Next Article in Journal
Discovery of Nine Dipeptidyl Peptidase-4 Inhibitors from Coptis chinensis Using Virtual Screening, Bioactivity Evaluation, and Binding Studies
Previous Article in Journal
Investigations of Antioxidant and Anti-Cancer Activities of 5-Aminopyrazole Derivatives
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Qualitative and Quantitative Analysis of Chemical Components in Yinhua Pinggan Granule with High-Performance Liquid Chromatography Coupled with Q-Exactive Mass Spectrometry

Zhejiang Chinese Medical University, Hangzhou 310053, China
*
Authors to whom correspondence should be addressed.
The authors contributed equally to this work.
Molecules 2024, 29(10), 2300; https://doi.org/10.3390/molecules29102300
Submission received: 18 April 2024 / Revised: 2 May 2024 / Accepted: 10 May 2024 / Published: 14 May 2024
(This article belongs to the Section Natural Products Chemistry)

Abstract

:
Yinhua Pinggan Granule (YPG) is an approved compounded traditional Chinese medicine (TCM) prescription for the treatment of cold, cough, viral pneumonia, and related diseases. Due to its complicated chemical composition, the material basis of YPG has not been systematically investigated. In this study, an analytical method based on high-performance liquid chromatography (HPLC) coupled with Q-Exactive mass spectrometry was established. Together with the help of a self-built compound database and Compound Discoverer software 3.1, the chemical components in YPG were tentatively identified. Subsequently, six main components in YPG were quantitatively characterized with a high-performance liquid chromatography–diode array detector (HPLC-DAD) method. As a result, 380 components were annotated, including 19 alkaloids, 8 organic acids, 36 phenolic acids, 27 other phenols, 114 flavonoids, 75 flavonoid glycoside, 72 terpenes, 11 anthraquinones, and 18 other compounds. Six main components, namely, chlorogenic acid, puerarin, 3′-methoxypuerarin, polydatin, glycyrrhizic acid, and emodin, were quantified simultaneously. The calibration curves of all six analytes showed good linearity (R2 > 0.9990) within the test ranges. The precision, repeatability, stability, and recovery values were all in acceptable ranges. In addition, the total phenol content and DPPH scavenging activity of YPG were also determined. The systematic elucidation of the chemical components in YPG in this study may provide clear chemical information for the quality control and pharmacological research of YPG and related TCM compounded prescriptions.

Graphical Abstract

1. Introduction

Yinhua Pinggan Granule (YPG) is a patent compounded traditional Chinese medicine (TCM) prescription approved by the State Food and Drug Administration of China (No. Z20133007) for the treatment of cold, cough, viral pneumonia, and other related diseases. YPG was originally developed from an ancient TCM formula, Ma-huang-Tang (Ephedra Decoction), which was recorded in the TCM classic Shang Han Lun (Treatise on Febrile Diseases). YPG is composed of six herbs, namely, Lonicerae Japonicae Flos, Puerariae Lobatae Radix, Polygoni Cuspidati Rhizoma Et Radix, Ephedrae Herba, Glycyrrhizae Radix Et Rhizoma, and Armeniacae Semen Amarum, in a ratio of 4:4:4:2:2:1. In recent years, pharmacological and clinical studies of YPG have made effective progress. Previous studies have shown that YPG can inhibit the replication of influenza virus and regulate the occurrence of apoptosis caused by influenza virus infection [1]. In addition, YPG has a significant antiviral effect on H1N1 influenza virus-infected RAW264.7 cells and can protect influenza virus-infected pneumonia mice by reducing their lung injury [2]. At the same time, recent research showed that YPG and its components have significant inhibitory effects on the proliferation of the H1N1 virus [3]. Meanwhile, a randomized, double-blind, parallel, controlled clinical trial program with a total of 240 participants is in progress to test the clinical efficacy of YPG as a complementary therapy against community-acquired drug-resistant bacterial pneumonia [4].
TCM, including YPG, has shown unique advantages in the treatment of influenza virus and related diseases [5,6,7], especially during the COVID-19 pandemic [8,9,10]. However, the chemical complexity of TCM not only leads to great challenges in elucidating the pharmacological mechanisms of TCM but also hinders the deciphering of the material basis and quality control [11]. Therefore, the chemical profiling of compounded TCM prescriptions is of great importance. With its high sensitivity and high resolution, the liquid chromatography–mass spectrometry (LC-MS) technique has been widely applied in the qualitative analysis of TCM products in recent years [12,13].
Considering that most research on YPG has focused on pharmacology and clinical efficacy, the present study aimed to systematically identify and quantitatively characterize the phytochemical constituents of YPG. Based on the HPLC–Q-Exactive MS system, the global qualitative analysis of YPG was carried out, and then the main representative components were simultaneously quantified with HPLC-DAD detection technology in order to provide a theoretical basis for its future clinical application and quality control of YPG.

2. Results and Discussion

2.1. Optimization of Chromatographic Conditions

In order to systematically elucidate the chemical components of YPG, both the extraction method (Table S3 in Supporting Information) and the chromatography conditions were optimized. In particular, three different columns based on C18 packing material were tested, namely, the Welch Ultimate XB-C18 column (Welch, Shanghai, China) (150 mm × 4.0 mm, 3.0 μm), Agilent Poroshell 120 EC-C18 column (Agilent, Santa Clara, CA, USA) (150 mm × 3.0 mm, 2.7 μm), and Capcell Pak C18 MG II (Osaka Soda Co., Ltd., Osaka, Japan) (150 mm × 4.6 mm, 3 μm). Compared with the other chromatographic columns, the MG II column exhibited better separation capacity under optimal conditions. The acetonitrile–water system showed a better resolution and response in the selection of the mobile phase, and the addition of 0.1% or 0.5% formic acid could effectively improve the ionization efficiency and peak shape of some compounds. Finally, the HPLC-UV chromatogram obtained under optimized conditions is shown in Figure 1.

2.2. Qualitative Analysis of YPG by HPLC–Q-Exactive MS

Under the optimal chromatographic conditions, the mass spectrometry information of YPG was acquired in both positive and negative modes to cover more components. The base peak chromatograms (BPCs) are presented in Figure 2. Then, as described in Section 3, the data were tentatively annotated with corresponding compounds with the help of Compound Discoverer software according to the values of the accurate molecular weight and patterns of secondary fragmentation [14]. In particular, [M + H]+ and [M − H] were the common quasi-molecular ions in the positive and negative modes, respectively, from which the chemical formulas were preliminarily inferred, with a mass deviation ≤ 5 ppm. After compound library searching, reference comparison, and fragmentation study, a total of 380 components were tentatively identified in YPG. Among them, 45 compounds were also verified by comparison with reference compounds. The mass spectrometry information of the identified compounds is summarized in Table 1 (for additional information, see Table S1 in Supporting Information).
In general, the 380 proposed chemical components of YPG can be classified into 9 categories based on chemical structure, including 19 alkaloids, 8 organic acids, 36 phenolic acids, 27 other phenols, 114 flavonoids, 75 flavonoid glycoside,72 terpenes, 11 anthraquinones and 18 other compounds (Figure 3a). While in the term of plant source, 114 compounds are from Glycyrrhizae Radix Et Rhizoma, 93 from Lonicerae Japonicae Flos, 76 from Puerariae Lobatae Radix, 47 from Ephedrae Herba, 42 from Polygoni Cuspidati Rhizoma Et Radix, and 8 from Armeniacae Semen Amarum (Figure 3b).

2.3. Identification of Several Specific Compounds in YPG

Based on the global identification of the components in YPG, the chemical structures of some compounds were inferred from the MS2 fragment ions, the proposed fragmentation pathways, and published references.

2.3.1. Phenolic Acids

Chlorogenic acid and its isomers, including neochlorogenic acid, cryptochlorogenic acid, etc., are typical phenolic acids found in YPG with high contents [15,16]. As shown in Figure 4, in the positive ion mode, the chlorogenic acid molecule is ionized to produce an [M + H]+ peak at m/z 355.1014. It is observed that fragmentation occurred via the neutral loss of quinic acid (C7H11O6), resulting in the formation of a product ion at m/z 163.0388. Alternatively, the [M + H]+ ion may lose a neutral molecule of C8H12O7 to generate a product ion at m/z 135.0440.

2.3.2. Flavonoids

In YPG, 114 flavonoids were identified and were the most abundant compound type. As the most basic natural product in plant medicine, flavonoids have a wide variety of biological activities and efficacies [17,18]. In this study, puerarin was taken as an example to illustrate its fragmentation pathway. As a representative compound with high content in YPG, puerarin was observed in multiple characteristic fragmentation patterns in secondary mass spectrometry (Figure 5). The [M − H] ion (m/z 415.1035) of puerarin loses a C4H8O4 moiety to generate a product ion at m/z 295.0608. Further neutral loss of H2O (18 Da) and CO (28 Da) then produced the fragment ions at m/z 277.0507 and 267.0661, respectively.

2.3.3. Alkaloids

The alkaloids in YPG are mainly ephedra alkaloids and isomers from Herba Ephedrae [19]. As a representative compound, the fragmentation pathway of methylephedrine is discussed herein. As shown in Figure 6, based on the protonated methylephedrine ion at m/z 180.1382, three characteristic fragment ions were observed at m/z 162.1275, 148.1076, and 138.0804, which can be attributed to [M + H − H2O]+, [M + H − H2O − CH2]+, and [M + H − C2H7N]+, respectively.

2.3.4. Terpenoids

A total of 72 terpenoids were tentatively identified in YPG, of which triterpenoid saponins were mainly concentrated in Lonicera Japonica Thunb, Puerariae Lobatae Radix, and Glycyrrhizae Radix. Glycyrrhizic acid is the main active ingredient of Glycyrrhizae Radix, and it possesses various pharmacological effects, such as detoxification and anti-inflammatory activities [20,21,22]. As shown in Figure 7, the [M + H]+ ion of glycyrrhizic acid at m/z 823.4086 subsequently loses two gluconic acid moieties to form fragment ions at m/z 647.3788 and 471.3457. The latter ion can further lose one molecule of H2O to produce a product ion at m/z 453.3356.

2.4. Quantitative Analysis, Total Phenolic Content, and DPPH Radical Scavenging Activity of YPG

In addition to the qualitative analysis of YPG, the contents of six main components in YPG, namely, chlorogenic acid, puerarin, 3′-methoxypuerarin, polydatin, glycyrrhizic acid, and emodin, were also determined with the help of the HPLC-DAD method. The method validation results in Table 2 reveal that all analytes showed good linear regression in the range of 0.01–2.00 mg/mL (R2 ≥ 0.9990). The limits of detection (LODs) were 0.38–2.13 μg/mL, and the limits of quantitation (LOQs) ranged between 1.14 and 6.47 μg/mL. The repeatability RSD was 1.18–2.94%, and the intermediate precision was 2.00–3.89%, indicating that the method has good precision. The RSD of stability was less than 3.60%, indicating that the six components were stable under storage conditions. The method also showed satisfactory accuracy, with recovery values ranging from 96.79% to 103.13%, and the RSD was less than 3.15% (data shown in Table S2 in Supporting Information).
As presented in Table 3 and Figure 8, chlorogenic acid (34.15 ± 1.25 mg/g) and puerarin (28.30 ± 1.09 mg/g) were found as the most abundant compounds in YPG, followed by 3′-methoxypuerarin (9.63 ± 0.12 mg/g), polydatin (10.83 ± 0.57 mg/g), glycyrrhizic acid (3.33 ± 0.56 mg/g), and emodin (4.14 ± 0.34 mg/g). The contents of the six compounds were stable in three batches of YPG samples, which suggested that the six compounds may be used as quality markers of YPG.
Considering that the six compounds are phenols with antioxidative and radical scavenging activities, total phenolic contents and DPPH scavenging capacities were also determined. The total phenolic contents of three batches of YPG were calculated as 144.66 ± 2.21 mg/g with the Folin–Ciocalteu method (Table 3). In addition, the results of an online HPLC-based DPPH radical quenching assay revealed that all six main components were good radical scavengers with scavenging percentages ranging from 30.3% to 59.2% (Table 3 and Figure S1 in Supporting Information). Emodin exhibited a lower capacity against the DPPH radical compared with the other five compounds.

3. Materials and Methods

3.1. Reagents and Materials

YPG (Batch No. 200404) was provided by Shaanxi Dongke Pharmaceutical Co., Ltd. (Xianyang, China). Chlorogenic acid (≥95%), gallic acid (≥95%), 2,2-diphenyl-1-picrylhydrazyl (≥97%), and sodium carbonate anhydrous (≥99.8%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China); 3′-methoxypuerarin (≥98%) and polydatin (≥98%) were purchased from Chengdu Efa Biotechnology Co., Ltd. (Chengdu, China); puerarin (≥98%) and Folin–Ciocalteu reagent (>99.5%) were purchased from Shanghai Yien Chemical Technology Co., Ltd. (Shanghai, China); glycyrrhizic acid (≥98%) was purchased from Dalian Meilun Biotechnology Co., Ltd. (Dalian, China); emodin (≥99%) was obtained from China Institute for Food and Drug Control (Beijing, China). LC-MS-grade methanol, acetonitrile, and formic acid for HPLC analysis and LC-MS analysis were purchased from Tedia Co. (Fairfield, OH, USA). The water used was obtained from a Milli-Q water purification system (Bedford, MA, USA).

3.2. Sample Preparation

First, 100.00 mg of YPG was accurately weighed and added to 50% methanol (v/v, 1 mL). After extraction in an ultrasonic bath (300 W, 40 kHz, 50 °C) for 30 min, the extracted solution was centrifuged (13,000 rpm, 10min) and filtered through a 0.22 μm membrane. The obtained solution was kept at 4 °C until analysis.

3.3. Preparation of Standard Solutions

Six reference standards (chlorogenic acid 20.00 mg, puerarin 16.00 mg, 3′-methoxypuerarin 15.00 mg, polydatin 10.00 mg, glycyrrhizic acid 10.00 mg, emodin 5.00 mg) were accurately weighed and dissolved in 10 mL of 50% (v/v) methanol to prepare the respective stock solutions. The stock solutions were mixed and diluted with 50% methanol to prepare a series of mixed reference solutions in certain concentrations. All standard solutions were prepared in a 10 mL dark-brown volumetric flask and stored in a refrigerator at 4 °C before use.

3.4. Qualitative Analysis with HPLC–Q-Exactive MS

HPLC analysis was performed on a Thermo U3000 HPLC system (Thermo, San Jose, CA, USA). A CAPCELL PAK C18 MG II (150 mm × 4.6 mm, 3 μm; Osaka Soda, Osaka, Japan) column was used. The mobile phase consisted of 0.5% formic acid (A) and acetonitrile (B), with the elution gradient as follows: 0–10 min, 5–20% B; 10–30 min, 20–35% B; 30–32 min, 35–55% B; 32–35 min, 55–95% B; 35–42 min, 95% B, flow rate 0.4 mL/min. The column temperature was maintained at 35 °C, and the injection volume was 5 μL.
The Q-Exactive mass spectrometer (Thermo, San Jose, USA) equipped with a heated electrospray ion source (HESI) was operated in both positive and negative modes. The MS parameters were set as follows: scanning mode, Full MS/ddMS2; nebulizer voltage, 2.5 kV; sheath gas, 50 arb; aux gas, 14 arb; capillary temperature 320 °C; probe heater temperature, 300 °C; scanning range, m/z 100–1500. For different compounds, the collision energy was 30 and 40 eV. Instrument control and data acquisition were achieved using Xcalibur 2.3.1 (Thermo, San Jose, USA).
The raw data were processed with Compound Discoverer 3.1 (CD, Thermo, San Jose, USA) using a self-built compound library and workflow. The compound information was collected from public databases, including PubChem (https://pubchem.ncbi.nlm.nih.gov/), CAS SciFinder (https://scifindern.cas.org/), and CNKI (https://www.cnki.net/). Then, the original data of MS detection were matched with the self-built database in Compound Discoverer 3.1. The workflow included peak extraction, normalization, and compound annotation, and the specific parameters in the process were as follows: retention time range, 0–42 min; mass range, 100–1500 Da; positive adducts, [M + H]+, [2M + H]+; negative adducts, [M − H], [2M − H], [M − 2H]2−; mass tolerance, 5.0 ppm; S/N threshold, 3; minimum peak intensity, 100000.

3.5. Quantitative Analysis by HPLC-DAD

For quantitative analysis, an Agilent 1260 system equipped with a G7112C Quat Pump, a G7129A Vial sampler, and a G7117C diode array detector (DAD) was used (Agilent, Santa Clara, CA, USA). The chromatographic parameters were the same as described in Section 3.4. The chromatograms were recorded at 254 nm.

3.6. Quantitative Analysis Method Validation

In order to verify the applicability of the established method, the linearity, limits of quantitation (LOQs), limits of detection (LODs), repeatability, precision, stability, and recovery were validated. In the linear relationship experiment, the standard solution with a certain concentration gradient was used to draw the curve of the peak area (y) of the standard and the corresponding concentration (x, mg/mL). In the precision test, the standard solution was analyzed 6 times continuously, the intra-day precision was analyzed, and the intermediate precision was analyzed by different analysts at different times. The sample solution was analyzed at 0, 2, 4, 8, and 12 h in the stability test. In the repeatability test, the contents of the six target compounds in the sample solution were quantified. At the same time, the standard substance of each analyte was added to the sample according to 80%, 100%, and 120% of its content in the sample solution to prepare the sample solution for the recovery test. Three replicates were required for each spiked amount, and the recovery rate was calculated as described previously [16].

3.7. Determination of Total Phenolic Contents

3.7.1. Total Phenol Standard Curve Drawing

The total phenolic contents were measured according to a previously reported Folin–Ciocalteu reagent-based method, with gallic acid as a reference substance [23,24]. The absorbance was measured at 760 nm with an ultraviolet spectrophotometer. With absorbance as y, and total phenol mass concentration as x, the standard curve was drawn. The linear regression equation of gallic acid was y = 0.0965x + 0.0277 (R2 = 0.9992), and the linear range was 0.01–0.50 mg/mL.

3.7.2. Total Phenol Content in the Sample

Different batches of YPG samples were taken, and the solution was prepared according to the above method. The determination was repeated three times, and the content of each sample was calculated according to the linear regression equation.

3.8. In Vitro Antioxidant Activity Evaluation—DPPH Radical Scavenging Activity

The DPPH free radical scavenging activities of the six components in YPG were evaluated with an HPLC-based method, as previously reported [14]. The scavenging percentages were calculated using the following equation:
Scavenging percentage (%) = (Aoriginal − ADPPH)/Aoriginal × 100%
where Aoriginal stands for the absolute HPLC peak area of each ingredient, and ADPPH stands for the HPLC peak area of each ingredient after YPG reacted with DPPH.

4. Conclusions

In this study, a set of integrated methods, which include the qualitative HPLC–Q-Exactive MS method and the quantitative HPLC-DAD method, were established to profile the chemical properties of YPG from a macroscopic and systematic view. In the qualitative analysis part, 380 components were tentatively identified in YPG with the help of a self-built compound database and Compound Discoverer software. In the quantitative analysis part, the contents of six main components in YPG were determined with a validated method. These results may provide clear chemical information for the quality control and pharmacological research of YPG. This study may also contribute as a valuable reference for research on other complex TCM compounded prescriptions.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/molecules29102300/s1: Table S1: Mass spectrometric information of chemical components of Yinhua Pinggan Granule; Table S2: Recovery of six representative components. Table S3: The contents of representative components of YPG under different extraction conditions. Figure S1. The HPLC chromatograms at 254 nm of YPG before and after the reaction with DPPH. Refs. [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60] are cited in the Supplementary Materials.

Author Contributions

Conceptualization, C.L.; methodology, I.Y. and L.Y. (Li Yu); validation, H.W. (Haofang Wan), L.Y. (Lulu Ye) and L.Y. (Li Yu); formal analysis, H.W. (Haofang Wan); investigation, I.Y., H.W. (Haofang Wan) and L.Y. (Lulu Ye); resources, H.W. (Haitong Wan); data curation, I.Y. and C.L.; writing—original draft preparation, I.Y. and H.W. (Haofang Wan); writing—review and editing, C.L., Y.H. and H.W. (Haitong Wan); supervision, C.L., Y.H. and H.W. (Haitong Wan); project administration, C.L.; funding acquisition, C.L. and H.W. (Haitong Wan). All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Natural Science Foundation of China [81930111] and the Key Laboratory of TCM Encephalopathy of Zhejiang Province [2020E10012].

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available in article and Supplementary Materials. Additional data that support the findings of this study are also available on request from the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Du, H.; Zhou, H.; Yang, J.; Lu, Y.; He, Y.; Wan, H. Preliminary study of Yinhuapinggan granule against H1N1 influenza virus infection in mice through inhibition of apoptosis. Pharm. Biol. 2020, 58, 979–991. [Google Scholar] [CrossRef] [PubMed]
  2. Du, H.; Zhou, H.; Wan, H.; Yang, J.; Lu, Y.; He, Y.; Wan, H. Antiviral effects and mechanisms of Yinhuapinggan granule against H1N1 influenza virus infection in RAW264.7 cells. Inflammopharmacology 2018, 26, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
  3. Chen, T.; Du, H.; Zhou, H.; Yang, J.; Zhu, J.; Tong, X.; Yang, Y.; Wan, J.; Fan, Y.; Lu, Y.; et al. Screening of Antiviral Components of Yinhuapinggan Granule and Protective Effects of Yinhuapinggan Granule on MDCK Cells with Influenza A/H1N1 Virus. Biomed Res. Int. 2022, 2022, 1040129. [Google Scholar] [CrossRef]
  4. Wang, J.; Hu, H.; Du, H.; Luo, M.; Cao, Y.; Xu, J.; Chen, T.; Guo, Y.; Li, Q.; Chen, W.; et al. Clinical Efficacy Protocol of Yinhuapinggan Granules: A Randomized, Double-Blind, Parallel, and Controlled Clinical Trial Program for the Intervention of Community-Acquired Drug-Resistant Bacterial Pneumonia as a Complementary Therapy. Front. Pharmacol. 2022, 13, 852604. [Google Scholar] [CrossRef]
  5. Xie, K.; Guan, S.; Jing, H.; Ji, W.; Kong, X.; Du, S.; Jia, M.; Wang, H. Efficacy and safety of traditional Chinese medicine adjuvant therapy for severe pneumonia: Evidence mapping of the randomized controlled trials, systematic reviews, and meta-analyses. Front. Pharmacol. 2023, 14, 1227436. [Google Scholar] [CrossRef]
  6. Zhao, D.; Chen, X.; Wang, L.; Zhang, J.; Lv, R.; Tan, L.; Chen, Y.; Tao, R.; Li, X.; Chen, Y.; et al. Improvement influenza vaccine immune responses with traditional Chinese medicine and its active ingredients. Front. Microbiol. 2023, 14, 1111886. [Google Scholar] [CrossRef] [PubMed]
  7. Wei, J.; Sun, J.; Zeng, J.; Ji, E.; Xu, J.; Tang, C.; Huo, H.; Zhang, Y.; Li, H.; Yang, H. Precise Investigation of the Efficacy of Multicomponent Drugs Against Pneumonia Infected with Influenza Virus. Front. Pharmacol. 2021, 12, 604009. [Google Scholar] [CrossRef]
  8. Lee, D.Y.W.; Li, Q.Y.; Liu, J.; Efferth, T. Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine 2021, 80, 153337. [Google Scholar] [CrossRef]
  9. Chen, X.; Wu, Y.; Chen, C.; Gu, Y.; Zhu, C.; Wang, S.; Chen, J.; Zhang, L.; Lv, L.; Zhang, G.; et al. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm. Sin. B 2021, 11, 222–236. [Google Scholar] [CrossRef]
  10. Li, R.; Hou, Y.; Huang, J.; Pan, W.; Ma, Q.; Shi, Y.; Li, C.; Zhao, J.; Jia, Z.; Jiang, H.; et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 2020, 156, 104761. [Google Scholar]
  11. Qian, X.; Nie, L.; Zhao, H.; Dai, Z.; Ma, S.; Liu, J.; Kuang, Y. Discovery and molecular elucidation of the anti-influenza material basis of Banlangen granules based on biological activities and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry. J. Ethnopharmacol. 2022, 298, 115683. [Google Scholar] [CrossRef]
  12. Fu, S.; Cheng, R.; Deng, Z.; Liu, T. Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS. J. Pharm. Anal. 2021, 11, 709–716. [Google Scholar] [CrossRef]
  13. Hogenboom, A.C.; van Leerdam, J.A.; de Voogt, P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. J. Chromatogr. A 2009, 1216, 510–519. [Google Scholar] [CrossRef] [PubMed]
  14. Meng, M.; Wan, H.; Bao, Y.; He, Y.; Li, C.; Wan, H. Rapid identification, quantitation, and antioxidant activity evaluation of the components in Guanxin Shutong capsule with liquid chromatography and mass spectrometry. J. Pharm. Biomed. Anal. 2023, 224, 115194. [Google Scholar] [CrossRef]
  15. Shah, M.A.; Kang, J.B.; Park, D.J.; Kim, M.O.; Koh, P.O. Chlorogenic acid alleviates cerebral ischemia-induced neuroinflammation via attenuating nuclear factor kappa B activation. Neurosci. Lett. 2022, 773, 136495. [Google Scholar] [CrossRef] [PubMed]
  16. Liu, D.; Wang, H.; Zhang, Y.; Zhang, Z. Protective Effects of Chlorogenic Acid on Cerebral Ischemia / Reperfusion Injury Rats by Regulating Oxidative Stress-Related Nrf2 Pathway. Drug Des. Devel. Ther. 2020, 14, 51–60. [Google Scholar] [CrossRef]
  17. Song, M. Chemistry of the Chinese herbal medicine Puerariae Radix (Ge-Gen): A review. J. Chinese Pharm. Sci. 2014, 23, 347–360. [Google Scholar] [CrossRef]
  18. Chen, X.; Li, R.; Liang, T.; Zhang, K.; Gao, Y.; Xu, L. Puerarin improves metabolic function leading to hepatoprotective effects in chronic alcohol-induced liver injury in rats. Phytomedicine 2013, 20, 849–852. [Google Scholar] [CrossRef] [PubMed]
  19. Lv, Y.; Wang, S.; Liang, P.; Wang, Y.; Zhang, X.; Jia, Q.; Fu, J.; Han, S.; He, L. Screening and evaluation of anti-SARS-CoV-2 components from Ephedra sinica by ACE2/CMC-HPLC-IT-TOF-MS approach. Anal. Bioanal. Chem. 2021, 413, 2995–3004. [Google Scholar] [CrossRef]
  20. Zhao, Z.; Xiao, Y.; Xu, L.; Liu, Y.; Jiang, G.; Wang, W.; Li, B.; Zhu, T.; Tan, Q.; Tang, L.; et al. Glycyrrhizic Acid Nanoparticles as Antiviral and Anti-inflammatory Agents for COVID-19 Treatment. ACS Appl. Mater. Interfaces 2021, 13, 20995–21006. [Google Scholar] [CrossRef]
  21. Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 2015, 5, 310–315. [Google Scholar] [CrossRef]
  22. Yu, S.; Zhu, Y.; Xu, J.; Yao, G.; Zhang, P.; Wang, M.; Zhao, Y.; Lin, G.; Chen, H.; Chen, L.; et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine 2021, 85, 153364. [Google Scholar] [CrossRef] [PubMed]
  23. Medina, M.B. Simple and rapid method for the analysis of phenolic compounds in beverages and grains. J. Agric. Food Chem. 2011, 59, 1565–1571. [Google Scholar] [CrossRef]
  24. Silva, V.; Genta, G.; Möller, M.N.; Masner, M.; Thomson, L.; Romero, N.; Radi, R.; Fernandes, D.C.; Laurindo, F.R.; Heinzen, H.; et al. Antioxidant activity of uruguayan propolis. In vitro and cellular assays. J. Agric. Food Chem. 2011, 59, 6430–6437. [Google Scholar] [CrossRef]
  25. Li, J.; Fang, L.; Zhang, Y.; Wang, X.; Zhang, Q. Research progress on chemical constituents and pharmacological activities of Herba Ephedrae. Mod. Chin. Med. 2012, 14, 21–27. (In Chinese) [Google Scholar]
  26. Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2011, 138, 1–21. [Google Scholar] [CrossRef]
  27. Liang, C.; Wang, S.; Chen, S.; Wang, Y.; Li, J.; Chang, Y. Research development on chemical composition and pharmacology of Polygoni Cuspidati Rhizoma et Radix. Chin. Tradit. Herb. Drugs 2022, 53, 1264–1276. (In Chinese) [Google Scholar]
  28. Zhu, W.; Li, J.; Meng, X.; Zhang, P.; Wu, W.; Liu, R. Research advances in chemical constituents and pharmacological activities of Pueraria genus. China J. Chin. Mater. Medica 2021, 46, 1311–1331. (In Chinese) [Google Scholar]
  29. Gong, X.; Liu, W.; Cao, L.; Yu, J.; Si, D.; Li, J.; Tu, P.; Li, J.; Song, Y. Rapid chemome profiling of chemical components of Lonicerae Japonicae Flos using DI-MS /MSALL. Chin. J. Chin. Mater. Med. 2021, 46, 2220–2228. (In Chinese) [Google Scholar]
  30. Miao, S.; Zhang, Q.; Bi, X.; Cui, J.; Wang, M. A review of the phytochemistry and pharmacological activities of Ephedra herb. Chin. J. Nat. Med. 2020, 18, 321–344. [Google Scholar] [CrossRef] [PubMed]
  31. Li, Z. Test of Thrombolysis Effect and Study on Chemical Composition of Non-Ephedrine Alkaloids Part in Ephedra sinica Stapf. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2004. (In Chinese). [Google Scholar]
  32. Zang, X.; Shang, M.; Xu, F.; Liang, J.; Wang, X.; Mikage, M.; Cai, S. A-type proanthocyanidins from the stems of Ephedra sinica (Ephedraceae) and their antimicrobial activities. Molecules 2013, 18, 5172–5189. [Google Scholar] [CrossRef]
  33. Li, R. Chinese Formula Mahuangtang Chemical Composition Analysis and Spectrum-Effect Relation Research. Master’s Thesis, Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2015. (In Chinese). [Google Scholar]
  34. Lin, K. Studies on Fingerprint for Herba Ephedrae and Determination for Alkaloids Contents in Herba Ephedrae with HPLC. Master’s Thesis, Chongqing Medical University, Chongqing, China, 2006. (In Chinese). [Google Scholar]
  35. Song, W.; Qiao, X.; Chen, K.; Wang, Y.; Ji, S.; Feng, J.; Li, K.; Lin, Y.; Ye, M. Biosynthesis-Based Quantitative Analysis of 151 Secondary Metabolites of Licorice to Differentiate Medicinal Glycyrrhiza Species and Their Hybrids. Anal. Chem. 2017, 89, 3146–3153. [Google Scholar] [CrossRef] [PubMed]
  36. Xiong, L.; Jin, Y.; Wang, Y.; Zhao, H.; Li, J.; Pu, G.; Zhang, L.; Yang, H.; Zhang, Y.; Zhang, L. Research progress on chemical constituents, pharmacological activities and in vivo metabolism of phenolic acids in Lonicera japonica Thunb. Chin. Tradit. Pat. Med. 2022, 44, 864–871. (In Chinese) [Google Scholar]
  37. Zhang, Y.; Huang, X.; Chen, Y.; Li, J.; Yu, K. Chemical constituents and their biosynthesis mechanisms of Polygonum cuspidatum. Chin. J. Chin. Mater. Med. 2020, 45, 4364–4372. (In Chinese) [Google Scholar]
  38. Cai, Z.; Liao, H.; Wang, C.; Chen, J.; Tan, M.; Mei, Y.; Wei, L.; Chen, H.; Yang, R.; Liu, X. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA. Phytochem. Anal. 2020, 31, 786–800. [Google Scholar] [CrossRef]
  39. Li, N.; Zhang, C.; Zhong, G.; Xiu, L.; Liu, H.; Chen, S.; Chen, F.; Li, M.; Liao, W.; Ren, Y. Research progress on chemical constituents and pharmacological effects of different varieties of Glycyrrhizae Radix et Rhizoma and predictive analysis of quality markers. Chin. Tradit. Herbal. Drugs 2021, 52, 7680–7692. (In Chinese) [Google Scholar]
  40. Ma, P. Pharmacognostic Studies of Polygonum cuspidatum Sieb. Et Zucc.(Polydonaceae). Ph.D. Thesis, Peking Union Medical College, Beijing, China, 2013. (In Chinese). [Google Scholar]
  41. Wu, J.; Wang, C.; Yu, H. Chemical Constituents and Pharmacological Effect of Lonicerae Japonicae Flos. Chin. J. Exp. Tradit. Med. Form 2019, 25, 225–234. (In Chinese) [Google Scholar]
  42. Xiang, C.; Qiao, X.; Ye, M.; Guo, D. Classification and distribution analysis of components in Glycyrrhiza using licorice compounds database. Acta Pharm. Sin. 2012, 47, 1023–1030. (In Chinese) [Google Scholar]
  43. Tan, G.; Zhu, Z.; Zhang, H.; Zhao, L.; Liu, Y.; Dong, X.; Lou, Z.; Zhang, G.; Chai, Y. Analysis of phenolic and triterpenoid compounds in licorice and rat plasma by high-performance liquid chromatography diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry. Rapid. Commun. Mass Spectrom. 2010, 24, 209–218. [Google Scholar] [CrossRef]
  44. Wang, X.; Qin, Y.; Sun, J.; Hua, l.; Luo, W. Research progress on chemical constituents, pharmacological actives, clinical applications and quality control of Polygoni cuspidati folium. Asia-Pac. Tradit. Med. 2019, 15, 196–200. (In Chinese) [Google Scholar]
  45. Zhang, Y.; Yang, J.; Song, J.; Gao, S.; Zhang, Q.; Wang, B.; Zhao, Y. Discussion on mechanism of Ephedra Herba in treatment of heart failure based on network pharmacology. Drug Eval. Res. 2021, 44, 2189–2202. (In Chinese) [Google Scholar]
  46. Liu, G.; Wu, Y.; Liu, Y.; Li, X.; Yang, W. Chemical Constituents in Glycyrrhiza uralensis: A Review. Mod. Chin. Med. 2021, 23, 2006–2016. (In Chinese) [Google Scholar]
  47. Cheng, M.; Zhang, J.; Yang, L.; Shen, S.; Li, P.; Yao, S.; Qu, H.; Li, J.; Yao, C.; Wei, W.; et al. Recent advances in chemical analysis of licorice (Gan-Cao). Fitoterapia 2021, 149, 104803. [Google Scholar] [CrossRef] [PubMed]
  48. Li, K.; Ji, S.; Song, W.; Kuang, Y.; Lin, Y.; Tang, S.; Cui, Z.; Qiao, X.; Yu, S.; Ye, M. Glycybridins A-K, Bioactive Phenolic Compounds from Glycyrrhiza glabra. J. Nat. Prod. 2017, 80, 334–346. [Google Scholar] [CrossRef] [PubMed]
  49. Montoro, P.; Maldini, M.; Russo, M.; Postorino, S.; Piacente, S.; Pizza, C. Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. J. Pharm. Biomed. Anal. 2011, 54, 535–544. [Google Scholar] [CrossRef]
  50. Frattaruolo, L.; Carullo, G.; Brindisi, M.; Mazzotta, S.; Bellissimo, L.; Rago, V.; Curcio, R.; Dolce, V.; Aiello, F.; Cappello, A.R. Antioxidant and Anti-Inflammatory Activities of Flavanones from Glycyrrhiza glabra L. (licorice) Leaf Phytocomplexes: Identification of Licoflavanone as a Modulator of NF-kB/MAPK Pathway. Antioxidants 2019, 8, 186. [Google Scholar] [CrossRef]
  51. Cao, Y. Research on Chemical Components and α-glucosidase Inhibiting Activity of Huzhang. Master’s Thesis, Jilin Agricultural University, Jilin, China, 2015. (In Chinese). [Google Scholar]
  52. Qiu, Z.; Liu, Z.; Pang, J.; Wu, H.; Liu, X.; Yang, Z.; Li, X.; Chen, J. A network pharmacology study with molecular docking to investigate the possibility of licorice against posttraumatic stress disorder. Metab. Brain Dis. 2021, 36, 1763–1777. [Google Scholar] [CrossRef]
  53. Lu, Y.; Ding, H.; Shi, Z.; Lin, H.; Zhang, G. Study on the mechanism of action of Ephedra Herba Decoction against influenza A virus based on network pharmacology. TMR Modern Herb. Med. 2022, 5, 0502001. [Google Scholar] [CrossRef]
  54. Qiao, X.; Song, W.; Ji, S.; Wang, Q.; Guo, D.; Ye, M. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. J. Chromatogr. A. 2015, 1402, 36–45. [Google Scholar]
  55. Qiao, X.; Liu, C.; Ji, S.; Lin, X.; Guo, D.; Ye, M. Simultaneous determination of five minor coumarins and flavonoids in Glycyrrhiza uralensis by solid-phase extraction and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Planta Med. 2014, 80, 237–242. [Google Scholar] [CrossRef]
  56. Li, X.; Liu, H.; Shao, Y.; Ma, G.; Song, D.; Xu, G.; Wang, Z. Wide Identification of the Compounds in Licorice and Exploration of the Mechanism for Prostatitis Treatment by Combining UHPLC-LTQ-Orbitrap MS with Network Pharmacology. ChemistrySelect 2019, 4, 3011–3017. [Google Scholar] [CrossRef]
  57. Wang, K.; Meng, Y.; Lu, X.; Pang, X.; Wang, Y.; Ji, S.; Deng, Z.; Ma, P. Study on the Mechanism of Mahuang (Ephedrae Herba)-Xingren (Armeniacae Semen Amarum) in the Treatment of Bronchial Asthma. J. Liaoning Univ. Tradit. Chin. Med. 2021, 23, 205–212. (In Chinese) [Google Scholar]
  58. Fan, J.; Kuang, Y.; Dong, Z.; Yi, Y.; Zhou, Y.; Li, B.; Qiao, X.; Ye, M. Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and α-Glucosidase Inhibitors. J. Nat. Prod. 2020, 83, 814–824. [Google Scholar] [CrossRef]
  59. Chin, Y.W.; Jung, H.A.; Liu, Y.; Su, B.N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, A.D. Antioxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J. Agric. Food Chem. 2007, 55, 4691–4697. [Google Scholar] [CrossRef]
  60. Mitscher, L.A.; Park, Y.H.; Clark, D.; Beal, J.L. Antimicrobial agents from higher plants. Antimicrobial isoflavanoids and related substances from Glycyrrhiza glabra L. var. typica. J. Nat. Prod. 1980, 43, 259–269. [Google Scholar] [CrossRef]
Figure 1. The HPLC chromatogram of YPG (wavelength = 254 nm). 1. Chlorogenic acid; 2. puerarin; 3. 3′-methoxypuerarin; 4. polydatin; 5. glycyrrhizic acid; 6. emodin.
Figure 1. The HPLC chromatogram of YPG (wavelength = 254 nm). 1. Chlorogenic acid; 2. puerarin; 3. 3′-methoxypuerarin; 4. polydatin; 5. glycyrrhizic acid; 6. emodin.
Molecules 29 02300 g001
Figure 2. The BPCs of YPG in positive (A) and negative (B) modes.
Figure 2. The BPCs of YPG in positive (A) and negative (B) modes.
Molecules 29 02300 g002
Figure 3. (a) The distribution of plant sources tentatively identified in YPG; (b) the types of compounds tentatively identified in YPG.
Figure 3. (a) The distribution of plant sources tentatively identified in YPG; (b) the types of compounds tentatively identified in YPG.
Molecules 29 02300 g003
Figure 4. MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of chlorogenic acid (positive ion mode).
Figure 4. MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of chlorogenic acid (positive ion mode).
Molecules 29 02300 g004
Figure 5. MS/MS spectrum of [M − H] ions and plausible fragmentation pathway of puerarin (negative ion mode).
Figure 5. MS/MS spectrum of [M − H] ions and plausible fragmentation pathway of puerarin (negative ion mode).
Molecules 29 02300 g005
Figure 6. MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of methylephedrine (positive ion mode).
Figure 6. MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of methylephedrine (positive ion mode).
Molecules 29 02300 g006
Figure 7. MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of glycyrrhizic acid (positive ion mode).
Figure 7. MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of glycyrrhizic acid (positive ion mode).
Molecules 29 02300 g007
Figure 8. Quantitative analysis results of six main components in YPG.
Figure 8. Quantitative analysis results of six main components in YPG.
Molecules 29 02300 g008
Table 1. Mass spectrometry information of chemical components in YPG.
Table 1. Mass spectrometry information of chemical components in YPG.
No.NameRT (min)FormulaIon TypeMolecular Ion (m/z)Main Product Ion (m/z)
1ephedrannin A3.40C30H20O11[M + H]+557.1104395.1281, 215.0650, 177.0543, 145.0284
2glucose3.63C6H12O6[M + H]+181.0705163.0792, 144.0655, 109.0286, 81.0340
[M − H]179.0551161.0445, 141.0181, 117.0181, 87.0073
3secologanic acid3.67C16H22O10[M − H]373.1134 347.9473, 189.0156, 161.0234, 135.0440
4D-mannitol3.82C6H14O6[M + H]+183.0862147.0650, 129.0543, 104.1073, 69.0342
5sucrose3.86C12H22O11[M + H]+343.1227306.1183, 145.0495, 127.0390, 85.0290
[M − H]341.1083261.7968, 179.0559, 113.0230, 59.0125
6allantoin3.99C4H6N4O3[M + H]+159.0512142.0862, 114.0915, 99.0193, 70.0658
* 7quinic acid 4.13C7H12O6[M + H]+193.0706157.0492, 147.0652, 129.0546, 111.0443
8salicylic acid4.14C7H6O3[M + H]+139.0389122.0714, 111.0443, 97.0287, 85.0289
94-aminophenol5.72C6H7NO[M + H]+110.060487.0046, 81.0340, 78.9949
* 10citric acid 5.59C6H8O7[M + H]+193.0343161.0595, 151.0388, 133.0647, 105.0702
[M − H]191.0188173.0085, 129.0180, 111.0075, 87.0071
11guanosine6.34C10H13N5O5[M + H]+284.0986258.4957, 152.0566, 135.0302, 110.0351
[M − H]282.0843169.3754, 150.0411, 88.1632, 61.9871
12adenosine6.46C10H13N5O4[M + H]+268.1037213.3238, 169.7115, 136.0617, 85.0288
* 13gallic acid 7.23C7H6O5[M + H]+171.0291154.0974, 130.0863, 115.0392, 70.0658
14coumalic acid7.40C6H4O4[M + H]+141.0184113.9639, 90.9481, 72.9378, 56.9430
15tachioside8.05C13H18O8[M − H]301.0926283.1918, 257.0457, 221.1909, 151.0029
16isotachioside8.27C13H18O8[M − H]301.0926284.0321, 243.0658, 178.9978, 151.0026
17ephedroxane8.27C11H13NO2[M + H]+192.1019164.9844, 146.9612, 106.0654, 87.0445
18quinaldic acid8.27C10H7NO2[M + H]+174.0551146.9612, 128.9507, 105.9351, 55.9352
* 19hordenine 8.56C10H15NO[M + H]+166.1225151.0101, 121.0649, 103.0546, 93.0703
20leonuriside A8.99C14H20O9[M − H]331.1035285.0384, 253.0501, 169.0130, 125.0231
214-vinylguaiacol9.19C9H10O2[M + H]+151.0755133.0761, 123.9456, 119.0493, 91.0547
227α-morroniside9.50C17H26O11[M − H]405.1401371.0939, 243.0672, 191.0199, 111.0070
23tetramethylpyrazine9.83C8H12N2[M + H]+137.1075111.0080, 93.0704, 68.9978
24shuangkangsu10.49C20H30O14[M − H]493.1560447.2225, 431.0965, 269.0450, 169.0130
25epi-gallocatechin10.69C15H14O7[M + H]+307.0807289.1790, 243.1704, 208.9966, 139.0389
[M − H]305.0665247.5994, 219.0664, 165.0182, 125.0232
26robinin10.73C33H40O19[M + H]+741.2226678.4389, 579.1688, 381.0964, 297.0752
275-(hydroxymethyl)furfural10.85C6H6O3[M + H]+127.0393111.9689, 110.0238, 84.9603, 55.9352
28N-ethylbenzylamine10.90C8H11N[M + H]+122.0967107.0732, 105.0336, 95.0495, 88.0237
29vicenin-211.00C27H30O15[M + H]+595.1641433.1127, 415.1019, 313.0700, 283.0596
[M − H]593.1510539.2719, 521.2607, 463.2737, 226.9863
304′-hydroxyacetophenone11.09C8H8O2[M + H]+137.0599122.0364, 116.9720, 95.0497, 55.9352
316-hydroxykynurenic acid11.35C10H7NO4[M + H]+206.0445178.0497, 148.1121, 117.0699, 90.0797
[M − H]204.0293168.1795, 160.0393, 132.0446, 110.1680
32chlorogenic acid butyl ester11.36C20H26O9[M − H]409.1495365.0681, 337.0357, 241.0023, 169.0135
33mirificin-4′-O-glucoside11.73C32H38O18[M + H]+711.2118579.1680, 417.1183, 399.1065, 297.0753
[M − H]709.1986487.1239, 457.1142, 294.0533, 266.0583
34mandelonitrile11.82C8H7NO[M + H]+134.0600106.0654, 91.0544, 79.0548
35kakkalide11.83C28H32O15[M + H]+609.1803447.1279, 411.1072, 327.0857, 297.0755
[M − H]607.1663588.1254, 487.1243, 309.0403, 281.0458
36mahuannin A11.87C30H24O10[M − H]543.1324528.5940, 497.2623, 381.1213, 265.0987
372,6-dihydroxybenzoic acid11.92C17H24O9[M + H]+373.1480308.2842, 237.3755, 151.0375, 107.0485
388-epi-loganic acid11.96C16H24O10[M + H]+377.1438357.1662, 339.1559, 265.0587, 237.0277
[M − H]375.1292315.8566, 265.2063, 201.0163, 113.0231
39swertiamarin12.02C16H22O10[M − H]373.1134357.0130, 295.0618, 201.0158, 135.0433
408-epi-loganin12.30C17H26O10[M − H]389.1448371.8339, 345.1187, 227.0693, 185.0593
415-methoxysalicylic acid12.31C8H8O4[M + H]+169.0498151.0391, 128.9508, 111.0444, 93.0339
42norephedrine12.65C9H13NO[M + H]+152.1068134.0964, 117.0700, 115.0545, 91.0547
437-epi-vogeloside12.81C17H24O10[M − H]387.1295341.1095, 272.9591, 227.0690, 179.0566
44loganic acid12.88C16H24O10[M − H]375.1292287.1191, 201.0159, 189.0158, 135.0440
* 45protocatechuic acid 12.90C7H6O4[M + H]+155.0339137.0233, 117.0701, 107.0495, 72.9379
46polygalin B13.12C28H32O15[M + H]+609.1803555.7846, 447.1268, 285.0752, 270.0516
[M − H]607.1663460.8990, 325.0714, 310.0492, 282.0534
47lonijaposide B13.15C25H32NO12[M − H]537.1833511.3804, 375.0705, 335.0791, 201.0155
483′-hydroxypuerarin13.17C21H20O10[M − H]431.0975415.0348, 311.0557, 283.0609, 255.0659
49norpseudoephedrine13.19C9H13NO[M + H]+152.1068134.0964, 117.0700, 106.0655
50loganin13.30C17H26O10[M − H]389.1448371.8339, 326.0798, 227.0693, 185.0593
51secologanoside13.43C16H22O11[M + H]+391.1222239.0796, 241.0385, 163.0388, 151.0389
[M − H]389.1083280.5215, 194.8876, 121.0647, 95.0489
52leucodelphidin13.74C15H14O8[M − H]321.0607305.2140, 265.0519, 253.0507, 186.9385
53secologanin13.83C17H24O10[M − H]387.1295/
54glucoisoliquiritin14.04C27H32O14[M − H]579.1715529.4413, 491.9212, 463.1199, 255.0662
55glucoliquiritin apioside14.07C32H40O18[M − H]711.2134678.4865, 549.119, 457.1141, 255.0664
* 56chlorogenic acid 14.15C16H18O9[M + H]+355.1014163.0388, 135.0440
[M − H]353.0871191.0553, 161.0234, 135.0440, 127.0385
* 57neochlorogenic acid 14.22C16H18O9[M + H]+355.1014338.1603, 289.0706, 235.0594, 163.0390
* 58catechin 14.25C15H14O6[M + H]+291.0857255.7885, 107.0648, 139.0389, 123.0442
[M − H]289.0714245.0817, 203.0705, 151.0387.123.0439
59ephedrine14.36C10H15NO[M + H]+166.1225148.1119, 133.0886, 117.0700, 91.0548
* 60cryptochlorogenic acid 14.37C16H18O9[M + H]+355.1014337.0915, 235.0589, 205.0494, 163.0388
61pseudoephedrine14.43C10H15NO[M + H]+166.1225148.1119, 133.0887, 117.0701, 91.0546
62ephedrannin D414.44C30H24O14[M − H]607.1089563.1151, 487.1202, 413.0903, 267.0680
63puerarin 6″-O-xyloside14.61C26H28O13[M + H]+549.1590417.1175, 381.0964, 297.0753, 267.0648
[M − H]547.1447437.0846, 295.0609, 277.0504, 267.0661
64chrysoeriol 7-O-neohesperidoside14.65C28H32O15[M + H]+609.1803447.1284, 429.1182, 327.0859, 285.0755
[M − H]607.1663547.1422, 487.1246, 295.0607, 267.0660
* 65p-hydroxybenzoic acid 14.70C7H6O3[M + H]+139.0389121.0286, 111.0443, 93.0339
* 66amygdalin 14.72C20H27NO11[M + H]+458.1647355.1036, 213.0755, 163.0389, 107.0495
[M − H]456.1505382.6093, 323.0968, 256.1356, 161.0449
67methyl caffeate14.83C10H10O4[M + H]+195.0652177.0544, 163.0388, 145.0283, 117.0336
683,4-dimethyl-5-phenyloxazolidine14.94C11H15NO[M + H]+178.1227162.1274, 147.1040, 117.0700, 105.0702
69apigenin 5-rhamnoside15.01C21H20O9[M + H]+417.1167381.0964, 321.0743, 297.0753, 267.0647
[M − H]415.1027295.0608, 267.0661, 253.0509, 223.0762
* 70puerarin 15.02C21H20O9[M + H]+417.1167399.1072, 381.0956, 363.0844, 255.0646
[M − H]415.1035295.0608, 277.0507, 267.0661
71mirificin15.04C26H28O13[M + H]+549.1590417.1168, 399.1069, 297.0754, 267.0648
[M − H]547.1447418.4808, 295.0609, 267.0660, 114.2369
72tectorigenin 7-O-xylosylglucoside15.07C27H30O15[M + H]+595.1641379.0811, 325.0695, 216.0653, 121.0283
[M − H]593.1510495.0386, 473.1082, 310.0499, 282.0529
73methylephedrine15.14C11H17NO[M + H]+180.1382162.1275, 148.1076, 135.0804
74methylpseudoephedrine15.18C11H17NO[M + H]+180.1382162.1275, 147.1042, 135.0803, 117.0700
757-O-ethylsweroside15.26C18H26O10[M − H]401.1451325.7480, 269.1024, 253.0505, 178.0263
76isoviolanthin15.47C27H30O14[M + H]+579.1692417.1190, 399.1072, 297.0753, 267.0649
[M − H]577.1554531.2839, 518.0385, 283.0610, 268.0376
* 773′-methoxypuerarin 15.53C22H22O10[M + H]+447.1277285.0751, 270.0516, 225.0542, 137.0232
[M − H]445.1134430.0887, 367.1027, 327.1080, 215.0089
* 78glycitin 15.54C22H22O10[M + H]+447.1277429.1190, 411.1062, 327.0855, 297.0754
[M − H]445.1135379.8243, 325.0714, 282.0530, 254.0597
79benzyl alcohol15.67C7H8O[M + H]+109.065394.0148, 91.0546, 87.0045, 81.0704
80methyl,4-hydroxycinnamate15.68C10H10O3[M + H]+179.0705162.1276, 147.1041, 117.0700, 109.0651
81γ-octalactone15.94C8H14O2[M + H]+143.1068128.9508, 116.9721, 113.9639, 84.9603
82(6S-9R)-roseoside15.98C19H30O8[M + H]+387.2004369.1341, 297.0762, 267.0641, 151.0388
83syringin15.98C17H24O9[M + H]+373.1480308.0842, 292.1605, 237.3755, 151.0375
845,7-dihydroxyisobenzofuran15.99C8H6O4[M + H]+167.0339148.1120, 133.0885, 117.0700, 111.0442
85kingiside16.01C17H24O11[M − H]403.1240371.1025, 310.7592, 243.0664, 174.8555
* 86puerarin-7-O-glucoside 16.04C27H30O14[M + H]+579.1692561.1633, 399.1074, 297.0753, 267.0647
87sweroside16.09C16H22O9[M + H]+359.1333297.8041, 265.6036, 197.0808, 127.0391
* 88caffeic acid 16.29C9H8O4[M + H]+181.0494163.0388, 145.0284, 135.0441, 117.0337
[M − H]179.0341164.0098, 135.0440, 112.1822, 107.0492
89ephedrannin D116.53C30H24O13[M + H]+593.1279576.3641, 447.1271, 327.0849, 297.0745
905-p-coumaroylquinic acid16.70C16H18O8[M + H]+339.1071266.4322, 245.8672, 147.0439, 119.0494
[M − H]337.0930191.0553, 163.0390, 119.0470, 93.0332
91loniceracetalide A16.71C21H32O11[M − H]459.1869/
92piceatannol 3′-O-glucoside16.77C20H22O9[M − H]405.1190359.0753, 243.0659, 201.0549, 159.0440
93lonijaposide D16.82C26H32NO13[M − H]565.1774550.4224, 519.2438, 445.1137, 325.0718
94ephedralone16.90C11H9NO4[M + H]+220.0602192.0652, 164.0699, 151.4024, 119.0490
[M − H]218.0452174.0550, 159.0315, 144.0077, 131.0365
95neochlorogenic acid methyl ester17.85C17H20O9[M + H]+369.1173191.9904, 177.0544, 145.0283, 117.0336
[M − H]367.1029255.0194, 191.0552, 173.0447, 134.0361
96isoschaftoside17.86C26H28O14[M + H]+565.1542479.5669, 415.1016, 313.0699, 283.0596
[M − H]563.1340341.0680, 311.0559, 283.0609, 149.0235
972,6-dihydroxyphenylacetic acid18.07C8H8O4[M + H]+169.0498151.0389, 146.9612, 128.9508, 123.0441
98schaftoside18.35C26H28O14[M + H]+565.1542520.6823, 433.1122, 313.0700, 283.0597
[M − H]563.1340529.1846, 341.0670, 311.0558, 283.0610
* 99vanillic acid 18.50C8H8O4[M + H]+169.0498151.0388, 146.9612, 128.9508, 123.0442
100flavoyadorinin B18.51C23H24O11[M + H]+477.1379327.1659, 279.0375, 204.5438, 145.0499
101ephedrannin D218.54C30H24O13[M − H]591.1150547.1453, 462.7491, 285.0408, 253.0507
* 102cinnamic acid 18.59C9H8O2[M + H]+149.0597133.0885, 121.0648, 103.0548, 95.0497
103hydroxyphenylacetic acid18.65C8H8O3[M + H]+153.0546135.1167, 112.0395, 90.9481, 72.9378
1043-O-caffeoylshikimic acid18.81C16H16O8[M + H]+337.0910181.0494, 163.0388, 145.0283, 95.0495
[M − H]335.0771269.1091, 179.0345, 161.0233, 133.0282
105leucopelargonidin18.82C15H14O6[M + H]+291.0857273.0753, 207.0647, 147.0440, 139.0389
[M − H]289.0714245.0818, 203.0705, 151.0392, 123.0441
106licuraside19.43C26H30O13[M − H]549.1609502.1001, 429.1062, 255.0660, 119.0490
107genistein 7-O-glucoside20.25C21H20O10[M + H]+433.1120271.0595, 215.0700, 137.0231
* 108liquiritin apioside 20.29C26H30O13[M − H]549.1609482.5059, 297.0778, 255.0660, 135.0076
109isoliquiritin apioside20.34C26H30O13[M − H]549.1609488.6683, 429.1148, 255.0659, 135.0076
* 110liquiritin 20.38C21H22O9[M − H]417.1186402.1664, 373.0210, 255.0662, 119.0490
111secologanin dimethyl acetal20.39C19H30O11[M − H]433.1706/
1123-methoxyphenol20.50C7H8O2[M + H]+125.0599102.9706, 97.0287, 84.9602
113piceid gallate A20.63C27H26O13[M − H]557.1293/
* 114polydatin 20.92C20H22O8[M − H]389.1236227.0707, 185.0598, 159.0808, 143.0491
115lonicerin21.02C27H30O15[M + H]+595.1641433.1108, 313.0717, 271.0596, 215.0697
[M − H]593.1510430.4479, 329.5679, 285.0396, 227.0705
116isoliquiritin21.24C21H22O9[M − H]417.1186255.0660, 153.0182, 135.0075, 119.0489
* 117quercetin 3-glucoside 21.69C21H20O12[M − H]463.0880300.0272, 271.0247, 255.0296, 151.0027
118kaempferol 7-O-glucopyranoside21.69C21H20O11[M + H]+449.1072330.0535, 287.0545, 203.4280, 153.0181
[M − H]447.0931410.9457, 325.0732, 285.0397, 256.0383
119neoisoliquiritin22.95C21H22O9[M − H]417.1186374.0878, 255.0660, 153.0183, 135.0076
* 120coumarin 23.54C9H6O2[M + H]+147.0442131.9743, 119.0493, 113.9640
* 121daidzein 23.56C15H10O4[M − H]253.0502224.0468, 209.0598, 197.0602, 135.0076
122rhoifolin23.76C27H30O14[M + H]+579.1692515.2410, 429.1205, 327.0858, 297.0754
* 123isochlorogenic acid A 23.89C25H24O12[M − H]515.1185353.0883, 335.0772, 173.0445, 135.0440
124reynoutrin24.65C20H18O11[M − H]433.0771/
125avicularin25.43C20H18O11[M − H]433.0771/
* 126resveratroloside 25.46C20H22O8[M + H]+391.1375229.0856, 211.0759, 135.0440, 107.0495
127liquiritigenin 7,4′-diglucoside25.61C27H32O14[M + H]+581.1848538.0963, 431.0979, 311.0434, 287.0430
128centauroside25.64C34H46O19[M − H]757.2545679.1150, 525.1623, 458.1185, 254.0573
1293,4-dicaffeoylquinic acid25.75C25H24O12[M − H]515.1185437.3583, 353.0874, 191.0552, 135.0440
130herniarin26.18C10H8O3[M + H]+177.0546149.0597, 145.0283, 117.0336, 89.0390
131catechin-5-O-β-D-glucopyranoside26.54C21H24O11[M − H]451.1243313.0739, 289.0719, 191.0340, 167.0340
132vanillin26.58C8H8O3[M + H]+153.0546131.9743, 125.0597, 111.0443, 93.0338
1334,7-dihydroxyflavone 7-D-glucoside26.84C21H20O9[M + H]+417.1167338.5892, 255.0647, 227.0695, 199.0747
134methyl chlorogenate27.00C17H20O9[M + H]+369.1173313.0666, 285.0745, 207.0644, 161.0596
135ketologanin27.07C17H24O10[M + H]+389.1433371.1681, 324.1584, 225.0426, 151.0388
136naringin27.96C27H32O14[M + H]+581.1848449.1047, 431.0979, 329.0610, 311.0434
137(E)-aldosecologanin28.10C34H46O19[M − H]757.2545679.1150, 595.2075, 525.1623, 458.1185
138dihydrocaffeic acid28.25C9H10O4[M + H]+183.0649165.0545, 151.0389, 123.0441, 113.9639
139p-coumaric acid28.25C9H8O3[M + H]+165.0544137.0597, 133.0283, 109.0650, 79.0547
140secoxyloganin28.25C17H24O11[M + H]+405.1379373.2119, 309.2449, 165.0545, 151.0389
141benzoic acid28.26C7H6O2[M + H]+123.0441105.0450, 95.0495, 67.0549
1421,5-dicaffeoylquinic acid28.63C25H24O12[M − H]515.1185454.9042, 353.0873, 191.0552, 173.0446
143vogeloside28.65C17H24O10[M + H]+389.1433233.2362, 195.0655, 151.0389, 107.0495
1443-O-caffeoylquinic acid methyl ester28.94C17H20O9[M + H]+369.1173207.0649, 177.0546, 148.0514, 107.0857
145quercitrin30.05C21H20O11[M + H]+449.1072330.0535, 287.0545, 269.0448, 153.0181
[M − H]447.0931403.1030, 241.0501, 197.0599, 174.9555
1464-feruloylquinic acid30.26C17H20O9[M + H]+369.1173239.4636, 207.0649, 177.0539, 148.0516
* 147naringenin 31.32C15H12O5[M − H]271.0609230.0589, 177.0189, 151.0026, 119.0490
148kuzubutenolide A31.41C23H24O10[M + H]+461.1433299.0909, 253.0853, 193.0497, 107.0494
149pueroside A31.42C29H34O14[M + H]+607.2010461.1439, 376.1363, 299.0908, 107.0494
150epicatechingallate31.75C22H18O10[M + H]+443.0962390.0869, 291.0855, 273.0755, 123.0441
151garbanzol31.76C15H12O5[M + H]+273.0752242.4491, 189.0543, 153.0180, 123.0441
152chrysoeriol 7-O-glucopyranoside31.80C22H22O11[M + H]+463.1220445.1107, 427.1008, 343.0803, 313.0704
153sophoraside A31.92C24H26O10[M + H]+475.1587313.1061, 267.1010, 253.0853, 107.0494
[M − H]473.1447377.9086, 311.0924, 267.1024, 252.0786
154vitexin32.25C21H20O10[M + H]+433.1120415.1018, 397.0909, 313.0698, 283.0597
[M − H]431.0975269.0453, 240.0423, 225.0551, 193.4129
1555-O-coumaroylcaffeoylquinic acid32.38C25H24O11[M + H]+501.1379483.1254, 320.0835, 255.0652, 163.0388
[M − H]499.1244431.0978, 291.0275, 269.0454, 240.0423
* 156resveratrol 32.64C14H12O3[M + H]+229.0856211.0747, 183.0808, 135.0441, 107.0494
* 157ferulic acid 32.90C10H10O4[M + H]+195.0652177.0544, 163.0389, 138.0661, 107.0494
[M − H]193.0498165.0005, 134.0361, 126.9024, 102.9472
* 158isoferulic acid 32.91C10H10O4[M + H]+195.0652177.0544, 163.0388, 149.0596, 109.0287
[M − H]193.0498161.0233, 149.0236, 134.0363, 121.0281
159kudzusaponin A134.62C52H84O23[M − H]1075.53141029.5265, 763.3842, 603.3890, 485.3619
160hyperoside35.15C21H20O12[M + H]+465.1023447.1085, 303.0492, 286.0449, 257.0425
161polygalin A35.16C23H24O11[M + H]+477.1379355.1165, 315.0853, 271.0960, 229.0856
[M − H]475.1241267.0660, 252.0424, 201.9968, 132.0607
1627-hydroxy-4-methoxy-5-methylcoumarin35.24C11H10O4[M + H]+207.0650189.0544, 161.0599, 150.0261, 123.0807
163glycitin-6″-O-xylosyl36.12C27H30O14[M + H]+579.1692433.1124, 337.0699, 313.0699, 283.0596
164cuspidatumin A36.14C14H12O4[M + H]+245.0805229.0854, 161.0122, 121.0286, 98.9757
[M − H]243.0661225.1119, 207.1026, 174.9554, 146.9600
1653,5-dicaffeoylquinic acid methyl ester36.23C26H26O12[M + H]+531.1486513.1385, 369.1514, 283.0595, 163.0388
* 166rutin 36.27C27H30O16[M + H]+611.1602465.1010, 303.0493, 257.0441, 229.0495
* 167taxifolin 36.27C15H12O7[M + H]+305.0653287.1236, 269.1125, 227.1023, 191.0814
168pueroside B36.31C30H36O15[M + H]+637.2119475.1591, 313.1064, 267.1011, 107.0494
169pueroside C36.31C24H26O10[M + H]+475.1587457.3117, 313.1034, 249.1549, 107.0486
170macranthoidin B36.35C65H106O32[M + H]+1399.67111075.5695, 943.5251, 795.2725, 633.2202
[M − H]1397.65521073.5525, 911.5010, 749.4481, 603.3898
171kudzusaponin SA236.39C47H76O19[M + H]+945.5027848.4162, 763.4678, 679.2439, 421.3453
172macranthoidin A36.40C59H96O27[M + H]+1237.61831076.5618, 943.5206, 751.4630, 603.2128
[M − H]1235.60361189.5997, 1073.5534, 911.5006, 749.4482
173kudzusaponin SA436.40C47H74O20[M + H]+959.4806892.2470, 764.6243, 615.3878, 421.3457
174saponin 136.43C58H94O26[M + H]+1207.60771075.5693, 913.5162, 751.4610, 603.2120
[M − H]1205.5934881.4901, 749.4479, 603.3898, 471.3479
17524-hydroxy-licorice-saponin A336.45C48H72O22[M + H]+1001.4559825.4282, 763.0059, 631.3789, 469.3288
1763,4-O-dicaffeoylquinic acid methyl ester36.46C26H26O12[M + H]+531.1486319.0808, 271.0598, 177.0545, 163.0388
[M − H]529.1344443.6241, 367.1035, 191.0554, 135.1440
177isoquercetin36.47C21H20O12[M + H]+465.1023303.0494, 257.0439, 229.0495, 153.0182
178soyasaponin A336.48C48H78O19[M + H]+959.5183813.4605, 439.3565, 141.0181, 85.0289
[M − H]957.5065911.5010, 749.4482, 587.3950, 471.3475
179dipsacoside B36.49C53H86O22[M − H]1073.5519912.0020, 749.4480, 585.3804, 471.3478
180kudzusaponin B136.52C48H76O21[M + H]+989.4921843.4330, 681.3870, 469.3314, 141.0181
[M − H]987.4794926.4868, 763.7924, 661.3583, 503.3387
181saponin 436.55C58H94O27[M − 2H]2−610.2908/
182licoricesaponin A336.57C48H72O21[M + H]+985.4612809.4323, 615.3887, 453.3356, 189.1634
[M − H]983.4483943.1790, 821.3969, 645.3637, 351.0566
183neoliquiritin36.58C21H22O9[M + H]+419.1326315.0854, 257.0803, 217.0483, 124.0392
1846″-O-malonyldaidzin36.58C24H22O12[M + H]+503.1170480.9303, 392.3837, 255.0647, 199.0751
185(2E)-1-(2,3-dihydroxy-4-methoxyphenyl)-3-(4-hydroxyphenyl)-2-propen--one36.58C16H14O5[M + H]+287.0908245.0804, 207.0649, 193.0492, 121.0285
[M − H]285.0765270.0532, 177.0185, 150.0311, 108.0206
186loniceroside D36.59C53H86O23[M + H]+1091.56071033.7538, 945.5055, 783.4556, 421.3455
[M − H]1089.54701071.5394, 943.4768, 882.4898, 763.4315
187akebiasaponin D36.60C47H76O18[M + H]+929.5079767.4589, 635.4064, 437.3408, 189.1637
188kudzusaponin A236.61C42H68O16[M + H]+829.4560764.7684, 649.3955, 455.3521, 269.0806
[M − H]827.4425763.3452, 677.4987, 516.0891, 333.8636
189isorhamnetin 3-O-glucopyranoside36.62C22H22O12[M + H]+479.1170397.5868, 317.0649, 274.0458, 120.0809
* 190astragalin 36.62C21H20O11[M + H]+449.1072409.0180, 346.9581, 287.0544, 252.9790
[M − H]447.0931316.5085, 284.0322, 255.0294, 227.0343
1917,4′-dihydroxyflavone36.63C15H10O4[M + H]+255.0645227.0696, 199.0752, 137.0234, 91.0546
[M − H]253.0502224.0470, 208.0522, 135.0076, 91.0174
192isorhamentin 3-O-rutinoside36.66C28H32O16[M + H]+625.1743479.1161, 317.0652, 302.0414, 85.0289
[M − H]623.1613527.7530, 415.1031, 252.0425, 223.0404
* 1934′-methoxypuerarin 36.67C22H22O9[M + H]+431.1326395.1120, 365.1009, 311.0910, 271.0595
1944,5-O-dicaffeoylquinic acid methyl ester36.67C26H26O12[M − H]529.1344483.1268, 463.2749, 367.1032, 253.0501
195quercetin 3-O-arabinoside36.67C20H18O11[M + H]+435.0917303.0501, 271.0596, 153.0180, 121.0280
196loniceroside A36.69C52H84O21[M − H]1043.54221025.5223, 763.3167, 709.8038, 532.3125
* 197rhein 36.71C15H8O6[M + H]+285.0392269.0440, 257.0428, 151.0385, 121.0283
[M − H]283.0246268.0373, 217.0500, 175.0391, 133.0284
1983,4,5-tricaffeoylquinic acid36.72C34H30O15[M + H]+679.1633499.1226, 322.2479, 163.0387, 135.0440
[M − H]677.1511515.1179, 353.0875, 173.0446, 135.0440
199choerospondin36.74C21H22O10[M + H]+435.1296303.0501, 271.0596, 231.0647, 153.0180
2004,5-dicaffeoylquinic acid36.75C25H24O12[M + H]+517.1326499.1223, 453.8935, 269.0803, 163.0387
201pollenitin B36.76C22H22O12[M + H]+479.1170412.8673, 317.0651, 302.0415, 274.0472
202medicarpin3-O-glucoside36.77C22H24O9[M + H]+433.1482312.0939, 271.0596, 214.2812, 153.0182
203lonfuranacid A36.77C12H20O5[M + H]+245.1377229.0853, 189.1119, 125.0962, 97.1015
204questin36.78C16H12O5[M + H]+285.0751270.0518, 253.0490, 242.0574, 153.0179
205Tricin 7-O-glucoside36.78C23H24O12[M + H]+493.1326331.0807, 315.0493, 287.0537, 270.0518
206tectoridin36.79C22H22O11[M + H]+463.1220301.0700, 286.0467, 258.0517, 153.0181
* 207liquiritigenin 36.80C15H12O4[M + H]+257.0805239.0705, 211.0756, 147.0439, 137.0232
[M − H]255.0660209.0605, 153.0183, 135.0077, 119.0490
208subproside V36.80C54H88O24[M − H]1119.55751073.5519, 911.5007, 749.4478, 603.3897
209loniceroside E36.81C53H86O21[M − H]1057.55701039.5623, 849.4960, 763.3219, 413.0908
210kudzusaponin A536.82C48H78O20[M + H]+975.5131829.4545, 764.4423, 667.4020, 455.3510
211torachrysone36.82C14H14O4[M + H]+247.0960229.0856, 214.0621, 201.0907, 198.0673
[M − H]245.0812230.0579, 215.0343, 202.0625, 159.0440
212macranthoside B36.83C53H86O22[M + H]+1075.5658943.5235, 781.4703, 619.4197, 437.3409
213glycyroside36.83C27H30O13[M + H]+563.1743431.1331, 413.1223, 311.0907, 281.0803
[M − H]561.1608523.2799, 339.0867, 309.0767, 266.0582
214ohyscion36.84C16H12O5[M + H]+285.0751270.0518, 242.0567, 189.4096, 113.0597
[M − H]283.0609268.0375, 240.0419, 211.0391, 184.0518
215afzelin36.88C21H20O10[M + H]+433.1120418.8996, 271.0596, 243.0644, 215.0699
[M − H]431.0975269.0454, 240.0424, 225.0552, 152.9942
216kudzusaponin SA336.89C53H86O23[M + H]+1091.5607929.5117, 767.4597, 635.4111, 437.3414
[M − H]1089.54701043.5427, 881.4904, 749.4480, 603.3900
21722β-acetoxyglycyrrhizin36.91C44H64O18[M + H]+881.4143705.3826, 511.3415, 451.3196, 107.0859
218kudzusaponin C136.93C54H88O23[M + H]+1105.5767959.5132, 797.498, 603.4246, 423.3591
219questinol36.94C16H12O6[M + H]+301.0701286.0460, 269.0439, 167.0338, 134.0362
2203′-methoxydaidzin36.96C22H22O10[M + H]+447.1277384.1155, 327.0859, 285.0752, 229.0857
221loniceroside B36.96C58H94O25[M + H]+1191.6127817.3367, 763.4253, 619.4137, 437.3397
222citreorosein36.97C15H10O6[M + H]+287.0542271.0596, 269.0443, 259.0960, 217.0491
[M − H]285.0402268.0367, 257.0461, 196.0532, 133.0284
223herbacetin37.01C15H10O7[M + H]+303.0492286.0430, 257.0442, 229.0497, 153.0181
[M − H]301.0351284.0315, 273.0407, 178.9976, 151.0026
224betulonic acid37.02C30H46O3[M + H]+455.3507409.3467, 388.4104, 203.1793, 189.1635
225kudzusaponin A337.05C48H78O20[M + H]+975.5131829.4545, 667.4020, 455.3510, 141.0181
* 226ononin 37.08C22H22O9[M + H]+431.1326269.0805, 254.0569, 213.0910, 107.0494
227kaempferol 3-O-rutinoside37.11C27H30O15[M + H]+595.1641525.0455, 433.1108, 287.0544, 271.0596
228isobavachalcone37.11C20H20O4[M + H]+325.1429309.0781, 285.0754, 189.0906, 95.0163
229liqcoumarin37.18C12H10O4[M + H]+219.0648201.0910, 174.0674, 133.1012, 105.0702
230isokaempferide37.19C16H12O6[M + H]+301.0701283.0596, 255.0636, 227.0698, 123.1169
231uralsaponin F37.21C44H64O19[M + H]+897.4094763.6343, 679.2714, 527.3329, 334.7203
232daidzein 4′,7-diglucoside37.25C27H30O14[M + H]+579.1692503.0054, 447.1283, 285.0753, 229.0858
233liquoric acid37.26C30H44O5[M + H]+485.3245323.1276, 255.0648, 199.0751, 163.0385
234isoorientin37.27C21H20O11[M + H]+449.1072330.0535, 287.0545, 153.0181, 135.0439
235isorhodoptilometrin37.31C17H14O6[M + H]+315.0856300.0623, 272.0670, 153.0185, 95.0858
[M − H]313.0715298.0479, 270.0529, 227.0343, 183.0454
236chrysophanol37.34C15H10O4[M + H]+255.0645237.0549, 227.0692, 199.0751, 187.0725
237licoricesaponin G237.34C42H62O17[M + H]+839.4040663.3734, 487.3410, 469.3306, 141.0181
[M − H]837.3906763.7259, 724.4032, 351.0571, 193.0345
238kudzusaponin SA137.35C42H68O15[M + H]+813.4611764.7317, 439.3548, 141.0181, 95.0860
[M − H]811.4482765.4406, 603.3923, 432.7037, 283.0584
2391,4-dicaffeoylquinic acid37.38C25H24O12[M + H]+517.1326460.9336, 414.0990, 269.0804, 213.0906
240ethyl caffeate37.38C11H12O4[M + H]+209.0806163.0388, 145.1011, 135.0441, 117.0337
[M − H]207.0654179.0341, 161.0233, 135.0441, 121.0284
241apigenin 7-glucoside37.41C21H20O10[M + H]+433.1120379.0797, 337.0701, 313.0699, 271.0596
[M − H]431.0975311.0562, 269.0453, 225.0554, 152.9949
* 242daidzin 37.42C21H20O9[M + H]+417.1167387.2100, 297.0747, 255.0648, 199.0753
2432,5-dimethyl-7-hydroxychromenone37.46C11H10O3[M + H]+191.0699151.0387, 131.0856, 107.0861, 95.0860
244prunetin37.46C16H12O5[M + H]+285.0751253.0489, 242.0572, 211.0750, 151.0390
[M − H]283.0609268.0380, 240.0423, 197.0600, 168.0650
245glabrolide37.47C30H44O4[M + H]+469.3298233.1540, 175.1479, 135.1167, 107.0858
246pinocembrin37.53C15H12O4[M + H]+257.0805239.0701, 229.0850, 211.0752, 147.0440
247polygonin B37.54C26H26O13[M + H]+547.1430299.0909, 284.0674, 239.0702, 163.0385
* 248glycyrrhizic acid 37.56C42H62O16[M + H]+823.4086647.3788, 471.3457, 453.3356
[M − H]821.3959763.8063, 469.3315, 351.0569, 193.0347
249echinatin37.56C16H14O4[M + H]+271.0960254.2115, 147.0438, 137.0596, 123.0441
[M − H]269.0816251.0708, 225.0552, 151.0030, 119.0490
250hesperetin37.62C16H14O6[M + H]+303.0853258.0517, 153.0183, 106.0866, 88.0762
[M − H]301.0714273.0774, 255.0296, 230.0580, 183.0447
251(S)-naringenin37.62C15H12O5[M + H]+273.0752189.0543, 153.0180, 123.0441
252puerol B37.64C18H16O5[M + H]+313.1063267.1011, 253.0854, 107.0495
[M − H]311.0922296.0689, 267.1026, 252.0789, 161.0233
253coumestrol37.72C15H8O5[M + H]+269.0437254.0572, 241.0492, 213.0543, 185.0595
[M − H]267.0297251.0709, 225.0550, 181.0649, 151.0026
254polygonin A37.73C25H24O13[M + H]+533.1273488.1885, 360.1438, 285.0753, 270.0517
[M − H]531.1141341.9318, 253.0502, 229.0135, 191.0555
255tricin37.73C17H14O7[M + H]+331.0804315.0492, 302.0406, 270.0519, 73.0291
[M − H]329.0664271.0247, 211.1332, 171.1017
256neobavaisoflavone37.76C20H18O4[M + H]+323.1272308.0663, 267.0647, 255.0648, 239.0698
257biochanin37.76C16H12O5[M + H]+285.0751270.0516, 253.0491, 225.0540, 137.0233
[M − H]283.0609268.0377, 240.0423, 224.0474, 135.0075
258gancaonin V37.76C19H20O4[M + H]+313.1425281.1162, 244.0359, 153.0181
[M − H]311.1285296.0687, 267.1025, 252.0789, 161.0232
2596,7-dimethoxycoumarin37.76C11H10O4[M + H]+207.0650189.1636, 175.0388, 148.0517, 91.0547
260puerol A37.78C17H14O5[M + H]+299.0908284.0674, 256.0726, 239.0698, 95.0163
[M − H]297.0764281.0457, 256.0376, 239.0346, 151.0025
261biapigenin37.78C30H18O10[M + H]+539.0958522.9716, 387.0856, 286.0465, 184.0731
[M − H]537.0822521.0623, 417.0622, 375.0506, 331.0608
2622-methoxy-6-acetyl-7-methyljuglone37.79C14H12O5[M + H]+261.0754243.0648, 215.0699, 200.0466, 187.0754
[M − H]259.0608243.1414, 231.0657, 216.0422, 188.0471
263kudzusaponin SB137.79C53H86O22[M + H]+1075.5658943.5235, 751.4603, 437.3405, 189.1636
[M − H]1073.5519911.5006, 749.4489, 603.3903, 471.3480
264diosmetin37.81C16H12O6[M + H]+301.0701286.0468, 258.0523, 241.0491, 88.0762
[M − H]299.0557284.0325, 256.0372, 227.0344, 151.0030
265(-)-epiafzelechin37.82C15H14O5[M + H]+275.0906257.0795, 217.0492, 189.0544, 107.0495
[M − H]273.0766258.0532, 230.0579, 215.0343, 135.0076
266licoricesaponin E237.85C42H60O16[M + H]+821.3938764.7926, 451.3198, 173.1327, 121.1012
267methyl glycyrrhizate37.86C43H64O16[M + H]+837.4255764.7705, 663.3716, 469.3308, 141.0181
268licoisoflavanone37.88C20H18O6[M + H]+355.1169337.1062, 299.0546, 179.0337, 123.0441
[M − H]353.1027335.0921, 312.0276, 217.0863, 189.0913
2693-methoxyherbacetin37.89C16H12O7[M + H]+317.0647302.0411, 237.0383, 153.0181, 127.0391
[M − H]315.0506300.0272, 272.0323, 188.0482, 112.9845
270erybacin B37.89C19H18O5[M + H]+327.1222271.0597, 117.0367, 95.0163, 77.0059
[M − H]325.1076309.2072, 297.0051, 197.1174, 171.1016
271soyasaponin I37.91C48H78O18[M + H]+943.5241797.4680, 764.6400, 423.3611, 85.0289
[M − H]941.5101912.5775, 763.8070, 615.3933, 438.3518
272licoricesaponin B237.93C42H64O15[M + H]+809.4296633.3988, 439.3564, 285.2223, 107.0859
[M − H]807.4168763.8304, 520.9705, 351.0565, 193.0345
273ephedrannin B37.94C30H20O10[M + H]+541.1106415.0806, 389.1013, 171.0287, 153.0181
[M − H]539.0981521.2609, 507.2097, 396.8802, 266.9637
274medicarpin37.97C16H14O4[M + H]+271.0960253.0497, 229.0855, 197.0594, 121.0285
* 275kaempferol 37.99C15H10O6[M + H]+287.0542271.0556, 254.0524, 226.0577, 153.0181
[M − H]285.0402268.0364, 257.0451, 241.0497, 211.0396
276glyasperin D38.04C22H26O5[M + H]+371.1844315.1218, 303.1219, 167.0701, 123.0441
277isoliquiritigenin38.09C15H12O4[M + H]+257.0805239.0698, 211.0755, 147.0440, 137.0232
[M − H]255.0660153.0182, 135.0077, 119.0489, 91.0175
2783′-hydroxydaidzein38.10C15H10O5[M + H]+271.0594253.0492, 243.0647, 215.0702, 153.0180
279kaikasaponin III38.15C48H78O17[M + H]+927.5280767.4596, 635.4124, 437.3406, 203.1794
2803,4,3′,4′-tetrahydroxychalcone38.16C15H12O5[M + H]+273.0752245.0811, 171.0285, 153.0181, 123.0442
281araboglycyrrhizin38.21C41H62O14[M + H]+779.4183/
282macranthoside A38.22C47H76O17[M + H]+913.5130781.4694, 617.4044, 423.3610, 141.0180
[M − H]911.5004749.4489, 603.3895, 471.3479, 423.3271
283hydnocarpin38.23C25H20O9[M + H]+465.1173447.1065, 286.0468, 257.0440, 147.0438
[M − H]463.1033447.2420, 285.0402, 255.0293, 208.9755
284puerariafuran38.24C16H12O5[M + H]+285.0751270.0512, 253.0493, 242.0569, 211.0754
285vestitol38.29C16H16O4[M + H]+273.1118255.1017, 227.1794, 137.0233, 121.0285
286homobutein38.31C16H14O5[M + H]+287.0908269.0440, 241.0491, 185.0592, 151.0389
287glycycoumarin38.34C21H20O6[M + H]+369.1324351.1228, 297.0746, 193.0494, 165.0545
288licoricesaponin J238.34C42H64O16[M + H]+825.4243764.8267, 455.3507, 189.1634, 141.0181
[M − H]823.4119763.2627, 473.1696, 351.0565, 193.0342
289licoricesaponin C238.35C42H62O15[M + H]+807.4139764.8302, 678.4443, 631.3784, 437.3406
[M − H]805.4016763.3167, 453.3408, 351.0559, 193.0349
2903′-hydroxy-4′-O-methylglabridin38.39C21H22O5[M − H]353.1393/
291blumenol A38.39C13H20O3[M + H]+225.1483210.1245, 167.9932, 114.0913, 95.0860
292dihydrodaidzein38.40C15H12O4[M + H]+257.0805239.0690, 229.0851, 211.0744, 147.0439
* 293formononetin 38.44C16H12O4[M + H]+269.0803254.0567, 213.0907, 118.0414, 95.0859
[M − H]267.0660252.0423, 225.0553, 195.0443, 132.0204
294lupiwighteone38.44C20H18O5[M + H]+339.1219322.2484, 283.0594, 271.0597, 209.1646
* 295quercetin 38.48C15H10O7[M + H]+303.0492285.0393, 257.0439, 229.0493, 153.0181
[M − H]301.0351283.0246, 255.0298, 227.0342, 138.0312
296glycyuralin E38.52C21H22O6[M + H]+371.1480353.1372, 339.1213, 285.0749, 167.0695
[M − H]369.1341311.0558, 229.0865, 206.0213, 139.0390
297estradiol38.53C18H24O2[M + H]+273.1845255.1007, 248.4772, 153.0180, 119.0856
298licoflavone A38.57C20H18O4[M + H]+323.1272280.0719, 267.0648, 254.0570, 239.0700
299irisolidone38.67C17H14O6[M + H]+315.0856297.0751, 226.0619, 199.0751, 153.0182
[M − H]313.0715295.0610, 270.0479, 224.0468, 167.2795
3001-methoxyphaseollidin38.68C21H22O5[M + H]+355.1532299.0548, 221.1169, 165.0546, 123.0441
[M − H]353.1393338.1162, 292.0359, 253.0505, 150.0311
301cupressuflavone38.69C30H18O10[M + H]+539.0958497.0887, 403.0439, 377.0645, 335.0543
[M − H]537.0822521.2611, 505.2242, 375.0520, 266.9636
302licoarylcoumarin38.69C21H20O6[M + H]+369.1324313.0699, 271.0596, 243.0647, 147.0439
303isoformononetin38.71C16H12O4[M + H]+269.0803251.0697, 241.0828, 237.0537, 107.0855
[M − H]267.0660252.0424, 241.0503, 197.0604, 96.9588
304kakkasaponin I38.72C47H76O16[M − H]895.5067877.5569, 763.6689, 678.9240, 509.4025
305β-amyrone38.76C30H48O[M + H]+425.3767/
306tuberosin38.82C20H18O5[M − H]337.1080309.0397, 281.0454, 254.0585, 203.1068
307glicophenone38.83C20H22O6[M + H]+359.1482301.0710, 283.0596, 175.0389, 153.0545
[M − H]357.1341247.0974, 232.0737, 189.0186, 109.0282
3087,4′-dihydroxy-3′-methoxyisoflavan38.83C16H16O4[M + H]+273.1118245.1898, 163.0750, 137.0596, 123.0442
[M − H]271.0973241.0499, 225.0550, 197.0596, 181.0652
3092′,3′-dihydro-7,7′-dihydroxy-5′-methoxy-2′,2′-dimethyl[3,6′-bi-4H-1-benzopyran]-4-one38.89C21H20O6[M + H]+369.1324313.0699, 285.0752, 270.0518, 243.0648
[M − H]367.1182337.0717, 309.0403, 256.0376, 203.0708
3103,4-didehydroglabridin38.98C20H18O4[M + H]+323.1272267.0648, 255.0647, 239.0698, 95.0163
[M − H]321.1129277.0503, 265.0505, 252.0424, 149.0598
311glyasperin C38.98C21H24O5[M + H]+357.1689301.1063, 221.1165, 165.0546, 123.0441
[M − H]355.1547298.0483, 229.0865, 174.0313, 125.0232
312neouralenol39.01C20H18O7[M + H]+371.1119315.0856, 268.2631, 183.0287, 165.0181
[M − H]369.0976351.0870, 310.0444, 283.0975, 193.0135
313phaseol39.05C20H16O5[M + H]+337.1065319.0956, 283.0596, 255.0646, 163.0388
314eurycarpin A39.08C20H18O5[M + H]+339.1219322.2490, 293.0592, 163.0388, 114.0915
[M − H]337.1080293.1182, 268.0376, 224.0470, 135.0077
315glyurallin A39.10C21H20O5[M − H]351.1236335.0564, 323.0929, 308.0317, 191.0711
316sophoraisoflavone A39.10C20H16O6[M + H]+353.1014335.0906, 325.1064, 283.02599, 191.0343
317licocoumarone39.11C20H20O5[M + H]+341.1379323.1265, 267.0648, 209.1646, 114.0915
[M − H]339.1233296.0677, 268.0377, 219.0656, 119.0490
318dehydrovomifoliol39.18C13H18O3[M + H]+223.1326135.1167, 107.0858, 81.0704
[M − H]221.1177205.1224, 164.0829, 148.0516, 118.5610
319fallacinol39.20C16H12O6[M + H]+301.0701283.0598, 269.0440, 227.0701, 199.0752
[M − H]299.0557284.0317, 255.0649, 240.0422, 212.0468
320genkwanin39.23C16H12O5[M + H]+285.0751270.0519, 253.0494, 225.0542, 137.0233
[M − H]283.0609268.0378, 240.0423, 186.6367, 118.3947
321kanzonol U39.25C19H16O4[M + H]+309.1115/
3222,3-dehydrokievitone39.26C20H18O6[M + H]+355.1169337.1066, 229.0854, 179.0338, 123.0442
[M − H]353.1027284.0319, 243.1021, 216.0419, 201.0915
3232,3,4-trimethyl-5-phenyloxazolidine39.28C12H17NO[M + H]+192.1382133.1011, 119.0493, 91.0547
324pratensein39.29C16H12O6[M + H]+301.0701283.0598, 269.0440, 227.0701, 199.0752
325lupenone39.32C30H48O[M + H]+425.3767/
326corylifol B39.35C20H20O5[M + H]+341.1379267.0648, 209.1646, 114.0916
[M − H]339.1233269.0453, 233.0818, 187.1117, 167.0340
3274-O-methylglabridin39.36C21H22O4[M + H]+339.1586322.2483, 209.1644, 114.0916, 95.0163
328luteone39.43C20H18O6[M + H]+355.1169338.3415, 299.0540, 267.0284, 239.0334
[M − H]353.1027257.0063, 227.0702, 165.0179, 125.0232
329glyinflanin H39.43C19H16O4[M + H]+309.1115291.1940, 223.0596, 113.0600, 95.0163
330butyl octyl phthalate39.44C20H30O4[M − H]333.2062293.0450, 281.0451, 252.0419, 201.0916
331glycyrrhetic acid 3-O-glucuronide39.45C36H54O10[M + H]+647.3769453.3359, 357.2422, 285.2203, 121.1012
[M − H]645.3641580.9614, 521.2628, 469.3308, 322.6431
332glyasperin A39.46C25H26O6[M − H]421.1654403.9289, 353.1024, 312.0273, 280.0371
3331-methoxyphaseollin39.47C21H20O5[M − H]351.1236294.4448, 243.1023, 227.0710, 125.0232
334licochalcone D39.53C21H22O5[M + H]+355.1532338.3410, 311.0542, 193.0494, 135.0440
335wighteone39.54C20H18O5[M + H]+339.1219321.2453, 311.0548, 209.1647, 114.0916
[M − H]337.1080321.0765, 309.1127, 253.0500, 209.0596
3362′-O-demethylbidwillol B39.54C19H18O4[M + H]+311.1269293.1166, 278.0932, 263.0694, 95.0163
337glycyrol39.63C21H18O6[M + H]+367.1168337.0697, 227.0702, 167.0337, 91.0547
[M − H]365.1026335.0560, 307.0247, 295.0245, 254.0220
3383-hydroxyglabrol39.65C25H28O5[M − H]407.1863387.2756, 371.2437, 150.9878, 93.0001
339kumatakenin39.72C17H14O6[M + H]+315.0856255.0647, 227.0699, 153.0180, 60.0452
[M − H]313.0715295.0606, 283.0609, 267.0663, 239.0712
340eriodictyol39.73C15H12O6[M + H]+289.0697271.0959, 229.0855, 163.0388, 153.0181
[M − H]287.0559272.0326, 258.0119, 216.0419, 155.1432
341licoflavone B39.74C25H26O4[M + H]+391.1897358.2020, 323.1262, 267.0647, 195.0430
342gancaonin U39.76C24H28O4[M − H]379.1908/
343dehydroglyceollin I39.78C20H16O4[M + H]+321.1115306.0873, 187.0752, 159.0803, 147.0439
[M − H]319.0970303.0658, 289.0504, 243.0657, 161.0233
344tectorigenin39.80C16H12O6[M + H]+301.0701283.0598, 255.0646, 227.0698, 199.0748
[M − H]299.0557284.0317, 267.0301, 240.0422, 212.0468
345derrone39.87C20H16O5[M + H]+337.1065309.1118, 267.0650, 225.0545, 91.0549
[M − H]335.0921319.0606, 305.0436, 278.3866, 158.8393
346abyssinone II39.91C20H20O4[M + H]+325.1429269.0804, 241.0850, 135.0440, 95.0163
[M − H]323.1283308.1031, 201.0914, 187.0761, 135.0441
347corylin39.96C20H16O4[M + H]+321.1115306.0870, 279.0649, 265.0488, 137.0232
348ephedradine A39.98C28H36N4O4[M + H]+493.2800465.2870, 394.2122, 219.1489, 120.0809
349kudzusapogenol A40.02C30H50O5[M − H]489.3575/
350kanzonol Y40.04C25H30O5[M − H]409.2015391.2520, 373.2436, 235.0971, 177.0912
351kanzonol W40.11C20H16O5[M + H]+337.1065321.1119, 281.0443, 253.0488, 163.0388
[M − H]335.0921320.0677, 291.1024, 199.0758, 135.0078
352isoglycyrol40.13C21H18O6[M + H]+367.1168349.1074, 325.0702, 291.0630, 167.0338
[M − H]365.1026349.0708, 309.0393, 216.0423, 192.0055
353licoisoflavone B40.17C20H16O6[M + H]+353.1014311.0558, 299.0544, 153.0180, 95.0163
[M − H]351.0869337.0660, 283.0974, 241.0864, 199.0756
3546,8-diprenylgenistein40.26C25H26O5[M + H]+407.1844339.1198, 283.0596, 237.0534, 91.0547
[M − H]405.1704387.2755, 371.2439, 281.0460, 150.9878
355parvisoflavone A40.29C20H16O6[M + H]+353.1014335.0906, 325.1068, 191.0328, 153.0180
356licoricidin40.30C26H32O5[M + H]+425.2315369.1328, 313.0703, 175.0388, 139.0389
357kanzonol C40.31C25H28O4[M + H]+393.2051376.1539, 329.0271, 268.0656, 215.0684
* 358emodin 40.43C15H10O5[M + H]+271.0594243.0650, 229.0493, 197.0596, 173.0591
[M − H]269.0450241.0503, 225.0551, 197.0597, 181.0647
359apigenin40.43C15H10O5[M + H]+271.0594229.0495, 201.0543, 173.0597, 91.0548
[M − H]269.0450241.0501, 225.0551, 210.0314, 181.0644
360genistein40.44C15H10O5[M + H]+271.0594243.0642, 229.0495, 201.0543, 371.0596
[M − H]269.0450241.0504, 225.0550, 197.0597, 181.0647
361lupalbigenin40.45C25H26O5[M + H]+407.1844373.1034, 283.0597, 213.0541, 149.0232
362angustone A40.51C25H26O6[M − H]421.1654404.9251, 352.0951, 269.0453, 201.0913
363dehydroglyasperin D40.59C22H24O5[M + H]+369.1688313.0700, 295.0597, 197.0441, 179.0337
[M − H]367.1545351.9669, 322.9651, 269.0455, 240.0420
364corymbosin40.63C19H18O7[M + H]+359.1118329.0648, 313.0695, 269.0804, 95.0163
365euchrenone a540.64C25H26O4[M + H]+391.1897358.2020, 267.0647, 239.0701, 149.0236
[M − H]389.1751319.0978, 298.0473, 266.0580, 195.1691
366paratocarpin L40.75C25H28O5[M − H]407.1863/
367diisobutyl phthalate40.79C16H22O4[M + H]+279.1583167.0340, 149.0232, 121.0284, 57.0706
[M − H]277.1438245.3889, 193.7951, 134.0361, 121.0283
368glyurallin B40.79C25H26O6[M + H]+423.1793/
369angustone B40.82C25H24O6[M + H]+421.1637365.1014, 309.0388, 281.0439, 140.0342
[M − H]419.1497402.9280, 375.0866, 363.0872, 308.0323
370licoagrocarpin40.93C21H22O4[M + H]+339.1586/
371palmitic acid41.04C16H32O2[M − H]255.2322170.3186, 162.0524, 116.9273, 74.0233
3722′-hydroxyisolupalbigenin41.11C25H26O6[M − H]421.1654404.9261, 363.0872, 227.0711, 193.0862
373butesuperin A41.15C26H22O8[M + H]+463.1375445.1275, 283.0597, 255.0647, 161.0594
* 374luteolin 41.16C15H10O6[M − H]285.0402268.9432, 257.0451, 242.0536, 196.0504
375sophoracoumestan A41.19C20H14O5[M + H]+335.0909320.0672, 307.0952, 292.0722, 137.0237
* 376glycyrrhetic acid 41.41C30H46O4[M + H]+471.3456317.2107, 269.0803, 189.1636, 121.1013
3778-prenylphaseollinisoflavan41.74C25H28O4[M + H]+393.2051339.0701, 269.0807, 167.0337, 149.0232
[M − H]391.1912289.1443, 271.1335, 187.0393, 119.0490
378stearic acid41.75C18H36O2[M − H]283.2635/
379puerarol41.75C25H24O5[M + H]+405.1683319.0950, 281.0439, 209.0591, 171.0138
[M − H]403.1546387.2754, 371.2439, 333.0764, 150.9877
380hederagenin41.79C30H48O4[M + H]+473.3615310.8371, 189.1640, 133.1015, 59.0162
[M − H]471.3470429.2146, 403.1549, 319.0597, 280.0376
*: Verified with its reference standard.
Table 2. Quantitative method validation results of YPG.
Table 2. Quantitative method validation results of YPG.
Main
Components
Calibration
Curve
Linear
Range
(mg/mL)
R2LOD (μg/mL)LOQ (μg/mL)Repeatability RSD (%)Stability RSD (%)Intermediate Precision
(%, n = 12)
chlorogenic acidy = 12,757x – 376.290.05–2.000.99912.136.471.18%1.37%2.82%
puerariny = 37,995x + 303.180.05–1.600.99901.855.611.23%2.60%2.00%
3′-methoxypuerariny = 25,755x + 64.0340.04–1.500.99981.263.832.94%1.09%2.81%
polydatiny = 9872.5x – 89.0810.03–1.000.99921.253.802.27%3.10%3.45%
glycyrrhizic acidy = 7190.5x + 101.330.02–1.000.99940.772.332.03%1.30%3.89%
emodiny = 33,371x + 138.830.01–0.500.99920.381.141.26%3.59%3.53%
Table 3. Quantitative analysis, total phenol content, and DPPH radical scavenging results of YPG.
Table 3. Quantitative analysis, total phenol content, and DPPH radical scavenging results of YPG.
Main ComponentsSample
S1 (mg/g)
Sample
S2 (mg/g)
Sample
S3 (mg/g)
Content (mg/g)Scavenging Percentage of
DPPH Radical (%)
chlorogenic acid33.1633.7235.5634.15 ± 1.2559.2
puerarin27.3028.1529.4628.30 ± 1.0949.6
3′-methoxypuerarin9.739.669.509.63 ± 0.1258.9
polydatin10.2910.7611.4310.83 ± 0.5758.0
glycyrrhizic acid3.182.853.943.33 ± 0.5654.6
emodin4.154.483.804.14 ± 0.3430.3
total phenol144.11147.89147.99144.66 ± 2.21/
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yalkun, I.; Wan, H.; Ye, L.; Yu, L.; He, Y.; Li, C.; Wan, H. Qualitative and Quantitative Analysis of Chemical Components in Yinhua Pinggan Granule with High-Performance Liquid Chromatography Coupled with Q-Exactive Mass Spectrometry. Molecules 2024, 29, 2300. https://doi.org/10.3390/molecules29102300

AMA Style

Yalkun I, Wan H, Ye L, Yu L, He Y, Li C, Wan H. Qualitative and Quantitative Analysis of Chemical Components in Yinhua Pinggan Granule with High-Performance Liquid Chromatography Coupled with Q-Exactive Mass Spectrometry. Molecules. 2024; 29(10):2300. https://doi.org/10.3390/molecules29102300

Chicago/Turabian Style

Yalkun, Imranjan, Haofang Wan, Lulu Ye, Li Yu, Yu He, Chang Li, and Haitong Wan. 2024. "Qualitative and Quantitative Analysis of Chemical Components in Yinhua Pinggan Granule with High-Performance Liquid Chromatography Coupled with Q-Exactive Mass Spectrometry" Molecules 29, no. 10: 2300. https://doi.org/10.3390/molecules29102300

APA Style

Yalkun, I., Wan, H., Ye, L., Yu, L., He, Y., Li, C., & Wan, H. (2024). Qualitative and Quantitative Analysis of Chemical Components in Yinhua Pinggan Granule with High-Performance Liquid Chromatography Coupled with Q-Exactive Mass Spectrometry. Molecules, 29(10), 2300. https://doi.org/10.3390/molecules29102300

Article Metrics

Back to TopTop