Determination and Characterization of Gold Nanoparticles in Liquor Using Asymmetric Flow Field-Flow Fractionation Hyphenated with Inductively Coupled Plasma Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Investigation of the Effects of Ethanol on Au NPs
2.2. Determination of Au NPs Released after Ultrasound Treatment in Gold-Containing Liquor by AF4-ICP-MS
2.2.1. Protocol Optimization for the Sample Preparation
2.2.2. Characterization of Size and Number-Based Size Distribution of Au NPs
2.2.3. Mass Quantification of Au NPs with Pre-Channel Mass Calibration
2.3. Measurement of the Recovery in Au NPs Detection by AF4-ICP-MS with Pre-Channel Calibration
3. Materials and Methods
3.1. Instrumentation
3.2. Reagents and Materials
3.3. Sample Preparation for Release and Extraction of Au NPs
3.4. Size Characterization of Au NPs by AF4-ICP-MS
3.5. Quantification of Au NPs by Pre-Channel Mass Calibration
3.6. Measurement of Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.7. Evaluation of Recovery Rates in Au NPs Analysis by AF4-ICP-MS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EFSA Panel on Food Additives and Nutrients Sources added to Food. Scientific opinion on the re-evaluation of gold (E 175) as a food additive. EFSA J. 2016, 14, 4362. [Google Scholar]
- Chirino, Y.I.; Pedraza-Chaverri, J. Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food Chem. Toxicol. 2020, 146, 111814. [Google Scholar]
- Medina-Reyes, E.I.; Rodríguez-Ibarra, C.; Déciga-Alcaraz, A.; Díaz-Urbina, D.; Imai, K. Concern of carcinogenic risk of eating gold leaf (gold foil)—In relation to asbestos carcinogenesis mechanism. Nanobiomedicine 2018, 10, 26–30. [Google Scholar]
- Russell, M.A.; King, L.E., Jr.; Boyd, A.S. Lichen planus after consumption of a gold containing liquor. N. Engl. J. Med. 1996, 334, 603. [Google Scholar] [CrossRef]
- Russell, M.A.; Langley, M.; Truett, A.P.; King, L.E., Jr.; Boyd, A.S. Lichenoid dermatitis after consumption of gold-containing liquor. J. Am. Acad. Dermatol. 1997, 36, 841–844. [Google Scholar] [CrossRef]
- Guenthner, T.; Stork, C.M.; Cantor, R.M. Goldschlager allergy in a gold allergic patient. Vet. Hum. Toxicol. 1999, 41, 246. [Google Scholar]
- Möller, H. Contact allergy to gold as a model for clinical-experimental research. Contact Dermat. 2010, 62, 193–200. [Google Scholar] [CrossRef]
- Hadrup, N.; Sharma, A.K.; Poulsen, M.; Nielsen, E. Toxicological risk assessment of elemental gold following oral exposure to sheets and NPs—A review. Regul. Toxicol. Pharmacol. 2015, 72, 216–221. [Google Scholar] [CrossRef]
- Evariste, L.; Lamas, B.; Ellero-Simatos, S.; Khoury, L.; Cartier, C.; Gaultier, E.; Chassaing, B.; Feltin, N.; Devoille, L.; Favre, G.; et al. A 90-day oral exposure to food-grade gold at relevant human doses impacts the gut microbiota and the local immune system in a sex-dependent manner in mice. Part. Fibre Toxicol. 2023, 20, 27. [Google Scholar] [CrossRef]
- Leong, T.S.H.; Manickam, S.; Martin, G.J.; Li, W.; Ashokkumar, M. Ultrasonic Production of Nano-Emulsions for Bioactive Delivery in Drug and Food Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Firouz, M.S.; Farahmandi, A.; Hosseinpour, S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason. Sonochem. 2019, 57, 73–88. [Google Scholar] [CrossRef]
- Chavan, P.; Sharma, P.; Sharma, S.R.; Mittal, T.C.; Jaiswal, A.K. Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods 2022, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Manyatsi, T.S.; Morata, A.; Tiwari, B.K. Ultrasound-assisted production of alcoholic beverages: From fermentation and sterilization to extraction and aging. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5243–5271. [Google Scholar] [CrossRef] [PubMed]
- Lomthong, T.; Siripornvisal, S.; Khunnamwong, P. Ultrasound-assisted enzymatic hydrolysis of broken Riceberry rice for sugar syrup production as a substrate for bacterial cellulose facial mask development. J. Appl. Biol. Biotechnol. 2022, 10, 96–101. [Google Scholar]
- Estivi, L.; Brandolini, A.; Condezo-Hoyos, L.; Hidalgo, A. Impact of low-frequency ultrasound technology on physical, chemical and technological properties of cereals and pseudocereals. Ultrason. Sonochem. 2022, 86, 106044. [Google Scholar] [CrossRef] [PubMed]
- Gerber, A.; Bundschuh, M.; Klingelhofer, D.; Groneberg, D.A. Gold nanoparticles: Recent aspects for human toxicology. J. Occup. Med. Toxicol. 2013, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Sani, A.; Cao, C.; Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef] [PubMed]
- Enea, M.; Pereira, E.; Peixoto de Almeida, M.; Araújo, A.M.; Bastos, M.d.L.; Carmo, H. Gold nanoparticles induce oxidative stress and apoptosis in human kidney cells. Nanomaterials 2020, 10, 995. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wang, Q.; Li, M.; Dang, F.; Zhou, D.M. Nonselective uptake of silver and gold nanoparticles by wheat. Nanotoxicology 2019, 13, 1073–1086. [Google Scholar] [CrossRef]
- García, R.Á.F.; Fernández-Iglesias, N.; López-Chaves, C.; Sánchez-González, C.; Llopis, J.; Montes-Bayón, M.; Bettmer, J. Complementary techniques (spICP-MS, TEM, and HPLC-ICP-MS) reveal the degradation of 40 nm citrate-stabilized Au nanoparticles in rat liver after intraperitoneal injection. J. Trace Elem. Med. Biol. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Witzler, M.; Küllmer, F.; Hirtz, A.; Günther, K. Validation of gold and silver nanoparticle analysis in fruit juices by single-particle ICP-MS without sample pretreatment. J. Agric. Food Chem. 2016, 64, 4165–4170. [Google Scholar] [CrossRef]
- Donovan, A.R.; Adams, C.D.; Ma, Y.; Stephan, C.; Eichholz, T.; Shi, H. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 2016, 144, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, R.C.; Stephan, C.; Lead, J.R. Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles. Talanta 2017, 162, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Mehtala, J.G.; Wei, A. Nanometric resolution in the hydrodynamic size analysis of ligand-stabilized gold nanorods. Langmuir 2014, 30, 13737–13743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Nie, X.; Ji, Y.; Liu, Y.; Wu, X.; Chen, C.; Fang, X. Quantitative biokinetics and systemic translocation of various gold nanostructures are highly dependent on their size and shape. J. Nanosci. Nanotechnol. 2014, 14, 4124–4138. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Bi, X.; Reed, R.B.; Ranville, J.F.; Herckes, P.; Westerhoff, P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol. 2014, 48, 10291–10300. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhang, Y.; Yu, W.; Xu, L.; Ge, C.; Liu, J.; Gu, N. Linear aggregation of gold nanoparticles in ethanol. Colloids Surf. A 2003, 223, 177–183. [Google Scholar] [CrossRef]
- Hussain, I.; Wang, Z.; Cooper, A.; Brust, M. Formation of spherical nanostructures by the controlled aggregation of gold colloids. Langmuir 2006, 22, 2938–2941. [Google Scholar] [CrossRef]
- López-Sanz, S.; Fariñas, N.R.; Martín-Doimeadios, R.d.C.R.; Ríos, Á. Analytical strategy based on asymmetric flow field flow fractionation hyphenated to ICP-MS and complementary techniques to study gold nanoparticles transformations in cell culture medium. Anal. Chim. Acta 2019, 1053, 178–185. [Google Scholar] [CrossRef]
- Mekprayoon, S.; Siripinyanond, A. Performance evaluation of flow field-flow fractionation and electrothermal atomic absorption spectrometry for size characterization of gold nanoparticles. J. Chromatogr. A 2019, 1604, 460493. [Google Scholar] [CrossRef]
- Bocca, B.; Battistini, B.; Petrucci, F. Silver and gold nanoparticles characterization by SP-ICP-MS and AF4-FFF-MALS-UV-ICP-MS in human samples used for biomonitoring. Talanta 2020, 220, 121404. [Google Scholar] [CrossRef]
- Techarang, T.; Siripinyanond, A. Use of electrical field-flow fractionation for gold nanoparticles after improving separation efficiency by carrier liquid optimization. Anal. Chim. Acta 2021, 1144, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Chan, W.C.W. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011, 5, 5478–5489. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Goebl, J.; Lu, Z.; Yin, Y. Role of salt in the spontaneous assembly of charged gold nanoparticles in ethanol. Langmuir 2011, 27, 5282–5289. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chua, S.L.; Ch’ng, A.L.; Yu, D.; Koh, S.P.; Phang, H.; Chiew, P. An effective approach for size characterization and mass quantification of silica nanoparticles in coffee creamer by AF4-ICP-MS. Anal. Bioanal. Chem. 2020, 412, 5499–5512. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chua, S.L.; Yu, D.; Chan, S.H.; Li, A. Separation and size characterization of highly polydisperse titanium dioxide nanoparticles (E171) in powdered beverages by using asymmetric flow field-flow fractionation hyphenated with multi-angle light scattering and inductively coupled plasma mass spectrometry. J. Chromatogr. A 2021, 1643, 462059. [Google Scholar] [PubMed]
- Li, B.; Chua, S.L.; Yu, D.; Chan, S.H.; Li, A. Detection, identification and size distribution of silver nanoparticles (AgNPs) in milk and migration study for breast milk storage bags. Molecules 2022, 27, 2539. [Google Scholar] [CrossRef] [PubMed]
- Verleysen, E.; Waegeneers, N.; De Vos, S.; Brassinne, F.; Ledecq, M.; Van Steen, F.; Andjelkovic, M.; Janssens, R.; Mathioudaki, S.; Delfosse, L.; et al. Physicochemical characterization of nanoparticles in food additives in the context of risk identification. EFSA J. 2021, 18, 6678E. [Google Scholar] [CrossRef]
- Gaborskia, T.R.; Snyder, J.L.; Striemer, C.C.; Fang, D.Z.; Hoffman, M.; Fauchet, P.M.; McGrath, J.L. High performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 2010, 4, 6973–6981. [Google Scholar] [CrossRef]
- Geiss, O.; Cascio, C.; Gilliland, D.; Franchini, F.; Barrero-Moreno, J. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet–visible detectors. J. Chromatogr. A 2013, 1321, 100–108. [Google Scholar] [CrossRef]
- Gray, E.P.; Bruton, T.A.; Higgins, C.P.; Halden, R.U.; Westerhoff, P.; Ranville, J.F. Analysis of gold nanoparticle mixtures: A comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1532–1539. [Google Scholar] [CrossRef]
- Mudalige, T.K.; Qu, H.; Sanchez-Pomales, G.; Sisco, P.N.; Linder, S.W. Simple functionalization strategies for enhancing nanoparticle separation and recovery with asymmetric flow field flow fractionation. Anal. Chem. 2015, 87, 1764–1772. [Google Scholar] [CrossRef] [PubMed]
Size Reported in Product Certificate a | DLS Analysis Value b (nm) | |||
---|---|---|---|---|
Normal Size (nm) | TEM Diameter (nm) | Hydrodynamic Diameter (DLS) (Dh) (nm) | Z-Average Diameter (nm) | PDI |
5 | 5.0 ± 0.6 | ─ c | 10.1 ± 0.5 | 0.311 ± 0.034 |
20 | 18.9 ± 1.5 | 24.0 | 22.4 ± 0.1 | 0.141 ± 0.002 |
40 | 40.0 ± 5.0 | 45.0 | 43.1 ± 0.3 | 0.113 ± 0.010 |
60 | 60.0 ± 6.0 | 68.0 | 70.2 ± 0.3 | 0.094 ± 0.013 |
80 | 77.0 ± 10.0 | 83.0 | 83.3 ± 0.3 | 0.158 ± 0.013 |
100 | 103.0 ± 10.0 | 105.0 | 110.5 ± 0.2 | 0.063 ± 0.007 |
200 | 200.0 | 213.0 | 212.9 ± 3.3 | 0.097 ± 0.019 |
Product a | Retention Time Range (min) | Hydrodynamic Diameter (Dh) (nm) | |
---|---|---|---|
Major Diameter (nm) b | Size Range (nm) c | ||
Gold-containing Liquor | (8.7 ± 0.2)~(38.0 ± 0.1) | 123.7 ± 5.5 | (8.3 ± 1.1)~(398.0 ± 2.7) |
Edible Gold Flakes (EGF) | (11.4 ± 0.4)~(38.3 ± 0.4) | 126.6 ± 9.8 | (17.9 ± 1.4)~(454.8 ± 12.3) |
Mass Concentration of Au NPs in Liquor (μg L−1) a | Limit of Detection (LOD) (µg L−1) d | Limit of Quantification (LOQ) (µg L−1) d | |
---|---|---|---|
No Sonication | Sonication b | ||
Liquor with 100-Fold Enrichment | |||
No Detection | 48.1 ± 0.6 c | 1.4 | 3.7 |
Nominal Size (nm) | Recovery Rate (R)— Overall (%) | Recovery Rate (RA)— Matrix (%) | Recovery Rate (RB)— AF4 Channel (%) |
---|---|---|---|
5 | 82 ± 2 | 89 ± 1 | 92 ± 2 |
20 | 93 ± 2 | 101 ± 3 | 93 ± 1 |
60 | 92 ± 7 | 94 ± 1 | 98 ± 7 |
100 | 95 ± 2 | 98 ± 1 | 97 ± 2 |
200 | 91 ± 2 | 97 ± 1 | 94 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Chua, S.L.; Yu, D.; Chan, S.H.; Li, A. Determination and Characterization of Gold Nanoparticles in Liquor Using Asymmetric Flow Field-Flow Fractionation Hyphenated with Inductively Coupled Plasma Mass Spectrometry. Molecules 2024, 29, 248. https://doi.org/10.3390/molecules29010248
Li B, Chua SL, Yu D, Chan SH, Li A. Determination and Characterization of Gold Nanoparticles in Liquor Using Asymmetric Flow Field-Flow Fractionation Hyphenated with Inductively Coupled Plasma Mass Spectrometry. Molecules. 2024; 29(1):248. https://doi.org/10.3390/molecules29010248
Chicago/Turabian StyleLi, Bin, Sew Lay Chua, Dingyi Yu, Sheot Harn Chan, and Angela Li. 2024. "Determination and Characterization of Gold Nanoparticles in Liquor Using Asymmetric Flow Field-Flow Fractionation Hyphenated with Inductively Coupled Plasma Mass Spectrometry" Molecules 29, no. 1: 248. https://doi.org/10.3390/molecules29010248
APA StyleLi, B., Chua, S. L., Yu, D., Chan, S. H., & Li, A. (2024). Determination and Characterization of Gold Nanoparticles in Liquor Using Asymmetric Flow Field-Flow Fractionation Hyphenated with Inductively Coupled Plasma Mass Spectrometry. Molecules, 29(1), 248. https://doi.org/10.3390/molecules29010248