Titanium and Vanadium Complexes of Tridentate Phenoxy-Imine and Phenoxy-Amine Ligands and Their Application in the Ring-Opening Polymerization of Cyclic Esters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Complexes
2.2. Polymerization of Lactides
2.3. Polymerization of ε-Caprolactone
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Synthesis of Ligand Precursors
3.4. Synthesis of Complexes
3.5. Polymerization of Cyclic Esters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, N.; Hou, G.; Deng, X.; Zi, G.; Walter, M.D. Group 4 metal complexes with new chiral pincer NHC-ligands: Synthesis, structure and catalytic activity. Dalton Trans. 2014, 43, 8261–8272. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.J.; Li, C.Y.; Tsai, C.Y.; Ko, B.T. Titanium, zirconium and hafnium complexes bearing amino-benzotriazole phenolate ligands as efficient catalysts for ring-opening polymerization of lactides. Inorg. Chem. Commun. 2019, 109, 107561. [Google Scholar] [CrossRef]
- Chakraborty, D.; Rajashekhar, B.; Mandal, M.; Ramkumar, V. Group 4 metal complexes containing the salalen ligands: Synthesis, structural characterization and studies on the ROP of cyclic esters. J. Organometal. Chem. 2018, 871, 111–121. [Google Scholar] [CrossRef]
- Raina, N.; Pahwa, R.; Khosla, J.K.; Gupta, P.N.; Gupta, M. Polycaprolactone-based materials in wound healing applications. Polym. Bull. 2022, 79, 7041–7063. [Google Scholar] [CrossRef]
- Arbaoui, A.; Redshaw, C. Metal catalysts for ε-caprolactone polymerization. Polym. Chem. 2010, 1, 801–826. [Google Scholar] [CrossRef]
- Albertsson, A.C.; Varma, I.K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003, 4, 1466–1486. [Google Scholar] [CrossRef] [PubMed]
- Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar] [CrossRef]
- Jérôme, C.; Lecomte, P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Deliv. Rev. 2008, 60, 1056–1076. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef]
- Dash, T.K.; Konkimalla, V.B. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release 2012, 158, 15–33. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [PubMed]
- Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem. Rev. 2004, 104, 6147–6176. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H. Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 2005, 5, 569–597. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, P.R.; Dwyer, K.D.; Coulombe, K.L.K. Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS Appl. Bio Mater. 2022, 5, 2461–2480. [Google Scholar] [CrossRef]
- Cunha, B.L.C.; Bahú, J.O.; Xavier, L.F.; Crivellin, S.; de Souza, S.D.A.; Lodi, L.; Jardini, A.L.; Filho, R.M.; Schiavon, M.I.R.B.; Concha, V.O.C.; et al. Lactide: Production Routes, Properties, and Applications. Bioengineering 2022, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- de França, J.O.C.; da Silva Valadares, D.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers 2022, 14, 2317. [Google Scholar] [CrossRef] [PubMed]
- Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Sadeghianmaryan, A.; Jalalvand, M.; Hossain, M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int. J. Biol. Macromol. 2022, 218, 930–968. [Google Scholar] [CrossRef] [PubMed]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Archer, E.; Torretti, M.; Madbouly, S. Biodegradable polycaprolactone (PCL) based polymer and composites. Phys. Sci. Rev. 2021, 8, 000010151520200074. [Google Scholar] [CrossRef]
- Thakur, M.; Majid, I.; Hussain, S.; Nanda, V. Poly(ε-caprolactone): A potential polymer for biodegradable food packaging applications. Packag. Technol. Sci. 2021, 34, 449–461. [Google Scholar] [CrossRef]
- Thomas, C.M. Stereocontrolled ring-opening polymerization of cyclic esters: Synthesis of new polyester microstructures. Chem. Soc. Rev. 2010, 39, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25, 5023. [Google Scholar] [CrossRef] [PubMed]
- Mankaev, B.N.; Karlov, S.S. Metal Complexes in the Synthesis of Biodegradable Polymers: Achievements and Prospects. Materials 2023, 16, 6682. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-J.; Lee, W.; Kumar Ganta, P.; Chang, Y.-L.; Chang, Y.-C.; Chen, H.-Y. Multinuclear metal catalysts in ring-openng polymerization of ε caprolactone and lactide: Cooperative and electronic effects between metal centers. Coord. Chem. Rev. 2023, 475, 214847. [Google Scholar] [CrossRef]
- O’Keefe, B.J.; Hillmyer, M.A.; Tolman, W.B. Polymerization of lactide and related cyclic esters by discrete metal complexes. J. Chem. Soc. Dalton Trans. 2001, 15, 2215–2224. [Google Scholar] [CrossRef]
- Sauer, A.; Kapelski, A.; Fliedel, C.; Dagorne, S.; Kol, M.; Okuda, J. Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers. Dalton Trans. 2013, 42, 9007–9023. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.R.; Noroozi, N.; Hatzikiriakos, S.G.; Thomson, J.A.; Schafer, L.L. Titanium pyridonates and amidates: Novel catalysts for the synthesis of random copolymers. Chem. Commun. 2013, 49, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Ejfler, J.; Kobyłka, M.; Jerzykiewicz, L.B.; Sobota, P. Titanium complexes supported by bis(aryloxo) ligand: Structure and lactide polymerization activities. J. Mol. Catal. A Chem. 2006, 257, 105–111. [Google Scholar] [CrossRef]
- Ou, H.W.; Lu, W.Y.; Vandavasi, J.K.; Lin, Y.F.; Chen, H.Y.; Lin, C.C. Improvement in titanium complexes supported by Schiff bases in ring-opening polymerization of cyclic esters: ONO-tridentate Schiff bases. Polymer 2018, 140, 315–325. [Google Scholar] [CrossRef]
- Seo, C.C.Y.; Ahmed, M.; Oliver, A.G.; Durr, C.B. Titanium ONN-(phenolate) Alkoxide Complexes: Unique Reaction Kinetics for Ring-Opening Polymerization of Cyclic Esters. Inorg. Chem. 2021, 60, 19336–19344. [Google Scholar] [CrossRef]
- Durr, C.B.; Williams, C.K. New Coordination Modes for Modified Schiff Base Ti(IV) Complexes and Their Control over Lactone Ring-Opening Polymerization Activity. Inorg. Chem. 2018, 57, 14240–14248. [Google Scholar] [CrossRef]
- Nakornkhet, C.; Nanok, T.; Wattanathana, W.; Chuawong, P.; Hormnirun, P. Titanium Complexes of Salicylbenzoxazole and Salicylbenzothiazole Ligands for the Ring-Opening Polymerization of ε-Caprolactone and Substituted ε-Caprolactones and Their Copolymerizations. Inorg. Chem. 2022, 61, 7945–7963. [Google Scholar] [CrossRef]
- Lai, F.J.; Huang, T.W.; Chang, Y.L.; Chang, H.Y.; Lu, W.Y.; Ding, S.; Chen, H.Y.; Chiu, C.C.; Wu, K.H. Titanium complexes bearing 2,6-Bis(o-hydroxyalkyl)pyridine ligands in the ring-opening polymerization of L-Lactide and ε-caprolactone. Polymer 2020, 204, 122860. [Google Scholar] [CrossRef]
- Roymuhury, S.K.; Mandal, M.; Chakraborty, D.; Ramkumar, V. Homoleptic titanium and zirconium complexes exhibiting unusual Oiminol-metal coordination: Application in stereoselective ring-opening polymerization of lactide. Polym. Chem. 2021, 12, 3953–3967. [Google Scholar] [CrossRef]
- Jeong, Y.; Shin, M.; Seo, M.; Kim, H. Ligand-Controlled Stereoselective Synthesis of Heterotactic Polylactide with Titanium(IV) Complexes. Organometallics 2022, 41, 328–334. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, W.; Ma, W.; Han, F.; Song, W. Preparation of titanium complexes containing unsymmetric N2O2-ligands and their catalytic properties for polymerization of rac-lactide. Polymer 2018, 153, 445–452. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, J.; Zhao, H.; Huang, H.; Zheng, J.; Wang, L.; Sun, J.; Zhang, Y.; Cao, Z. Titanium complexes bearing amine bis(phenolate) ligands: Synthesis, structure and catalysis in ring-opening polymerization of lactide. Appl. Organometal. Chem. 2017, 31, e3688. [Google Scholar] [CrossRef]
- Duan, R.; Qu, Z.; Pang, X.; Zhang, Y.; Sun, Z.; Zhang, H.; Bian, X.; Chen, X. Ring-Opening Polymerization of Lactide Catalyzed by Bimetallic Salen-Type Titanium Complexes. Chin. J. Chem. 2017, 35, 640–644. [Google Scholar] [CrossRef]
- Jenkins, D.T.; Fazekas, E.; Patterson, S.B.H.; Rosair, G.M.; Vilela, F.; McIntosh, R.D. Polymetallic Group 4 Complexes: Catalysts for the Ring Opening Polymerisation of rac-Lactide. Catalysts 2021, 11, 551. [Google Scholar] [CrossRef]
- Upitak, K.; Wattanathana, W.; Nanok, T.; Chuawong, P.; Hormnirun, P. Titanium complexes of pyrrolylaldiminate ligands and their exploitation for the ring-opening polymerization of cyclic esters. Dalton Trans. 2021, 50, 10964–10981. [Google Scholar] [CrossRef] [PubMed]
- Białek, M.; Fryga, J.; Spaleniak, G.; Dziuk, B. Ring opening polymerization of ε-caprolactone initiated by titanium and vanadium complexes of ONO-type schiff base ligand. J. Polym. Res. 2021, 28, 79. [Google Scholar] [CrossRef]
- Elsegood, M.R.J.; Clegg, W.; Redshaw, C. Vanadium Complexes Derived from O,N,O-tridentate 6-bis(o-hydroxyalkyl/aryl)pyridines: Structural Studies and Use in the Ring-Opening Polymerization of ε-Caprolactone and Ethylene Polymerization. Catalysts 2023, 13, 988. [Google Scholar] [CrossRef]
- Clowes, L.; Walton, M.; Redshaw, C.; Chao, Y.; Walton, A.; Elo, P.; Sumerinc, V.; Hughes, D.L. Vanadium(III) phenoxyimine complexes for ethylene or ε-caprolactone polymerization: Mononuclear versus binuclear pre-catalysts. Catal. Sci. Technol. 2013, 3, 152–160. [Google Scholar] [CrossRef]
- Dubey, R.K.; Dwivedi, N.; Singh, A.P. Synthesis, reactions, physicochemical characterisation and biological studies of titanium(IV) Schiff base complexes. J. Indian Chem. Soc. 2013, 90, 285–294. [Google Scholar]
- Plitt, P.; Pritzkow, H.; Krämer, R. Biphenyl derived Schiff-base vanadium(V) complexes with pendant OH-groups—Structure, characterization and hydrogen peroxide mediated sulfide oxygenation. Dalton Trans. 2004, 15, 2314–2320. [Google Scholar] [CrossRef]
- Ma, H.; Okuda, J. Kinetics and Mechanism of L-Lactide Polymerization by Rare Earth Metal Silylamido Complexes: Effect of Alcohol Addition. Macromolecules 2005, 38, 2665–2673. [Google Scholar] [CrossRef]
- Deivasagayam, D.; Peruch, F. Titanium complexes based on aminodiol ligands for the ring opening polymerization of L- and D,L-lactide. Polymer 2011, 52, 4686–4693. [Google Scholar] [CrossRef]
- Kim, Y.; Verkade, J.G. A Tetrameric Titanium Alkoxide as a Lactide Polymerization Catalyst. Macromol. Rapid Commun. 2002, 23, 917–921. [Google Scholar] [CrossRef]
- Kasperczyk, J.E. Microstructure Analysis of Poly(lactic acid) Obtained by Lithium tert-Butoxide Initiator. Macromolecules 1995, 28, 3937–3939. [Google Scholar] [CrossRef]
- Bero, M.; Kasperczyk, J.; Jedlinski, Z.J. Coordination polymerization of lactides, 1 Structure determination of obtained polymers. Makromol. Chem. 1990, 191, 2287–2296. [Google Scholar] [CrossRef]
- Thakur, A.M.; Kean, R.T.; Hall, E.S.; Kolstad, J.J.; Lindgren, T.A.; Doscotch, M.A.; Siepmann, J.I.; Munson, E.J. High-Resolution 13C and 1H Solution NMR Study of Poly(lactide). Macromolecules 1997, 30, 2422–2428. [Google Scholar] [CrossRef]
- Schmid, M.; Guillaume, S.M.; Roesky, P.W. β-Diketiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of ε-Caprolactone and Trimethylene Carbonate. Organometallics 2014, 33, 5392–5401. [Google Scholar] [CrossRef]
- Dakshinamoorthy, D.; Peruch, F. Titanium Complexes Based on Aminodiol Ligands for the Ring-Opening Polymerization of ε-Caprolactone, rac-β-Butyrolactone, and Trimethylene Carbonate. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 5176–5185. [Google Scholar] [CrossRef]
- Gupta, B.; Geeta; Ray, A.R. Preparation of poly(ε-caprolactone)/poly(ε-caprolactone-co-lactide) (PCL/PLCL) blend filament by melt spinning. J. Appl. Polym. Sci. 2012, 123, 1944–1950. [Google Scholar] [CrossRef]
- Save, M.; Schappacher, M.; Soum, A. Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics. Macromol. Chem. Phys. 2002, 203, 889–899. [Google Scholar] [CrossRef]
- CrysAlis CCD; Oxford Diffraction Ltd.: Abingdon, UK, 2002.
- CrysAlis RED; Oxford Diffraction Ltd.: Abingdon, UK, 2002.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Schwarz, A.D.; Thompson, A.L.; Mountford, P. Sulfonamide-Supported Group 4 Catalysts for the Ring-Opening Polymerization of ε-Caprolactone and rac-Lactide. Inorg. Chem. 2009, 48, 10442–10454. [Google Scholar] [CrossRef] [PubMed]
- Buffet, J.C.; Okuda, J. Group 4 metal initiators for the controlled stereoselective polymerization of lactide monomers. Chem. Commun. 2011, 47, 4796–4798. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Khononov, M.; Fridman, N.; Tamm, M.; Eisen, M.S. (Benz)Imidazolin-2-iminato Aluminum, Zinc, and Magnesium Complexes and Their Applications in Ring Opening Polymerization of ε-Caprolactone. Inorg. Chem. 2019, 58, 13426–13439. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.T.; Kosuru, S.R.; Lee, Y.H.; Lu, W.Y.; Vandavasi, J.K.; Lai, Y.C.; Chiang, M.Y.; Chen, H.Y. Factors influencing catalytic behavior of titanium complexes bearing bisphenolate ligands toward ring-opening polymerization of L-lactide and ε-caprolactone. eXPRESS Polym. Lett. 2018, 12, 126–135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białek, M.; Klimasińska, A.; Spaleniak, G.; Dziuk, B. Titanium and Vanadium Complexes of Tridentate Phenoxy-Imine and Phenoxy-Amine Ligands and Their Application in the Ring-Opening Polymerization of Cyclic Esters. Molecules 2024, 29, 87. https://doi.org/10.3390/molecules29010087
Białek M, Klimasińska A, Spaleniak G, Dziuk B. Titanium and Vanadium Complexes of Tridentate Phenoxy-Imine and Phenoxy-Amine Ligands and Their Application in the Ring-Opening Polymerization of Cyclic Esters. Molecules. 2024; 29(1):87. https://doi.org/10.3390/molecules29010087
Chicago/Turabian StyleBiałek, Marzena, Alicja Klimasińska, Grzegorz Spaleniak, and Błażej Dziuk. 2024. "Titanium and Vanadium Complexes of Tridentate Phenoxy-Imine and Phenoxy-Amine Ligands and Their Application in the Ring-Opening Polymerization of Cyclic Esters" Molecules 29, no. 1: 87. https://doi.org/10.3390/molecules29010087
APA StyleBiałek, M., Klimasińska, A., Spaleniak, G., & Dziuk, B. (2024). Titanium and Vanadium Complexes of Tridentate Phenoxy-Imine and Phenoxy-Amine Ligands and Their Application in the Ring-Opening Polymerization of Cyclic Esters. Molecules, 29(1), 87. https://doi.org/10.3390/molecules29010087