High-Contrast Visualization Chemiluminescence Based on AIE-Active and Base-Sensitive Emitters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Photophysical Properties
2.3. Chemiluminescence and Base-Sensitivity
2.4. Information Encryption and Decryption Application
3. Experiments
3.1. General Procedures
3.2. Synthesis of Materials
3.2.1. Synthesis of 4-(9,9-Dimethylacridin-10(9H)-yl)-2-hydroxybenzoic Acid (DMAC-HBA)
3.2.2. Synthesis of 4′-(Diphenylamino)-3-hydroxy-[1,1′-biphenyl]-4-carboxylic Acid (TPA-HBA)
3.3. Preparation of CL Systems
3.3.1. Preparation of CL Systems
3.3.2. Preparation of Encryption Inks/Decryption Solutions
3.4. X-ray Crystallographic Analysis
3.5. Computational Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rankin, B.A.; Richardson, D.R.; Caswell, A.W.; Naples, A.G.; Hoke, J.L.; Schauer, F.R. Chemiluminescence Imaging of an Optically Accessible Non-premixed Rotating Detonation engine. Combust. Flame 2017, 176, 12–22. [Google Scholar] [CrossRef]
- Zhang, Z.; He, D.; Liu, W.; Lv, Y. Chemiluminescence micro-flow-injection analysis on a chip. Luminescence 2005, 20, 377–381. [Google Scholar] [CrossRef]
- Wang, Z.; Teng, X.; Lu, C. Universal Chemiluminescence Flow-Through Device Based on Directed Self-Assembly of Solid-State Organic Chromophores on Layered Double Hydroxide Matrix. Anal. Chem. 2013, 85, 2436–2442. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Jin, Y. Plant Tissue-Based Chemiluminescence Flow Biosensor for Glycolic Acid. Anal. Chem. 2001, 73, 1203–1206. [Google Scholar] [CrossRef]
- Surugiu, I.; Danielsson, B.; Ye, L.; Mosbach, K.; Haupt, K. Chemiluminescence Imaging ELISA Using an Imprinted Polymer as the Recognition Element Instead of an Antibody. Anal. Chem. 2001, 73, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Wu, J.; Wang, C.; Ju, H.; Yan, F. Chemiluminescence Imaging Immunoassay of Multiple Tumor Markers for Cancer Screening. Anal. Chem. 2012, 84, 2410–2415. [Google Scholar] [CrossRef]
- Shen, C.L.; Lou, Q.; Lv, C.F.; Zheng, G.S.; Zang, J.H.; Jiang, T.-C.; Cheng, Z.; Liu, K.-K.; Niu, C.-Y.; Dong, L.; et al. Trigonal Nitrogen Activates High-Brightness Chemiluminescent Carbon Nanodots. ACS Mater. Lett. 2021, 3, 826–837. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Liu, J.; Yue, Q.; Chen, S.; Lam, J.W.Y.; Luo, L.; Tang, B.Z. Near-Infrared AIE Dots with Chemiluminescence for Deep-Tissue Imaging. Adv. Mater. 2020, 32, 2004685. [Google Scholar] [CrossRef] [PubMed]
- Lara, F.J.; Airado-Rodríguez, D.; Moreno-González, D.; Huertas-Pérez, J.F.; García-Campaña, A.M. Applications of Capillary Electrophoresis with Chemiluminescence Detection in Clinical, Environmental and Food Analysis. A review. Anal. Chim. Acta 2016, 913, 22–40. [Google Scholar] [CrossRef]
- Mihalatos, A.M.; Calokerinos, A.C. Ozone Chemiluminescence in Environmental Analysis. Anal. Chim. Acta 1995, 303, 127–135. [Google Scholar] [CrossRef]
- Fujiwara, K.; Tsubota, H.; Kumamaru, T. Ozone Gas-phase Chemiluminescence Detection of Arsenic, Phosphorus, and Boron in Environmental waters. Anal. Sci. 1991, 7, 1085–1086. [Google Scholar] [CrossRef]
- Stevani, C.V.; Silva, S.M.; Baader, W.J. Studies on the Mechanism of the Excitation Step in Peroxyoxalate Chemiluminescence. Eur. J. Org. Chem. 2000, 2000, 4037–4046. [Google Scholar] [CrossRef]
- Chiba, R.; Yamamoto, N.; Tanaka, A. High-Performance Liquid Chromatography with Chemiluminescence Detection of Disopyramide in Human Serum. Anal. Sci. 1998, 14, 1153–1155. [Google Scholar] [CrossRef]
- Gámiz-Gracia, L.; García-Campaña, A.M.; Huertas-Pérez, J.F.; Lara, F.J. Chemiluminescence Detection in Liquid Chromatography: Applications to Clinical, Pharmaceutical, Environmental and Food Analysis—A review. Anal. Chim. Acta 2009, 640, 7–28. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Suetsugu, K.; Yoshida, K.; Akiyama, S.; Uzu, S.; Imai, K. High Performance Liquid Chromatography with Chemiluminescence Detection of Methamphetamine and its Related Compounds Using 4-(N, N-dimethylaminosulphonyl)-7-fluoro-2,1,3-benzoxadiazole. Biomed. Chromatogr. 1992, 6, 149–154. [Google Scholar] [CrossRef]
- Roberts, B.; Rauhut, M.M. Method of Controlling the Lifetime of Ocalate Ester Chemiluminescent Reactions. U.S. Patent No. 3,691,085, 12 September 1972. [Google Scholar]
- Schleck, J.R.; Keyko, G.J.; Chopdekar, V.M. Two-Component Chemiluminescent Composition. U.S. Patent No. 5,281,367, 25 January 1994. [Google Scholar]
- Delafresnaye, L.; Bloesser, F.R.; Kockler, K.B.; Schmitt, C.W.; Irshadeen, I.M.; Barner-Kowollik, C. All Eyes on Visible-Light Peroxyoxalate Chemiluminescence Read-Out Systems. Chem.-Eur. J. 2020, 26, 114–127. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Hong, Y.; Lam, J.W.Y.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Rahimpour, E. A Novel Chemosensor Based on Graphitic Carbon Nitride Quantum Dots and Potassium Ferricyanide Chemiluminescence System for Hg(II) ion Detection. Sens. Actuators B 2016, 225, 258–266. [Google Scholar] [CrossRef]
- Yan, J.; Lee, S.; Zhang, A.; Yoon, J. Self-immolative Colorimetric, Fluorescent and Chemiluminescent Chemosensors. Chem. Soc. Rev. 2018, 47, 6900–6916. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Gui, C.; Lam, J.W.Y.; Jiang, M.; Xie, N.; Kwok, R.T.K.; Tang, B.Z. High-Contrast Visualization and Differentiation of Microphase Separation in Polymer Blends by Fluorescent AIE Probes. Macromolecules 2017, 50, 5807–5815. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Lyu, Y.; Miao, Q.; Pu, K. Molecular Optical Imaging Probes for Early Diagnosis of Drug-induced Acute Kidney Injury. Nat. Mater. 2019, 18, 1133–1143. [Google Scholar] [CrossRef]
- Guan, W.; Zhou, W.; Lu, C.; Tang, B.Z. Synthesis and Design of Aggregation-Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets. Angew. Chem. 2015, 54, 15160–15164. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhu, M.J.; Cheng, Z.; Lee, M.; Yan, H.; Lu, C.; Xu, J.J. Aggregation-Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angew. Chem. 2019, 58, 3162–3166. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, J.; Fu, Y.; Zhao, Z.; Tang, B.Z. Achieving High Electroluminescence Efficiency and High Color Rendering Index for All-Fluorescent White OLEDs Based on an Out-of-Phase Sensitizing System. Adv. Funct. Mater. 2021, 31, 2103273. [Google Scholar] [CrossRef]
- Lin, T.A.; Chatterjee, T.; Tsai, W.L.; Lee, W.K.; Wu, M.J.; Jiao, M.; Pan, K.C.; Yi, C.L.; Chung, C.L.; Wong, K.T.; et al. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Adv. Mater. 2016, 28, 6976–6983. [Google Scholar] [CrossRef]
- Huang, J.; Nie, H.; Zeng, J.; Zhuang, Z.; Gan, S.; Cai, Y.; Guo, J.; Su, S.J.; Zhao, Z.; Tang, B.Z. Highly Efficient Nondoped OLEDs with Negligible Efficiency Roll-Off Fabricated from Aggregation-Induced Delayed Fluorescence Luminogens. Angew. Chem. 2017, 56, 12971–12976. [Google Scholar] [CrossRef]
- Guo, J.; Fan, J.; Lin, L.; Zeng, J.; Liu, H.; Wang, C.K.; Zhao, Z.; Tang, B.Z. Mechanical Insights into Aggregation-Induced Delayed Fluorescence Materials with Anti-Kasha Behavior. Adv. Sci. 2019, 6, 1801629. [Google Scholar] [CrossRef]
- Liu, H.; Guo, J.; Zhao, Z.; Tang, B.Z. Aggregation-Induced Delayed Fluorescence. ChemPhotoChem 2019, 3, 993–999. [Google Scholar] [CrossRef]
- Lou, J.; Tang, X.; Zhang, H.; Guan, W.; Lu, C. Chemiluminescence Resonance Energy Transfer Efficiency and Donor–Acceptor Distance: From Qualitative to Quantitative. Angew. Chem. Int. Ed. 2021, 60, 13029–13034. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-W.; Chen, X.-L.; Lu, C.-Z. High-Contrast Visualization Chemiluminescence Based on AIE-Active and Base-Sensitive Emitters. Molecules 2023, 28, 3976. https://doi.org/10.3390/molecules28093976
Zhang X-W, Chen X-L, Lu C-Z. High-Contrast Visualization Chemiluminescence Based on AIE-Active and Base-Sensitive Emitters. Molecules. 2023; 28(9):3976. https://doi.org/10.3390/molecules28093976
Chicago/Turabian StyleZhang, Xiao-Wen, Xu-Lin Chen, and Can-Zhong Lu. 2023. "High-Contrast Visualization Chemiluminescence Based on AIE-Active and Base-Sensitive Emitters" Molecules 28, no. 9: 3976. https://doi.org/10.3390/molecules28093976
APA StyleZhang, X. -W., Chen, X. -L., & Lu, C. -Z. (2023). High-Contrast Visualization Chemiluminescence Based on AIE-Active and Base-Sensitive Emitters. Molecules, 28(9), 3976. https://doi.org/10.3390/molecules28093976