Development of a Multiplexing Injector for Gas Chromatography for the Time-Resolved Analysis of Volatile Emissions from Lithium-Ion Batteries
Abstract
:1. Introduction
- (a)
- The sample is introduced at irregular intervals into the separation system according to a pre-defined so-called ‘pseudo-random binary sequence’ (PRBS) consisting of only “0” and “1” values where the former codes no sample introduction, while the latter stands for the introduction of sample;
- (b)
- The interval of sample introduction (I) is much shorter than the interval between injections, the period T, and also the width of each individual signal (Figure 1);
- (c)
- Chromatographic conditions must be stationary so that each injected sample is exposed to exactly the same separation conditions. This means in practice that separations have to be performed in the isocratic (for HPLC) or in the isothermal mode (for GC), which limits its practical applicability to samples with a relatively narrow polarity range (HPLC) or boiling point distribution (GC).
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Analytical Procedure
2.4. Multiplex Injector Configurations
3. Results
3.1. Investigation of Experimental Setup
3.2. Investigation of Instrumental Parameters
3.3. Comparison to a 6-Port Switching Valve
3.4. Application to the Volatile Emissions from Lithium-Ion Batteries
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fowlis, I.A. Gas Chromatography, 2nd ed.; Analytical Chemistry by Open Learning; John Wiley & Sons: Chichester, UK, 1995. [Google Scholar]
- Shinada, K.; Horiike, S.; Uchiyama, S.; Takechi, R.; Nishimoto, T. Development of New Ionization Detector for Gas Chromatography by Applying Dielectric Barrier Discharge; Shimadzu Review: Kyoto, Japan, 2012. [Google Scholar]
- Jo, S.H.; Kim, K.H. The applicability of a large-volume injection (LVI) system for quantitative analysis of permanent gases O2 and N2 using a gas chromatograph/barrier discharge ionization detector. Environ. Monit. Assess. 2017, 189, 317. [Google Scholar] [CrossRef] [PubMed]
- Frink, L.A.; Armstrong, D.W. The utilisation of two detectors for the determination of water in honey using headspace gas chromatography. Food Chem. 2016, 205, 23–27. [Google Scholar] [CrossRef]
- Weatherly, C.A.; Woods, R.M.; Armstrong, D.W. Rapid Analysis of Ethanol and Water in Commercial Products Using Ionic Liquid Capillary Gas Chromatography with Thermal Conductivity Detection and/or Barrier Discharge Ionization Detection. J. Agric. Food Chem. 2014, 62, 1832–1838. [Google Scholar] [CrossRef]
- Ueta, I.; Nakamura, Y.; Fujimura, K.; Kawakubo, S.; Saito, Y. Determination of gaseous formic and acetic acids by a needle-type extraction device coupled to a gas chromatography-barrier discharge ionization detector. Chromatographia 2017, 80, 151–156. [Google Scholar] [CrossRef]
- Pascale, R.; Caivano, M.; Buchicchio, A.; Mancini, I.M.; Bianco, G.; Caniani, D. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system. J. Chromatogr. A 2017, 1480, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Franchina, F.A.; Maimone, M.; Sciarrone, D.; Purcaro, G.; Tranchida, P.Q.; Mondello, L. Evaluation of a novel helium ionization detector within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2015, 1402, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Antoniadou, M.; Zachariadis, G.A.; Rosenberg, E. Investigating the performance characteristics of the barrier discharge ionization detector and comparison to the flame ionization detector for the gas chromatographic analysis of volatile and semivolatile organic compounds. Anal. Lett. 2019, 52, 2822–2839. [Google Scholar] [CrossRef]
- Schmiegel, J.-P.; Leißing, M.; Weddeling, F.; Horsthemke, F.; Reiter, J.; Fan, Q.; Nowak, S.; Winter, M.; Placke, T. Novel In Situ Gas Formation Analysis Technique Using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port. J. Electrochem. Soc. 2020, 167, 060516. [Google Scholar] [CrossRef]
- Leißing, M.; Winter, M.; Wiemers-Meyer, S.; Nowak, S. A method for quantitative analysis of gases evolving during formation applied on LiNi0.6Mn0.2Co0.2O2‖natural graphite lithium ion battery cells using gas chromatography—Barrier discharge ionization detector. J. Chromatogr. A 2020, 1622, 461122. [Google Scholar] [CrossRef]
- Szumski, M.; Buszewski, B. Miniaturization in Separation Techniques. In Handbook of Bioanalytics; Buszewski, B., Baranowska, I., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Lehotay, S.J. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography. Anal. Chim. Acta 2015, 899, 13–22. [Google Scholar] [CrossRef]
- Boeker, P.; Leppert, J. Flow Field Thermal Gradient Gas Chromatography. Anal. Chem. 2015, 87, 9033–9041. [Google Scholar] [CrossRef]
- Trapp, O. Boosting the Throughput of Separation Techniques by “Multiplexing”. Angew. Chem. Intern. Ed. 2007, 46, 5609–5613. [Google Scholar] [CrossRef]
- Graff, D.K. Fourier and Hadamard: Transforms in Spectroscopy. J. Chem. Educ. 1995, 72, 287–378. [Google Scholar] [CrossRef]
- Kaljurand, M.; Küllik, E. Application of the Hadamard transform to gas chromatograms of continuously sampled mixtures. Chromatographia 1978, 11, 328–330. [Google Scholar] [CrossRef]
- Krkošová, Ž.; Kubinec, R.; Jurdáková, H.; Blaško, J.; Ostrovský, I.; Soják, L. Gas chromatography with ballistic heating and ultrafast cooling of column. Chem. Pap. 2008, 62, 135–140. [Google Scholar] [CrossRef]
- Wunsch, M.R.; Lehnig, R.; Trapp, O. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography. Anal. Chem. 2017, 89, 4038–4045. [Google Scholar] [CrossRef]
- Antoniadou, M. Development and Evaluation of a Fast Multiplexing Injector for GC Analysis: Application to the Analysis of Lithium Ion Battery Volatiles. Ph.D. Thesis, TU Wien, Vienna, Austria, 2021. [Google Scholar]
- Siegle, A.F.; Trapp, O. Development of a Straightforward and Robust Technique to Implement Hadamard Encoded Multiplexing to High-Performance Liquid Chromatography. Anal. Chem. 2014, 86, 10828–10833. [Google Scholar] [CrossRef]
- Siegle, A.F.; Trapp, O. Hyphenation of Hadamard Encoded Multiplexing Liquid Chromatography and Circular Dichroism Detection to Improve the Signal-to-Noise Ratio in Chiral Analysis. Anal. Chem. 2015, 87, 11932–11934. [Google Scholar] [CrossRef]
- Kaneta, T.; Yamaguchi, Y.; Imasaka, T. Hadamard Transform Capillary Electrophoresis. Anal. Chem. 1999, 71, 5444–5446. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, C.-H.; Chang, H.-W.; Kaneta, T.; Lin, C.-H. Design and application of Hadamard-injectors coupled with gas and supercritical fluid sample collection systems in Hadamard transform-gas chromatography/mass spectrometry. J. Chromatogr. A 2010, 1217, 755–760. [Google Scholar] [CrossRef]
- Cheng, Y.-K.; Lin, C.-H.; Kuo, S.; Yang, J.; Hsiung, S.-Y.; Wang, J.-L. Applications of Hadamard transform-gas chromatography/mass spectrometry for the detection of hexamethyldisiloxane in a wafer cleanroom. J. Chromatogr. A 2012, 1220, 143–146. [Google Scholar] [CrossRef]
- Cheng, Y.-K.; Lin, C.-H.; Kaneta, T.; Imasaka, T. Applications of Hadamard transform-gas chromatography/mass spectrometry to online detection of exhaled breath after drinking or smoking. J. Chromatogr. A 2010, 1217, 5274–5278. [Google Scholar] [CrossRef]
- Fan, G.-T.; Yang, C.-L.; Lin, C.-H.; Chen, C.-C.; Shih, C.-H. Applications of Hadamard transform-gas chromatography/mass Spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta 2014, 120, 386–390. [Google Scholar] [CrossRef]
- Wunsch, M.R.; Reiter, A.M.C.; Schuster, F.S.; Lehnig, R.; Trapp, O. Continuous online process analytics with multiplexing gas chromatography by using calibrated convolution matrices. J. Chromatogr. A 2019, 1595, 180–189. [Google Scholar] [CrossRef]
- Wunsch, M.R.; Lehnig, R.; Janke, C.; Trapp, O. Online High Throughput Measurements for Fast Catalytic Reactions Using Time-Division Multiplexing Gas Chromatography. Anal. Chem. 2018, 90, 9256–9263. [Google Scholar] [CrossRef]
- Stenzel, Y.P.; Horsthemke, F.; Winter, M.; Nowak, S. Chromatographic Techniques in the Research Area of Lithium Ion Batteries: Current State-of-the-Art. Separations 2019, 6, 26. [Google Scholar] [CrossRef]
- Geng, L.; Wood, D.L.; Lewis, S.A.; Connatser, R.M.; Li, M.; Jafta, C.J.; Belharouak, I. High accuracy in-situ direct gas analysis of Li-ion batteries. J. Power Sources 2020, 466, 28211. [Google Scholar] [CrossRef]
Interval Time [s] | Peak Area 1 | Peak Height 1 | Asymmetry 2 | |||
---|---|---|---|---|---|---|
Mean | RSD% | Mean | RSD% | Mean | RSD% | |
2 | 693,516 | 5.6 | 338,558 | 6.7 | - | - |
3 | 700,262 | 2.2 | 297,074 | 0.5 | - | - |
4 | 698,850 | 0.9 | 287,342 | 0.8 | - | - |
5 | 694,628 | 0.8 | 286,460 | 1.2 | 0.75 | 1.5 |
6 | 672,199 | 3.0 | 281,610 | 1.3 | 1.13 | 2.8 |
7 | 667,479 | 1.0 | 281,128 | 0.8 | 1.14 | 1.5 |
8 | 680,908 | 0.5 | 285,048 | 0.4 | 1.16 | 0.0 |
9 | 681,597 | 1.0 | 283,220 | 1.1 | 1.13 | 3.2 |
10 | 797,033 | 2.0 | 330,935 | 2.7 | 1.11 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniadou, M.; Schierer, V.; Fontana, D.; Kahr, J.; Rosenberg, E. Development of a Multiplexing Injector for Gas Chromatography for the Time-Resolved Analysis of Volatile Emissions from Lithium-Ion Batteries. Molecules 2024, 29, 2181. https://doi.org/10.3390/molecules29102181
Antoniadou M, Schierer V, Fontana D, Kahr J, Rosenberg E. Development of a Multiplexing Injector for Gas Chromatography for the Time-Resolved Analysis of Volatile Emissions from Lithium-Ion Batteries. Molecules. 2024; 29(10):2181. https://doi.org/10.3390/molecules29102181
Chicago/Turabian StyleAntoniadou, Maria, Valentin Schierer, Daniela Fontana, Jürgen Kahr, and Erwin Rosenberg. 2024. "Development of a Multiplexing Injector for Gas Chromatography for the Time-Resolved Analysis of Volatile Emissions from Lithium-Ion Batteries" Molecules 29, no. 10: 2181. https://doi.org/10.3390/molecules29102181
APA StyleAntoniadou, M., Schierer, V., Fontana, D., Kahr, J., & Rosenberg, E. (2024). Development of a Multiplexing Injector for Gas Chromatography for the Time-Resolved Analysis of Volatile Emissions from Lithium-Ion Batteries. Molecules, 29(10), 2181. https://doi.org/10.3390/molecules29102181