrossRef]
- Yang, L.J.; Shui, J.L.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel batteries: Past, present, and future. Adv. Mater. 2019, 31, 1804799. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.A.; Najam, T.B.; Bashir, M.S.; Peng, L.; Nazir, M.A.; Javed, M.S. Single-atom catalysts for next-generation rechargeable batteries and fuel batteries. Energy Storage Mater. 2022, 45, 301–322. [Google Scholar] [CrossRef]
- Ren, S.S.; Duan, X.D.; Liang, S.; Zhang, M.; Zheng, H. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182. [Google Scholar] [CrossRef]
- Mamtani, K.; Jain, D.; Dogu, D.; Gustin, V.; Gunduz, S.; Co, A.C.; Ozkan, U.S. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media. Appl. Catal. B Environ. 2018, 220, 88–97. [Google Scholar] [CrossRef]
- Wang, H.F.; Tang, C.; Zhang, Q.A. Review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329. [Google Scholar] [CrossRef]
- Xu, H.M.; Ci, S.Q.; Ding, Y.C.; Wang, G.; Wen, Z. Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems. J. Mater. Chem. A 2019, 7, 8006–8029. [Google Scholar] [CrossRef]
- Liu, H.T.; Guan, J.Y.; Yang, S.X.; Yu, Y.; Shao, R.; Zhang, Z.; Dou, M.; Wang, F.; Xu, Q. Metal-organic framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 2020, 32, 2003649. [Google Scholar] [CrossRef]
- Vijayakuma, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D.J.; Balamurugan, J.; Noh, H.S.; Kwon, D.; Kim, Y.H.; Lee, H. MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem. Eng. J. 2022, 428, 131115. [Google Scholar] [CrossRef]
- Jasinski, R. A new fuel batteries cathode catalyst. Nature 1964, 201, 1212–1213. [Google Scholar] [CrossRef]
- Shi, Z.S.; Yang, W.Q.; Gu, Y.T.; Liao, T.; Sun, Z. Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design. Adv. Sci. 2020, 7, 2001069. [Google Scholar] [CrossRef]
- Zhao, C.X.; Li, B.Q.; Liu, J.N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2021, 60, 4448–4463. [Google Scholar] [CrossRef]
- Huang, H.J.; Yu, D.S.; Hu, F.; Huang, S.C.; Song, J.; Chen, H.Y.; Li, L.L.; Peng, S. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem. Int. Ed. 2022, 61, e202116068. [Google Scholar] [CrossRef]
- Qin, J.Y.; Liu, H.; Zou, P.C.; Zhang, R.; Wang, C.; Xin, H.L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Jose, V.; Hu, H.M.; Edison, E.; Manalastas, W., Jr.; Ren, H.; Kidkhunthod, P.; Sreejith, S.; Jayakumar, A.; Nsanzimana, J.M.; Srinivasan, M.; et al. Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods 2021, 5, 2000751. [Google Scholar] [CrossRef]
- Chi, B.; Zhang, X.R.; Liu, M.G.; Jiang, S.J.; Liao, S. Applications of M/N/C analogue catalysts in PEM fuel batteries s and metal-air/oxygen batteries: Status quo, challenges and perspectives. Prog. Nat. Sci. Mater. Int. 2020, 30, 807–814. [Google Scholar] [CrossRef]
- Zhao, X.M.; Liu, X.; Huang, B.Y.; Wang, P.; Pei, Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene-supported single and bi-metal atomic catalysts (Ni, Co, and Fe). J. Mater. Chem. A 2019, 7, 24583–24593. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Gao, J.J.; Hu, Y.X.; Jin, Z.; Hu, K.; Reddy, K.M.; Yuan, Q.; Lin, X.; Qiu, H.J. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett. 2022, 22, 3392–3399. [Google Scholar] [CrossRef]
- He, Y.T.; Yang, X.X.; Li, Y.S.; Liu, L.; Guo, S.; Shu, C.; Liu, F.; Liu, Y.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022, 12, 1216–1227. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Xu, X.M.; Su, C.; Tadé, M.O.; Shao, Z. Promoting bifunctional oxygen catalyst activity of double-perovskite-type cubic nanocrystallites for aqueous and quasi-solid-state rechargeable Zinc-air batteries. Catalysts 2023, 13, 1332. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Chen, J.W.; Chen, Y.; Zhang, C.; Luo, Y.; Wang, G.; Wang, R. Bi-functional electrocatalysis through synergetic coupling strategy of atomically dispersed Fe and Co active sites anchored on 3D nitrogen-doped carbon sheets for Zn-air battery. J. Catal. 2021, 397, 223–232. [Google Scholar] [CrossRef]
- Lin, S.Y.; Xia, L.X.; Cao, Y.; Meng, H.L.; Zhang, L.; Feng, J.J.; Zhao, Y.; Wang, A.J. Electronic regulation of ZnCo dual-atomic active sites entrapped in 1D@2D hierarchical N-doped carbon for efficient synergistic catalysis of oxygen reduction in Zn-Air battery. Small 2022, 18, 2107141. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lv, Y.L.; Cao, D.P. Co, N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2018, 6, 3926–3932. [Google Scholar] [CrossRef]
- Chen, Y.P.; Zhang, L.; Feng, J.J.; Li, X.S.; Wang, A.J. Water-regulated and bioinspired one-step pyrolysis of iron-cobalt nanoparticles-capped carbon nanotubes/porous honeycombed nitrogen-doped carbon composite for highly efficient oxygen reduction. J. Colloid Interface Sci. 2022, 618, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Chandran, P.; Puthusseri, D.; Ramaprabhu, S. 1D-2D integrated hybrid carbon nanostructure supported bimetallic alloy catalyst for ethanol oxidation and oxygen reduction reactions. Int. J. Hydrogen Energy 2019, 44, 4951–4961. [Google Scholar] [CrossRef]
- Hao, X.Q.; Jiang, Z.Q.; Zhang, B.A.; Tian, X.; Song, C.; Wang, L.; Maiyalagan, T.; Hao, X.; Jiang, Z.J. N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bifunctional air electrode for rechargeable liquid and flexible all-solid-state zinc–air batteries. Adv. Sci. 2021, 8, 2004572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yao, X.; Zhou, S.; Li, X.; Li, L.; Yu, Z.; Gu, L. ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 2018, 14, 1800423. [Google Scholar] [CrossRef]
- Hu, K.; Tao, L.; Liu, D.; Huo, J.; Wang, S. Sulfur-doped Fe/N/C nanosheets as highly efficient electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 19379–19385. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Chen, A.; Yi, Q. Fe/Co-loaded hollow carbon sphere nanocomposites as excellent cathodic catalysts of Zn-air battery. J. Electrochem. Soc. 2021, 168, 090512. [Google Scholar] [CrossRef]
- Hbssen, M.M.; Artyushkova, K.; Atanassov, P.; Serov, A. Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in alkaline exchange membrane fuel batteries. J. Power. Sources 2018, 375, 214–221. [Google Scholar] [CrossRef]
- Chen, Y.B.; Li, J.J.; Zhu, Y.P.; Zou, J.; Zhao, H.; Chen, C.; Cheng, Q.Q.; Yang, B.; Zou, L.L.; Zou, Z.Q.; et al. Vicinal Co atom-coordinated Fe-N-C catalysts to boost the oxygen reduction reaction. J. Mater. Chem. A 2022, 10, 9886–9891. [Google Scholar] [CrossRef]
- Zhu, G.H.; Yang, H.Y.; Jiang, Y.; Sun, Z.; Li, X.; Yang, J.; Wang, H.; Zou, R.; Jiang, W.; Qiu, P.; et al. Modulating the electronic structure of FeCo nanoparticles in N-doped mesoporous carbon for efficient oxygen reduction reaction. Adv. Sci. 2022, 9, 2200394. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Zou, R.Q.; An, L.; Xia, D.; Guo, S. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576. [Google Scholar] [CrossRef]
- Su, Y.H.; Jiang, H.L.; Zhu, Y.H.; Yang, X.; Shen, J.; Zou, W.; Chen, J.; Li, C. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281–7287. [Google Scholar] [CrossRef]
- Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A.J.; Fischer, R.A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedral as an advanced bifunctional oxygen electrode. Angew. Chem. Int. Ed. 2016, 55, 4087–4091. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Li, G.; Yang, J.; Zhang, F.; Shen, Y.; Zhang, X.; Wang, X. Constructing a Fe3O4/Fe–Nx dual catalytic active center on an N-doped porous carbon as an oxygen reduction reaction catalyst for zinc–air batteries. Energy Fuels 2023, 37, 11260–11269. [Google Scholar] [CrossRef]
- Feng, Y.; Song, K.X.; Zhang, W.; Zhou, X.; Yoo, S.J.; Kim, J.G.; Qiao, S.; Qi, Y.; Zou, X.; Chen, Z.; et al. Efficient ORR catalysts for zinc-air battery: Biomass-derived ultra-stable Co nanoparticles wrapped with graphitic layers via optimizing electron transfer. J. Energy. Chem. 2022, 70, 211–218. [Google Scholar] [CrossRef]
- Mao, J.X.; Liu, P.; Li, J.W.; Yan, J.; Ye, S.; Song, W. Accelerated intermediate conversion through nickel doping into mesoporous Co-N/C nanopolyhedron for efficient ORR. J. Energy Chem. 2022, 73, 240–247. [Google Scholar] [CrossRef]
- Álvarez-Manuel, L.; Alegre, C.; Sebastián, D.; Eizaguerri, A.; Napal, P.F.; Lázaro, M.J. N-doped carbon xerogels from urea-resorcinol-formaldehyde as carbon matrix for Fe-NC catalysts for oxygen reduction in fuel cells. Catal. Today 2023, 37, 114067. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Wang, S.F.; Sha, Y.J.; Liu, M.; Cai, R.; Li, L.; Shao, Z. Trapping sulfur in hierarchically porous, hollow indented carbon spheres: A high-performance cathode for lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 9526–9535. [Google Scholar] [CrossRef]
- Wang, S.; Chen, L.; Liu, X.; Long, L.; Liu, H.; Liu, C.; Dong, S.; Jia, J. Fe/N-doped hollow porous carbon spheres for oxygen reduction reaction. Nanotechnology 2020, 31, 125404. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Xu, X.M.; Liu, P.Y.; Ran, R.; Jiang, S.P.; Wu, H.; Shao, Z. A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 2020, 10, 2002992. [Google Scholar] [CrossRef]
- Zhang, S.L.; Guan, B.Y.; Lou, X.W. Co–Fe alloy/N-doped carbon hollow spheres derived from dual metal–organic frameworks for enhanced electrocatalytic oxygen reduction. Small 2019, 15, 1805324. [Google Scholar] [CrossRef]
- Leng, Y.M.; Yang, B.L.; Zhao, Y.; Xiang, Z. Fluorinated bimetallic nanoparticles decorated carbon nanofibers as highly active and durable oxygen electrocatalyst for fuel cells. J. Energy. Chem. 2022, 73, 549–555. [Google Scholar] [CrossRef]
- Fan, X.Z.; Du, X.; Pang, Q.Q.; Zhang, S.; Liu, Z.Y.; Yue, X.Z. In situ construction of bifunctional N-doped carbon-anchored Co nanoparticles for OER and ORR. ACS Appl. Mater. Interfaces 2022, 14, 8549–8556. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.Q.; Xiao, Z.H.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2016, 128, 5363–5367. [Google Scholar] [CrossRef]
- Chutia, B.; Chetry, R.; Rao, K.N.; Singh, N.; Sudarsanam, P.; Bharali, P. Durable and stable bifunctional Co3O4-based nano-catalyst for oxygen reduction/evolution reactions. ACS Appl. Nano Mater. 2024, 7, 3620–3630. [Google Scholar] [CrossRef]
- Santra, S.; Bagwe, R.P.; Dutta, D.; Stanley, J.T.; Walter, G.A.; Tan, W.; Moudgil, B.M.; Mericle, R.A. Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal. Adv. Mater. 2005, 17, 2165. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.Y.; Yang, Q.Y.; Qu, Y.; Liu, Y.; Shi, G.; Jin, L. Trace detection of nitroaromatic compounds with layer-by-layer assembled {SBA/PSS}(n)/PDDA modified electrode. Sens. Actuator B Chem. 2008, 131, 432. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, X.; Zhang, Y.; Lu, Y.; Liu, X.; Zheng, Y.; Lin, J. Fe/Co/N–C/graphene derived from Fe/ZIF-67/graphene oxide three dimensional frameworks as a remarkably efficient and stable catalyst for the oxygen reduction reaction. RSC Adv. 2022, 12, 2425. [Google Scholar] [CrossRef]
- Yang, W.; Guo, J.; Ma, J.; Wu, N.; Xiao, J.; Wu, M. FeCo nanoalloys encapsulated in N-doped carbon nanofibers as a trifunctional catalyst for rechargeable Zn-air batteries and overall water electrolysis. J. Alloys Compd. 2022, 926, 166937. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Feng, R.; Ni, Y.; Song, F.; Liu, Q. Anchoring bimetal single atoms and alloys on N-doping-carbon nanofiber networks for an efficient oxygen reduction reaction and zinc–air batteries. ACS Appl. Mater. Interfaces 2022, 14, 38739. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, T.; Sun, P.; Li, P.; Wang, J.; Zhang, L.; Sun, Y.; Duan, W.; Li, Z. Facile preparation and properties of high nitrogen-containing Fe/Co/N co-doped three-dimensional graphene bifunctional oxygen catalysts for zinc air battery. Int. J. Hydrogen Energy 2023, 48, 26328–26340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Liu, W.; Zhang, J.; Bai, S.; Liu, C.; Zhang, M.; Peng, C.; Xu, X.; Jia, J. Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries. Molecules 2024, 29, 2349. https://doi.org/10.3390/molecules29102349
Deng Z, Liu W, Zhang J, Bai S, Liu C, Zhang M, Peng C, Xu X, Jia J. Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries. Molecules. 2024; 29(10):2349. https://doi.org/10.3390/molecules29102349
Chicago/Turabian StyleDeng, Ziwei, Wei Liu, Junyuan Zhang, Shuli Bai, Changyu Liu, Mengchen Zhang, Chao Peng, Xiaolong Xu, and Jianbo Jia. 2024. "Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries" Molecules 29, no. 10: 2349. https://doi.org/10.3390/molecules29102349
APA StyleDeng, Z., Liu, W., Zhang, J., Bai, S., Liu, C., Zhang, M., Peng, C., Xu, X., & Jia, J. (2024). Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries. Molecules, 29(10), 2349. https://doi.org/10.3390/molecules29102349