Multi-Analytical Techniques for the Study of Burial Clothes of Polish King Sigismund III Vasa (1566–1633) and His Wife Constance Habsburg (1588–1631)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Origin of Textile Samples
2.2. Microscopic and Spectroscopic Studies
2.2.1. SEM-EDS Analysis of Metal Threads
2.2.2. SEM-EDS Analysis of Silk Threads
2.3. Thermogravimetric Analysis of Threads
2.4. Identification of the Colorants (HPLC-DAD-ESI-MS)
3. Materials and Methods
3.1. Chemicals
3.2. Equipment
3.3. Extraction Procedure
3.4. LC-MS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orska-Gawryś, J.; Surowiec, I.; Kehl, J.; Rejniak, H.; Urbaniak-Walczak, K.; Trojanowicz, M. Identification of natural dyes in archeological Coptic textiles by liquid chromatography with diode array detection. J. Chromatogr. A 2003, 989, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Blanc, R.; Espejo, T.; López-Montes, A.; Torres, D.; Crovetto, G.; Navalón, A.; Vílchez, J.L. Sampling and identification of natural dyes in historical maps and drawings by liquid chromatography with diode-array detection. J. Chromatogr. A 2006, 1122, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Deveoglu, O.; Torgan, E.; Karadag, R. Identification by RP-HPLC-DAD of natural dyestuffs from lake pigments prepared with a mixture of weld and dyer’s oak dye plants. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 331–342. [Google Scholar] [CrossRef]
- Tamburini, D. Investigating Asian colourants in Chinese textiles from Dunhuang (7th–10th century AD) by high performance liquid chromatography tandem mass spectrometry—Towards the creation of a mass spectra database. Dyes Pigments 2019, 163, 454–474. [Google Scholar] [CrossRef]
- Lech, K.; Witkos, K.; Jarosz, M. HPLC-UV-ESI MS/MS identification of the color constituents of sawwort (Serratula tinctoria L.). Anal. Bioanal. Chem. 2014, 406, 3703–3708. [Google Scholar] [CrossRef] [PubMed]
- Lech, K.; Witkos, K.; Wilenska, B.; Jarosz, M. Identification of unknown colorants in pre-Columbian textiles dyed with American cochineal (Dactylopius coccus Costa) using high-performance liquid chromatography and tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Lech, K.; Jarosz, M. Identification of Polish cochineal (Porphyrophora polonica L.) in historical textiles by high-performance liquid chromatography coupled with spectrophotometric and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2016, 408, 3349–3358. [Google Scholar] [CrossRef]
- Lech, K. Universal analytical method for characterization of yellow and related natural dyes in liturgical vestments from Krakow. J. Cult. Herit. 2020, 46, 108–118. [Google Scholar] [CrossRef]
- Lech, K.; Fornal, E. A Mass Spectrometry-Based Approach for Characterization of Red, Blue, and Purple Natural Dyes. Molecules 2020, 25, 3223. [Google Scholar] [CrossRef]
- Tamburini, D.; Dyer, J.; Davit, P.; Aceto, M.; Turina, V.; Borla, M.; Vandenbeusch, M.; Gulmini, M. Compositional and Micro-Morphological Characterisation of Red Colourants in Archaeological Textiles from Pharaonic Egypt. Molecules 2019, 24, 3761. [Google Scholar] [CrossRef]
- Petroviciu, I.; Teodorescu, I.; Albu, F.; Virgolici, M.; Nagoda, E.; Medvedovici, A. Dyes and biological sources in nineteenth to twentieth century ethnographic textiles from Transylvania, Romania. Herit. Sci. 2019, 7, 15. [Google Scholar] [CrossRef]
- Otłowska, O.; Ślebioda, M.; Kot-Wasik, A.; Karczewski, J.; Śliwka-Kaszyńska, M. Chromatographic and spectroscopic identification and recognition of natural dyes, uncommon dyestuff components and mordants in 16th century carpet. Molecules 2018, 23, 339. [Google Scholar] [CrossRef] [PubMed]
- Degano, I.; Tognotti, P.; Kunzelman, D.; Modugno, F. HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives. Herit. Sci. 2017, 5, 7. [Google Scholar] [CrossRef]
- Śliwka-Kaszyńska, M.; Ślebioda, M.; Brillowska-Dąbrowska, A.; Mroczyńska, M.; Karczewski, J.; Marzec, A.; Rybiński, P.; Drążkowska, A. Multi-Technique Investigation of Grave Robes from 17th and 18th Century Crypts Using Combined Spectroscopic, Spectrometric Techniques, and New-Generation Sequencing. Materials 2021, 14, 3535. [Google Scholar] [CrossRef] [PubMed]
- Degano, I.; Biesaga, M.; Colombini, M.P.; Trojanowicz, M. Historical and archaeological textiles: An insight on degradation products of wool and silk yarns. J. Chromatogr. A 2011, 1218, 5837–5847. [Google Scholar] [CrossRef] [PubMed]
- Surowiec, I.; Szostek, B.; Trojanowicz, M. HPLC-MS of anthraquinoids, flavonoids, and their degradation products in analysis of natural dyes in archeological objects. J. Sep. Sci. 2007, 30, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, F.; Lluveras-Tenorio, A.; Degano, I.; Kuckova, S.; Krizova, I.; Colombini, M.P. A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method for the identification of anthraquinones: The case of historical lakes. J. Am. Soc. Mass Spectrom. 2016, 27, 1824–1834. [Google Scholar] [CrossRef]
- Kramell, A.E.; García-Altares, M.; Pötsch, M.; Kluge, R.; Rother, A.; Hause, G.; Hertweck, C.; Csuk, R. Mapping Natural Dyes in Archeological Textiles by Imaging Mass Spectrometry. Sci. Rep. 2019, 9, 2331. [Google Scholar] [CrossRef]
- Selvius DeRoo, C.S.; Armitage, R.A. Direct Identification of Dyes in Textiles by Direct Analysis in Real Time—Time of Flight Mass Spectrometry. Anal. Chem. 2011, 83, 6924–6928. [Google Scholar] [CrossRef]
- Tamburini, D.; Cartwright, C.R.; Pullan, M.; Vickers, H. An investigation of the dye palette in Chinese silk embroidery from Dunhuang (Tang dynasty). Archaeol. Anthropol. Sci. 2018, 11, 1221–1239. [Google Scholar] [CrossRef]
- Chen, V.J.; Smith, G.D.; Holden, A.; Paydar, N.; Kiefer, K. Chemical analysis of dyes on an Uzbek ceremonial coat: Objective evidence for artifact dating and the chemistry of early synthetic dyes. Dyes Pigments 2016, 131, 320–332. [Google Scholar] [CrossRef]
- Degano, I.; Mattonai, M.; Sabatini, F.; Colombini, M.P. A mass spectrometric study on tannin degradation within dyed woolen yarns. Molecules 2019, 24, 2318. [Google Scholar] [CrossRef] [PubMed]
- Nabais, P.; Oliveira, J.; Pina, F.; Teixeira, N.; Freitas, V.; Bras, N.F.; Clemente, A.; Rangel, M.; Silva, A.M.S.; Melo, M.J. A 1000 year-old mystery solved: Unlocking the molecular structure for the medieval blue from Chrozophora tinctoria, also known as folium. Sci. Adv. 2020, 6, 7772. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, D.; Breitung, E.; Mori, C.; Kotajima, T.; Clarke, M.L.; McCarthy, B. Exploring the transition from natural to synthetic dyes in the production of 19th-century Central Asian ikat textiles. Herit. Sci. 2020, 8, 114. [Google Scholar] [CrossRef]
- Tamburini, D.; Dyer, J.; Cartwright, C.; Green, A. Changes in the production materials of Burmese textiles in the nineteenth century-dyes, mordants and fibres of Karen garments from the British Museum’s collection. Herit. Sci. 2023, 11, 150. [Google Scholar] [CrossRef]
- Otłowska, O.; Ślebioda, M.; Wachowiak, M.; Śliwka-Kaszyńska, M. Identification and characterization of the Indian Yellow dyestuff and its degradation products in historical oil paint tube by liquid chromatography mass spectrometry. RSC Adv. 2015, 5, 48786–48792. [Google Scholar] [CrossRef]
- Otłowska, O.; Ślebioda, M.; Wachowiak, M.; Śliwka-Kaszyńska, M. A multi-analytical approach to the characterization of natural organic dyestuffs and inorganic substrates present in the 19th-century artistic oil paints manufactured by a French art materials supplier Richard Aines. Anal. Methods 2017, 9, 94–102. [Google Scholar] [CrossRef]
- Deyjoo, R.; Holakooei, P.; Sabatini, F.; Degano, I.; Colombini, M.P. Coptic textiles in Tehran: Dye and fibre characterisation in four Coptic textiles preserved at the Moghadam Museum. Archaeol. Anthropol. Sci. 2021, 13, 222. [Google Scholar] [CrossRef]
- Lech, K.; Nawała, J.; Popiel, S. Mass spectrometry for investigation of natural dyes in historical textiles: Unveiling the mystery behind safflower-dyed fibers. J. Am. Soc. Mass Spectrom. 2021, 32, 2552–2566. [Google Scholar] [CrossRef]
- Nakamura, R.; Tanaka, Y.; Ogata, A.; Naruse, M. Dye analysis of shosoin textiles using excitation−emission matrix fluorescence and ultraviolet-visible reflectance spectroscopic techniques. Anal. Chem. 2009, 81, 5691–5698. [Google Scholar] [CrossRef]
- Aceto, M.; Agostino, A.; Fenoglio, G.; Idone, A.; Gulmini, M.; Picollo, M.; Ricciardi, P.; Delaney, J.K. Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal. Methods 2014, 6, 1488–1500. [Google Scholar] [CrossRef]
- Maynez-Rojas, M.A.; Casanova-González, E.; Ruvalcaba-Sil, J.L. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 178, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Mounier, A.; Le Bourdon, G.; Aupetit, C.; Lazare, S.; Biron, C.; Pérez-Arantegui, J.; Almazán, D.; Aramendia, J.; Prieto-Taboada, N.; Fdez-Ortiz de Vallejuelo, S.; et al. Red and blue colours on 18th–19th century Japanese woodblock prints: In situ analyses by spectrofluorimetry and complementary non-invasive spectroscopic methods. Microchem. J. 2018, 140, 129–141. [Google Scholar] [CrossRef]
- Villafana, T.; Edwards, G. Creation and reference characterization of Edo period Japanese woodblock printing ink colorant samples using multimodal imaging and reflectance spectroscopy. Herit. Sci. 2019, 7, 94. [Google Scholar] [CrossRef]
- Dyer, J.; Tamburini, D.; O’Connell, E.R.; Harrison, A. A multispectral imaging approach integrated into the study of Late Antique textiles from Egypt. PLoS ONE 2018, 13, e0204699. [Google Scholar] [CrossRef] [PubMed]
- de Ferri, L.; Tripodi, R.; Martignon, A.; Ferrari, E.S.; Lagrutta-Diaz, A.C.; Vallotto, D.; Pojana, G. Non-invasive study of natural dyes on historical textiles from the collection of Michelangelo Guggenheim. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 548–567. [Google Scholar] [CrossRef] [PubMed]
- Hložek, M.; Trojek, T.; Prokeš, R.; Linhart, V. Mediaeval metal threads and their identification using micro-XRF scanning, confocal XRF, and X-ray micro-radiography. Radiat. Phys. Chem. 2019, 155, 299–303. [Google Scholar] [CrossRef]
- Enguita, O.; Climent-Font, A.; Garcia, G.; Montero, I.; Fedi, M.E.; Chiari, M.; Lucarelli, F. Characterization of metal threads using different PIXE analysis. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2002, 189, 328–333. [Google Scholar] [CrossRef]
- Simic, K.; Zamboni, I.; Fazinic, S.; Mudronja, D.; Sovic, L.; Gouasmia, S.; Soljacic, I. Comparative analysis of textile metal threads from liturgical vestments and folk costumes in Croatia. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 417, 115–120. [Google Scholar] [CrossRef]
- Duran, A.; Perez-Maqueda, R.; Perez-Rodriguez, J.L. Degradation processes of historic metal threads used in some Spanish and Portuguese ornamentation pieces. J. Cult. Herit. 2019, 36, 135–142. [Google Scholar] [CrossRef]
- Shibayama, N.; Wypyski, M.; Gagliardi-Mangilli, E. Analysis of natural dyes and metal threads used in 16th–18th century Persian/Safavid and Indian/Mughal velvets by HPLC-PDA and SEM-EDS to investigate the system to differentiate velvets of these two cultures. Herit. Sci. 2015, 3, 12. [Google Scholar] [CrossRef]
- Simic, K.; Soljacic, I.; Mudronja, D.; Petrovic Les, T. Metal Content and Structure of Textiles in Textile Metal Threads in Croatia from 17th to 20th Century. Materials 2022, 15, 251. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.; Moreiras, H.; Manhita, A.; Tomaz, P.; Mirao, J.; Dias, C.B.; Caldeira, A.T. The Liturgical Cope of D. Teotónio of Braganza: Material Characterization of a 16th Century Pluviale, Microsc. Microanal. 2015, 21, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Cybulska, M.; Jedraszek-Bomba, A.; Kuberski, S.; Wrzosek, H. Methods of Chemical and Physicochemical Analysis in the Identification of Archaeological and Historical Textiles. Fibres Text. East. Eur. 2008, 16, 67–73. [Google Scholar]
- Cybulska, M. Analysis and Visualization of Historical Textiles for the Needs of Museum Conservation and Exhibition. In Handbook of Museum Textiles: Volume II Scientific and Technological Research; Seiko, J., Sabu, T., Pintu, P., Ritu, P., Eds.; Scrivener Publishing: Beverly, MA, USA; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 283–302. [Google Scholar]
- Járó, M.; Tóth, A.L. Scientific identification of European metal thread manufacturing techniques of the 17–19th centuries. Endeavour 1991, 15, 175–184. [Google Scholar] [CrossRef]
- Járó, M.; Gál, T.; Tóth, A. The Characterization and Deterioration of Modern Metallic Threads. Stud. Conserv. 2000, 45, 95–105. [Google Scholar] [CrossRef]
- Karatzani, A. Metal Threads: The Historical Development. In Textiles and Dress in Greece and the Roman East: A Technological and Social Approach; Tzachili, I., Zimi, E., Eds.; Pragmata Publications Athens: Athens, Greece, 2012; pp. 55–65. [Google Scholar]
- Crowfoot, E.; Pritchard, F.; Staniland, K. Textiles and Clothing, C.1150–C.1450; Boydell Press: London, UK, 2006; Available online: http://virtuquatuor.free.fr/textile_and_clothing.pdf (accessed on 10 November 2023).
- Cybulska, M.; Kuberski, S.; Maik, J.; Orlińska-Mianowska, E. Figural embroidery from Tum Collegiate Church–analysis, reconstruction and identification. In NESAT XI, Proceedings of the North European Symposium for Archaeological Textiles XI, Esslingen, Germany, 10–13 May 2011; Neckar, E., Banck-Burgess, J., Nübold, C., Eds.; VML Verlag Marie Leidorf: Rahden, Germany, 2013; pp. 10–13. [Google Scholar]
- Rogerson, C.; Garside, P. Instrumental analysis of metal threads as an aid for interpretation and preservation of a fifteenth-century tapestry altar frontal and super frontal. In Tapestry Conservation: Principles and Practice; Lennard, F., Hayward, M., Eds.; Routledge: London, UK, 2005; pp. 49–56. [Google Scholar] [CrossRef]
- Bonito Fanelli, R. Five Centuries of Italian Textiles 1300–1800. A Selection from the Museo del Tessuto Prato; Cassa di Risparmi e Depositi di Prato: Prato, Italy, 1981. [Google Scholar]
- Cybulska, M.; Maik, J. Archaeological Textiles: A Need for New Methods of Analysis and Reconstruction. Fibres Text. East. Eur. 2007, 5–6, 185–189. [Google Scholar]
- Indictor, N.; Ballard, M.W. The effects of aging on textiles that contain metal: Implications for analyses. In Proceedings of the Conservation of Metals: Problems in the Treatment of Metal-Organic and Metal-Inorganic Composite Objects: International Restorer Seminar, Veszprem, Hungary, 1–10 July 1989; pp. 67–75. [Google Scholar]
- Hofenk de Graaff, J.H. The Colourful Past. In Origins Chemistry and Identification of Natural Dyestuffs; Abegg Stiftung and Archetype Publications Ltd.: London, UK, 2004; ISBN 1873132131. [Google Scholar]
- Cardon, D. Natural Dyes: Sources, Tradition, Technology and Science; Archetype: London, UK, 2007; ISBN 978-1-904982-00-5. [Google Scholar]
- Perez-Rodriguez, J.L.; Perez-Maqueda, R.; Luisa Franquelo, M.; Duran, A. Study of the thermal decomposition of historical metal threads. J. Therm. Anal. Calorim. 2018, 134, 15–22. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, M.; Bhardwaj, N.; Kumar, J.P.; Krishnamurthy, C.S.; Nandi, S.K.; Mandal, B.B. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films. ACS Appl. Mater. Interfaces 2016, 8, 15874–15888. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Lee, K.; van Elslande, E.; Walterband, P.; Lee, Y. Analysis of natural dyes in archeological textilesusing TOF-SIMS and other analytical techniques. Surf. Interface Anal. 2014, 46, 312–316. [Google Scholar] [CrossRef]
- Marcela Sepúlveda, M.; Lemp Urzúa, C.; Cárcamo-Vega, J.; Casanova-Gónzalez, E.; Gutiérrez, S.; Maynez-Rojas, M.A.; Ballester, B.; Ruvalcaba-Sil, J.L. Colors and dyes of archaeological textiles from Tarapacá in the Atacama Desert (South Central Andes). Herit. Sci. 2021, 9, 59. [Google Scholar] [CrossRef]
- Melo, M.J. History of Natural Dyes in the Ancient Mediterranean World, in Handbook of Natural Colorants; Bechtold, T., Mussak, R., Eds.; John Wiley & Sons Ltd.: Brisbane, Austria, 2009; ISBN 978-0-470-51199-2. [Google Scholar]
- Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004, 39, 1–15. [Google Scholar] [CrossRef]
- Ferreira, E.S.B.; Hulme, A.M.; McNaby, H.; Quye, A. The natural constituents of historical textile dyes. Chem. Soc. Rev. 2004, 33, 329–336. [Google Scholar] [CrossRef]
Sample Code and Image | Item | Description | |
---|---|---|---|
Sig1 | The doublet lining | Silk woven fabric—a taffeta | |
Sig2 | Main fabric of the doublet | Fabric woven with warp, main weft, and supplementary brocading weft, all of silk | |
Sig3 | Doublet—embroidered trimming | Silk satin embroidered with silk | |
Sig4 | The dalmatic—galloon 1 | Plain galloon woven with metal-wrapped thread as a warp and weft | |
Sig5 | The dalmatic—galloon 2 | Patterned galloon woven with silk and metal-wrapped thread | |
Sig6 | Main fabric of the dalmatic | Silk fabric embroidered with a doubled metal-wrapped thread | |
Sig7 | Tassel of the dalmatic | Tassel made of silk and metal wrapped-threads | |
Sig8 | The cope (royal robe) | Fabric woven with warp and main weft of silk. Supplementary wefts: patterning weft of flat metal thread, brocading weft of a metal-wrapped thread | |
Sig9 | Coffin upholstery | Solid silk velvet | |
Sig10 | Alb with lace trimming | Alb fabric made of silk warp and weft; Trimming—a bobbin lace of a metal-wrapped thread | |
Sig11 | Cassock | Silk satin fabric | |
Con12 | Trimming of the opening and bottom edges of the robe | Patterned galloon woven with warp and weft of metal-wrapped thread | |
Con13 | Trimming of the robe wings | Galloon woven with warp and weft of metal-wrapped thread | |
Con14 | Robe—main fabric | Fabric woven with silk warp and main weft and a metal filament as a patterning weft | |
Con15 | The lining of the robe | Patterned fabric woven with warp and main weft of silk. Supplementary wefts: flat metal thread and metal-wrapped thread as patterning wefts, and metal-wrapped thread as a brocading weft | |
Con16 | Trimming of the skirt | Patterned galloon woven with two different metal-wrapped threads as weft and main warp and flat, metal thread as a patterning warp | |
Con17 | Skirt—main fabric | Fabric woven with silk warp and main weft and two flat metal threads as a patterning wefts | |
Con18 | Trimming of the waistcoat | Galloon woven warp and weft made of metal-wrapped thread | |
Con19 | Waistcoat outer fabric | Fabric woven with warp and main weft made of silk. Supplementary patterning weft made of metal filament (wire) | |
Con20 | Waistcoat lining | Silk woven fabric—a taffeta | |
Con21 | Waistcoat—a button | Needlework made of metal-wrapped thread | |
Con22 | Pillow | Fabric woven with main and binding warps and main weft made of silk, patterned with metal filament, and with two different metal wrapped threads with boucle effect |
Sample Code | Sample Element | Description | Cu | Ag | Au | ws (mm) | ts (μm) | dt (mm) | Wrap (cm) Direction | Material and Technique |
---|---|---|---|---|---|---|---|---|---|---|
(at %) | ||||||||||
Sig4 | warp and weft | metal-wrapped thread | 31.0 | 52.8 | 16.2 | 0.48 | 13.7 | 0.33 | 18; S | silver gilt, beaten and cut |
Sig5 | weft | metal-wrapped thread | 14.2 | 77.5 | 8.3 | 0.33 | 13.0 | 0.35 | 23; S | silver gilt, drawn and rolled |
Sig6 | embroidery thread | metal-wrapped thread, plied | 5.2 | 65.0 | 29.9 | 0.41 | 16.1 | 0.39 | 20; S | silver gilt, drawn and rolled |
Sig7 | thread | metal-wrapped thread | 3.9 | 70.9 | 25.2 | 0.32 | 16.0 | 0.29 | 19; S | silver gilt, drawn and rolled |
Sig8 | brocading weft | metal-wrapped thread | 0.6 | 90.0 | 9.4 | 0.35 | 13.1 | 0.46 | 22; S | silver gilt, drawn and rolled |
patterning weft | flat metal thread | 1.1 | 98.7 | 0.2 | 0.15 | 13.3 | - | - | silver gilt, drawn and rolled | |
Sig10 | lace thread | metal-wrapped thread | 4.3 | 78.7 | 19.7 | 0.49 | 13.2 | 0.48 | 16; S | silver gilt, drawn and rolled |
Con12 | wide gallon | metal-wrapped thread | 5.2 | 75.5 | 19.3 | 0.38 | 10.0 | 0.34 | 25; S | silver gilt, beaten and cut |
Con13 | narrow gallon warp and weft | metal-wrapped thread | 23.8 | 54.9 | 21.3 | 0.29 | 10.5 | 0.45 | 28; S | silver gilt, beaten and cut |
Con14 | patterning weft | metal filament | 2.7 | 86.4 | 10.9 | 0.06 | - | 0.06 | - | silver gilt, drawn and rolled |
Con15 | patterning weft 1 | flat metal thread | 1.1 | 98.9 | 0 | 0.12 | 11.1 | - | - | silver gilt, drawn and rolled |
patterning weft 2 | metal-wrapped thread | 15.7 | 66.2 | 18.1 | 0.22 | 12.9 | 0.17 | 22; S | silver gilt, beaten and cut | |
brocading weft | metal-wrapped thread | 40.3 | 59.7 | 0 | 0.12 | 11.6 | 0.44 | 11; S | silver gilt, drawn and rolled | |
Con16 | weft | metal-wrapped thread | 61.2 | 38.8 | 0 | 0.25 | 8.9 | 0.54 | 8; S | silver gilt, drawn and rolled |
main warp | metal-wrapped thread | 22.0 | 65.4 | 12.6 | 0.53 | 12.0 | 0.55 | 17; S | silver gilt, drawn and rolled | |
flushing warp | flat metal thread | 2.1 | 97.9 | 0 | 0.65 | 25.0 | - | - | silver gilt, drawn and rolled | |
Con17 | patterning weft 1 | flat metal thread | 0 | 85.2 | 14.8 | 0.17 | 9.4 | - | - | silver gilt, drawn and rolled |
patterning weft 2 | flat metal thread | 0 | 100 | 0 | 0.16 | 8.2 | - | - | silver gilt, drawn and rolled | |
Con18 | warp and weft | metal-wrapped thread | 24.5 | 61.0 | 14.5 | 0.31 | 11.3 | 0.33 | 30; S | silver gilt, drawn and rolled |
Con19 | patterning weft | metal filament | 0.8 | 67.1 | 32.1 | 0.05 | - | - | - | silver gilt, drawn and rolled |
Con21 | thread | metal-wrapped thread | 3.8 | 72.5 | 23.7 | 0.28 | 13.1 | 0.29 | 24; S | silver gilt, beaten and cut |
Con22 | patterning weft | metal filament | 0.6 | 93.1 | 6.3 | 0.07 | - | - | - | silver gilt, drawn and rolled |
boucle weft 1 | metal-wrapped thread | 5.8 | 79.5 | 14.7 | 0.52 | 13.5 | 0.65 | 18; S | silver gilt, drawn and rolled | |
boucle weft 2 | metal-wrapped thread | 3.2 | 9.8 | 0 | 0.40 | 11.6 | 0.36 | 22; S | silver gilt, beaten and cut |
Sample Code | Identified Compounds | Biological Source | Elements (EDS) * of Silk Threads |
---|---|---|---|
Sig1 | ellagic acid | tannin plants | Fe, Ca, P, Al, Si, K |
Sig2 | flavokermesic acid 2-C-glucoside (dcII), carminic acid, kermesic acid 7-C-glucofuranoside (dcIV), kermesic acid 7-C-glucopyranoside (dcVII), ellagic acid | cochineal, tannin plants | Ca, Fe, P, S, Cu, K |
Sig3 | ellagic acid, carminic acid, flavokermesic acid 2-C-glucoside (dcII), kermesic acid 7-C-glucofuranoside (dcIV), kermesic acid 7-C-glucopyranoside (dcVII) | tannin plants, cochineal | Ca, Fe, P, S, K |
Sig4 | ellagic acid, carminic acid (traces) | tannin plants, cochineal | Ca, Cu, P, S, Cl, Ag |
Sig5 | ellagic acid, carminic acid (traces) | tannin plants, cochineal | Ca, P, S, Al, K |
Sig6 | ellagic acid, carminic acid (traces) | tannin plants, cochineal | S, P, Ca, K, Al |
Sig7 | carminic acid (traces) | cochineal | Ca, S, Al, P, Cl |
Sig8 | not detected | - | S, P, Ca, K |
Sig9 | carminic acid, ellagic acid | cochineal, tannin plants | Ca, S, K, Al |
Sig10 | ellagic acid, carminic acid (traces) | tannin plants, cochineal | Ca, P, S, Cl |
Sig11 | carminic acid, dehydrated carminic acid, kermesic acid 7-C-glucofuranoside (dc IV), kermesic acid 7-C-glucopyranoside (dc VII), ellagic acid, purpurin | cochineal, tannin plants, madder | Ca, P, Mg, S, Fe, Cu |
Con12 | not performed | - | Al, Na, Mg, Ca, S, K |
Con13 | not performed | - | Ca, Al, S, P, K, Cl |
Con14 | carminic acid, indigotin, α-hydroxyorcein, α-aminoorcein, α-aminoorceimine | cochineal, indigo, orchil | Al, Ca, S, Cl, Cu |
Con15 | indigotin, alizarin, purpurin | indigo, madder | Ca, S, K, Cl, Cu, Si |
Con16 | not performed | - | S, P, Al, Ca, Cu |
Con17 | carminic acid, indigotin, kermesic acid 7-C-glucofuranoside (dc IV), kermesic acid 7-C-glucopyranoside (dc VII), dehydrated carminic acid | cochineal, indigo | Al, Ca, S, Cl, P, Si, Cu |
Con18 | carminic acid, kermesic acid 7-C-glucofuranoside (dc IV), kermesic acid 7-C-glucopyranoside (dc VII), dehydrated carminic acid, indigotin | cochineal, indigo | Ca, Cu, P, S, K, Cl |
Con19 | indigotin | indigo | S, P, K, Ca |
Con20 | indigotin | indigo | S, P, Al, K, Ca |
Con22 | carminic acid, dehydrated carminic acid, ellagic acid | cochineal, tannin plants | Ca, Al, Si, S, P |
Peak No. | tR (min) | [M−H]− (m/z) | [M+H]+ (m/z) | Fragment Ions (m/z) | Proposed Identification |
---|---|---|---|---|---|
1 | 10.2 | 475 | - | 431, 341, 282 | flavokermesic acid 2-C-glucoside (dcII) |
2 | 10.3 | 491 | - | 447, 473, 357, 327, 299, 285 | carminic acid |
3 | 11.8 | 491 | - | 447, 357, 327, 299 | kermesic acid 7-C-glucofuranoside (dcIV) |
4 | 12.4 | 491 | - | 447, 357, 327, 299 | kermesic acid 7-C-glucopyranoside (dcVII) |
5 | 14.9 | 313 | - | 285, 269, 241 | flavokermesic acid |
6 | 12.9 | 473 | - | 429, 401, 339, 309, 285, 243 | dehydrated carminic acid |
7 | 12.9 | 563 | - | 269, 252 | lucidin O-primeveroside |
8 | 12.9 | 533 | - | 239 | alizarin O-primeveroside (ruberythric acid) |
9 | 15.0 | 239 | - | 211, 195 | hystazarin |
10 | 16.9 | 239 | - | 211, 183, 167, 151 | alizarin |
11 | 18.4 | 255 | - | 227, 183, 171, 129 | purpurin |
12 | 20.5 | 267 | - | 239, 211, 195 | nordamnacanthal |
13 | 2.7 | 169 | - | 125, 107, 79 | gallic acid |
14 | 8.7 | 321 | - | 183, 169, 155, 140, 139, 124 | p-galloylgallate |
15 | 9.6 | 787 | - | 635, 465, 317, 241, 169, 125 | tetragalloyl-glucose |
16 | 10.7 | 939 | - | 787, 617, 433, 335, 183, 169 | pentagalloyl-glucose |
17 | 11.3 | 301 | - | 229, 185, 169, 139 | ellagic acid |
18 | 17.9 | 261 | - | 233, 217, 175 | indigotin |
19 | 19.0 | 261 | - | 233, 217, 175 | indirubin |
20 | 14.3 | - | 362 | 347, 346, 345, 331, 278 | α-aminoorceimine |
21 | 15.0 | - | 363 | 348, 347, 346, 303, 240 | α-aminoorcein |
22 | 19.1 | - | 364 | 349, 348, 347, 334, 250 | α-hydroxyorcein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliwka-Kaszyńska, M.; Cybulska, M.; Drążkowska, A.; Kuberski, S.; Karczewski, J.; Marzec, A.; Rybiński, P. Multi-Analytical Techniques for the Study of Burial Clothes of Polish King Sigismund III Vasa (1566–1633) and His Wife Constance Habsburg (1588–1631). Molecules 2024, 29, 192. https://doi.org/10.3390/molecules29010192
Śliwka-Kaszyńska M, Cybulska M, Drążkowska A, Kuberski S, Karczewski J, Marzec A, Rybiński P. Multi-Analytical Techniques for the Study of Burial Clothes of Polish King Sigismund III Vasa (1566–1633) and His Wife Constance Habsburg (1588–1631). Molecules. 2024; 29(1):192. https://doi.org/10.3390/molecules29010192
Chicago/Turabian StyleŚliwka-Kaszyńska, Magdalena, Maria Cybulska, Anna Drążkowska, Sławomir Kuberski, Jakub Karczewski, Anna Marzec, and Przemysław Rybiński. 2024. "Multi-Analytical Techniques for the Study of Burial Clothes of Polish King Sigismund III Vasa (1566–1633) and His Wife Constance Habsburg (1588–1631)" Molecules 29, no. 1: 192. https://doi.org/10.3390/molecules29010192
APA StyleŚliwka-Kaszyńska, M., Cybulska, M., Drążkowska, A., Kuberski, S., Karczewski, J., Marzec, A., & Rybiński, P. (2024). Multi-Analytical Techniques for the Study of Burial Clothes of Polish King Sigismund III Vasa (1566–1633) and His Wife Constance Habsburg (1588–1631). Molecules, 29(1), 192. https://doi.org/10.3390/molecules29010192