Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Z.; Shang, J.; Jiang, C.; Rasmita, A.; Gao, W.; Yu, T. Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3. Nano Lett. 2019, 19, 3138–3142. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Wang, T.; Jin, H.; Wang, H.; Dai, Y. Stacking-Independent Ferromagnetism in Bilayer VI3 with Half-Metallic Characteristic. J. Phys. Chem. Lett. 2020, 11, 2158–2164. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, J.-F.; Li, C.; Ying, T.; Li, S.; Zhang, X.; Liu, K.; Lei, H. Ferromagnetic van der Waals Crystal VI3. J. Am. Chem. Soc. 2019, 141, 5326–5333. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, Z.; Xu, M.; Yang, S.; Si, K.; Liu, L.; Wang, X.; Jiang, H.; Li, B.; Qin, P.; et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, W.; Wang, X.; Sui, Q.; Zhang, T.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S.; et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363. [Google Scholar] [CrossRef]
- Luong, D.H.; Phan, T.L.; Ghimire, G.; Duong, D.L.; Lee, Y.H. Revealing antiferromagnetic transition of van der Waals MnPS3 via vertical tunneling electrical resistance measurement. APL. Mater. 2019, 7, 081102. [Google Scholar] [CrossRef]
- Kargar, F.; Coleman, E.A.; Ghosh, S.; Lee, J.; Gomez, M.J.; Liu, Y.; Magana, A.S.; Barani, Z.; Mohammadzadeh, A.; Debnath, B.; et al. Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductors. ACS Nano 2020, 14, 2424–2435. [Google Scholar] [CrossRef]
- Feringa, F.; Bauer, G.E.W.; van Wees, B.J. Observation of magnetization surface textures of the van der Waals antiferromagnet FePS3 by spin Hall magnetoresistance. Phys. Rev. B 2022, 105, 214408. [Google Scholar] [CrossRef]
- Olsen, T. Magnetic anisotropy and exchange interactions of two-dimensional FePS3, NiPS3 and MnPS3 from first principles calculations. J. Phys. D Appl. Phys. 2021, 54, 314001. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Shi, M.Z.; Guo, Z.; Xu, Z.; Wang, J.; Chen, X.H.; Zhang, Y. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Du, S.; Wang, Z.; Gu, B.-L.; Zhang, S.-C.; He, K.; Duan, W.; Xu, Y. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 2019, 5, eaaw5685. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, B.; Zhang, X.; Yuan, S.; Ma, L.; Wang, J. Magnetic two-dimensional layered crystals meet with ferromagnetic semiconductors. InfoMat 2020, 2, 639–655. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Zhong, C.; He, J. Tuning magnetism at the two-dimensional limit: A theoretical perspective. Nanoscale 2021, 13, 19812–19827. [Google Scholar] [CrossRef]
- Tokura, Y.; Kanazawa, N. Magnetic Skyrmion Materials. Chem. Rev. 2021, 121, 2857–2897. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, H.; Wang, S.; Liu, Q.; Jiang, Y.-G.; Zhang, D.W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Z.; Kong, L.; Shi, H.; Zhang, Y.; Cui, M.; Yang, D.-P. MXene-Ti3C2/CuS nanocomposites: Enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Mat. Sci. Eng. C 2019, 104, 110000. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, S.; Li, L.; Wang, A.; Zhong, Z.; Chen, L. Rationally Designed High-Performance Spin Filter Based on Two-Dimensional Half-Metal Cr2NO2. Matter 2019, 1, 1304–1315. [Google Scholar] [CrossRef]
- Heinz, B.; Brächer, T.; Schneider, M.; Wang, Q.; Lägel, B.; Friedel, A.M.; Breitbach, D.; Steinert, S.; Meyer, T.; Kewenig, M.; et al. Propagation of Spin-Wave Packets in Individual Nanosized Yttrium Iron Garnet Magnonic Conduits. Nano Lett. 2020, 20, 4220–4227. [Google Scholar] [CrossRef]
- Song, T.; Cai, X.; Tu, M.W.-Y.; Zhang, X.; Huang, B.; Wilson, N.P.; Seyler, K.L.; Zhu, L.; Taniguchi, T.; Watanabe, K.; et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218. [Google Scholar] [CrossRef]
- Gupta, V.; Cham, T.M.; Stiehl, G.M.; Bose, A.; Mittelstaedt, J.A.; Kang, K.; Jiang, S.; Mak, K.F.; Shan, J.; Buhrman, R.A.; et al. Manipulation of the van der Waals Magnet Cr2Ge2Te6 by Spin–Orbit Torques. Nano Lett. 2020, 20, 7482–7488. [Google Scholar] [CrossRef]
- Mermin, N.D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, H. Magnetic i-MXenes: A new class of multifunctional two-dimensional materials. Nanoscale 2020, 12, 5995–6001. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.; Yan, J.-A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, CrI3. Phys. Rev. B 2018, 98, 144411. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Liang, S.-J.; Ma, Z.; Xu, K.; Liu, X.; Zhang, L.; Admasu, A.S.; Cheong, S.-W.; Wang, L.; et al. Strain-Sensitive Magnetization Reversal of a van der Waals Magnet. Adv. Mater. 2020, 32, 2004533. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, C.; Sanvito, S.; Gu, Y.; Du, A. Hydrogen-Intercalated 2D Magnetic Bilayer: Controlled Magnetic Phase Transition and Half-Metallicity via Ferroelectric Switching. ACS Appl. Mater. Inter. 2022, 14, 1800–1806. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Zeng, R.; Jiang, Q.; Nie, X.; Chen, C.; Jiang, X.; Liu, J.-M. Li-ion intercalation enhanced ferromagnetism in van der Waals Fe3GeTe2 bilayer. Appl. Phys. Lett. 2021, 119, 012405. [Google Scholar] [CrossRef]
- Tang, C.; Ostrikov, K.K.; Sanvito, S.; Du, A. Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer. Nanoscale Horiz. 2021, 6, 43–48. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X.; Zhao, H.; Chen, Y.; He, Q.; Liu, J.; Lv, L.; Yang, J.; Wu, H.; Chen, L. Tuning the magnetic properties of Fe3GeTe2 by doping with 3d transition-metals. Phys. Lett. A 2021, 396, 127219. [Google Scholar] [CrossRef]
- Zhang, B.; Song, G.; Sun, J.; Leng, J.; Zhang, C.; Wang, J. Two-dimensional stable Mn based half metal and antiferromagnets promising for spintronics. Nanoscale 2020, 12, 12490–12496. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.; Das, D.; Samanta, A.; de los Reyes, C.A.; Deng, L.; Alemany, L.B.; Weldeghiorghis, T.K.; Khabashesku, V.N.; Kochat, V.; Jin, Z.; et al. Fluorinated h-BN as a magnetic semiconductor. Sci. Adv. 2017, 3, e1700842. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, X.; Wang, Y.; Krasheninnikov, A.V.; Chen, Z.; Sun, L. Tunable electronic properties and enhanced ferromagnetism in Cr2Ge2Te6 monolayer by strain engineering. Nanotechnology 2021, 32, 485408. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ren, K.; Huang, Z.; Zhu, Z.; Wang, K.; Shen, Z.; Yu, J. Remarkably improved Curie temperature for two-dimensional CrI3 by gas molecular adsorption: A DFT study. Semicond. Sci. Technol. 2021, 36, 075015. [Google Scholar] [CrossRef]
- Wang, K.; Ren, K.; Cheng, Y.; Chen, S.; Zhang, G. The impacts of molecular adsorption on antiferromagnetic MnPS3 monolayers: Enhanced magnetic anisotropy and intralayer Dzyaloshinskii–Moriya interaction. Mater. Horiz. 2022, 9, 2384–2392. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Shan, J.; Mak, K.F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, L.; Wang, Z.; Mak, K.F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, L.; Sanvito, S.; Du, A. Electric-controlled half-metallicity in magnetic van der Waals heterobilayer. J. Mater. Chem. C 2020, 8, 7034–7040. [Google Scholar] [CrossRef]
- Zhang, B.H.; Hou, Y.S.; Wang, Z.; Wu, R.Q. First-principles studies of spin-phonon coupling in monolayer Cr2Ge2Te6. Phys. Rev. B 2019, 100, 224427. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, S.; Zhu, Z.-Z.; Guo, G.-Y. Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6. Phys. Rev. B 2018, 98, 125416. [Google Scholar] [CrossRef]
- Xu, C.; Feng, J.; Xiang, H.; Bellaiche, L. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. NPJ Comput. Mater. 2018, 4, 57. [Google Scholar] [CrossRef]
- Lee, I.; Utermohlen, F.G.; Weber, D.; Hwang, K.; Zhang, C.; van Tol, J.; Goldberger, J.E.; Trivedi, N.; Hammel, P.C. Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev Ferromagnet CrI3. Phys. Rev. Lett. 2020, 124, 017201. [Google Scholar] [CrossRef]
- Wang, K.; Ren, K.; Cheng, Y.; Zhang, M.; Wang, H.; Zhang, G. Effects of molecular adsorption on the spin-wave spectrum and magnon relaxation in two-dimensional Cr2Ge2Te6. Phys. Chem. Chem. Phys. 2020, 22, 22047–22054. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-s.; Wu, R.; Freeman, A. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B 1993, 47, 14932. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.-s.; Wu, R.; Freeman, A. Validity of the force theorem for magnetocrystalline anisotropy. J. Magn. Magn. Mater. 1996, 159, 337–341. [Google Scholar] [CrossRef]
- Peng, S.; Kang, W.; Wang, M.; Cao, K.; Zhao, X.; Wang, L.; Zhang, Y.; Zhang, Y.; Zhou, Y.; Wang, K.L.; et al. Interfacial Perpendicular Magnetic Anisotropy in Sub-20 nm Tunnel Junctions for Large-Capacity Spin-Transfer Torque Magnetic Random-Access Memory. IEEE Magnetics Letters 2017, 8, 1–5. [Google Scholar] [CrossRef]
- Zhuo, W.; Lei, B.; Wu, S.; Yu, F.; Zhu, C.; Cui, J.; Sun, Z.; Ma, D.; Shi, M.; Wang, H.; et al. Manipulating Ferromagnetism in Few-Layered Cr2Ge2Te6. Adv. Mater. 2021, 33, 2008586. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ding, G.; Zhong, C.; Li, S.; Li, D.; Zhang, G. Remarkably enhanced ferromagnetism in a super-exchange governed Cr2Ge2Te6 monolayer via molecular adsorption. J. Mater. Chem. C 2019, 7, 5084–5093. [Google Scholar] [CrossRef]
- Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L.; Kim, K.S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; et al. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Lett. 2012, 12, 4025–4031. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, Z.; Niu, C.-Y.; Li, C.; Cho, J.-H.; Jia, Y. Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study. Nanoscale Res. Lett. 2016, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401. [Google Scholar] [CrossRef]
- Li, B.; Xing, T.; Zhong, M.; Huang, L.; Lei, N.; Zhang, J.; Li, J.; Wei, Z. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wang, G.; Zheng, Z.; Wang, Y.; Zhang, S.; Qi, X.; Tan, P.; Liu, L.; Xu, Z.; Li, Q.; et al. Mechanical responses of boron-doped monolayer graphene. Carbon 2019, 147, 594–601. [Google Scholar] [CrossRef]
- Yarali, M.; Brahmi, H.; Yan, Z.; Li, X.; Xie, L.; Chen, S.; Kumar, S.; Yoon, M.; Xiao, K.; Mavrokefalos, A. Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide. ACS Appl. Mater. Inter. 2018, 10, 4921–4928. [Google Scholar] [CrossRef]
- Tang, X.; Fan, D.; Peng, K.; Yang, D.; Guo, L.; Lu, X.; Dai, J.; Wang, G.; Liu, H.; Zhou, X. Dopant Induced Impurity Bands and Carrier Concentration Control for Thermoelectric Enhancement in p-Type Cr2Ge2Te6. Chem. Mater. 2017, 29, 7401–7407. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Chen, P.; Nahas, Y.; Prokhorenko, S.; Bellaiche, L. Emergence of skyrmionium in a two-dimensional CrGeSe,Te3 Janus monolayer. Phys. Rev. B 2020, 102, 241107. [Google Scholar] [CrossRef]
- Yin, Y.; Li, D.; Hu, Y.; Ding, G.; Zhou, H.; Zhang, G. Phonon stability and phonon transport of graphene-like borophene. Nanotechnology 2020, 31, 315709. [Google Scholar] [CrossRef]
- Verzhbitskiy, I.A.; Kurebayashi, H.; Cheng, H.; Zhou, J.; Khan, S.; Feng, Y.P.; Eda, G. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron 2020, 3, 460–465. [Google Scholar] [CrossRef]
- Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 1959, 10, 87–98. [Google Scholar] [CrossRef]
- Goodenough, J.B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys. Rev. 1955, 100, 564. [Google Scholar] [CrossRef]
- Cui, Q.; Liang, J.; Shao, Z.; Cui, P.; Yang, H. Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides. Phys. Rev. B 2020, 102, 094425. [Google Scholar] [CrossRef]
- Pizzochero, M.; Yazyev, O.V. Inducing magnetic phase transitions in monolayer CrI3 via lattice deformations. J. Phys. Chem. C 2020, 124, 7585–7590. [Google Scholar] [CrossRef]
- Frey, N.C.; Bandyopadhyay, A.; Kumar, H.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Surface-engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy. ACS Nano 2019, 13, 2831–2839. [Google Scholar] [CrossRef]
- Wang, K.; Hu, T.; Jia, F.; Zhao, G.; Liu, Y.; Solovyev, I.V.; Pyatakov, A.P.; Zvezdin, A.K.; Ren, W. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl. Phys. Lett. 2019, 114, 092405. [Google Scholar] [CrossRef]
- Li, X.; Ji, S.; Li, S.; Liu, P.; Wu, H.; Niu, W.; Wang, H.; Li, F.; Pu, Y. Tuning the electronic, magnetic and optical properties of monolayer Cr2Ge2Te6 through surface adsorption. Phys. Lett. A 2022, 433, 128000. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Pham, A.; Assadi, M.; Yu, A.; Li, S. Critical role of Fock exchange in characterizing dopant geometry and magnetic interaction in magnetic semiconductors. Phys. Rev. B 2014, 89, 155110. [Google Scholar] [CrossRef]
- Aras, M.; Kılıç, Ç.; Ciraci, S. Magnetic ground state in FeTe2, VS2, and NiTe2 monolayers: Antiparallel magnetic moments at chalcogen atoms. Phys. Rev. B 2020, 101, 054429. [Google Scholar] [CrossRef]
- Gao, H.; Li, M.; Yang, Y.; Zhang, P. First-principles calculation of structural, magnetic and electronic properties of PuO2−xHx, 0 ≤ x ≤ 2. J. Alloys Compd. 2021, 857, 157592. [Google Scholar] [CrossRef]
- Joshi, R.P.; Phillips, J.J.; Mitchell, K.J.; Christou, G.; Jackson, K.A.; Peralta, J.E. Accuracy of density functional theory methods for the calculation of magnetic exchange couplings in binuclear iron(III) complexes. Polyhedron 2020, 176, 114194. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio simulation of the metal/nonmetal transition in expanded fluid mercury. Phys. Rev. B 1997, 55, 7539. [Google Scholar] [CrossRef]
- Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z.; Sun, G.; et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, N.; Zhao, Y.; Jiang, X.; Zhou, S.; Zhao, J. Enhanced Ferromagnetism of CrI3 Bilayer by Self-Intercalation. Chinese Phys. Lett. 2020, 37, 107506. [Google Scholar] [CrossRef]
- Baidya, S.; Yu, J.; Kim, C.H. Tunable magnetic topological insulating phases in monolayer CrI3. Phys. Rev. B 2018, 98, 155148. [Google Scholar] [CrossRef]
- Cheng, H.-X.; Zhou, J.; Wang, C.; Ji, W.; Zhang, Y.-N. Nonvolatile electric field control of magnetism in bilayer CrI3 on monolayer In2Se3. Phys. Rev. B 2021, 104, 064443. [Google Scholar] [CrossRef]
- Georges, A.; Kotliar, G. Hubbard model in infinite dimensions. Phys. Rev. B 1992, 45, 6479. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kang, S.; Yu, J. Effect of Coulomb Interactions on the Electronic and Magnetic Properties of Two-Dimensional CrSiTe3 and CrGeTe3 Materials. J. Electron. Mater. 2019, 48, 1441–1445. [Google Scholar] [CrossRef]
- Gonze, X. Adiabatic density-functional perturbation theory. Phys. Rev. A 1995, 52, 1096. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ren, X.; Xie, J.; Cheng, B.; Liu, W.; An, T.; Qin, H.; Hu, J. Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci. 2019, 480, 300–307. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, Z.; Xue, Y.; Song, C. Strain-induced topological phase transition and enhanced Curie temperature in MnBi2Te4/CrI3 heterojunction. Phys. Rev. Mater. 2022, 6, 014011. [Google Scholar] [CrossRef]
- Guo, S.-D.; Guo, X.-S.; Zhu, Y.-T.; Ang, Y.-S. Predicted ferromagnetic monolayer CrSCl with large vertical piezoelectric response: A first-principles study. Appl. Phys. Lett. 2022, 121, 062403. [Google Scholar] [CrossRef]
System | MTe (μB) | LCr-Te (Å) | θCr-Te-Cr (º) | LCr-Cr (Å) | CCr-Te (eV) | Ef (eV) | Tc (K) |
---|---|---|---|---|---|---|---|
0.3 e doping | −0.088 | 2.772 | 92.053 | 3.989 | −1.034 | −14.62 | 123 |
0.2 e doping | −0.090 | 2.772 | 92.048 | 3.989 | −1.082 | −14.55 | 113 |
0.1 e doping | −0.086 | 2.774 | 91.953 | 3.989 | −1.092 | −14.43 | 98 |
pristine | −0.083 | 2.777 | 91.849 | 3.989 | −1.101 | −14.28 | 85 |
0.1 h doping | −0.089 | 2.779 | 91.744 | 3.989 | −1.130 | −14.05 | 77 |
0.2 h doping | −0.087 | 2.781 | 91.653 | 3.989 | −1.120 | −13.78 | 78 |
0.3 h doping | −0.089 | 2.784 | 91.535 | 3.989 | −1.106 | −13.46 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Wei, Y.; Yang, D.; Wang, K.; Ren, K.; Zhang, G. Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study. Molecules 2023, 28, 3893. https://doi.org/10.3390/molecules28093893
Hou Y, Wei Y, Yang D, Wang K, Ren K, Zhang G. Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study. Molecules. 2023; 28(9):3893. https://doi.org/10.3390/molecules28093893
Chicago/Turabian StyleHou, Yinlong, Yu Wei, Dan Yang, Ke Wang, Kai Ren, and Gang Zhang. 2023. "Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study" Molecules 28, no. 9: 3893. https://doi.org/10.3390/molecules28093893
APA StyleHou, Y., Wei, Y., Yang, D., Wang, K., Ren, K., & Zhang, G. (2023). Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study. Molecules, 28(9), 3893. https://doi.org/10.3390/molecules28093893