Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study
Abstract
1. Introduction
2. Results and Discussion
3. Computational Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Z.; Shang, J.; Jiang, C.; Rasmita, A.; Gao, W.; Yu, T. Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3. Nano Lett. 2019, 19, 3138–3142. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Wang, T.; Jin, H.; Wang, H.; Dai, Y. Stacking-Independent Ferromagnetism in Bilayer VI3 with Half-Metallic Characteristic. J. Phys. Chem. Lett. 2020, 11, 2158–2164. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, J.-F.; Li, C.; Ying, T.; Li, S.; Zhang, X.; Liu, K.; Lei, H. Ferromagnetic van der Waals Crystal VI3. J. Am. Chem. Soc. 2019, 141, 5326–5333. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, Z.; Xu, M.; Yang, S.; Si, K.; Liu, L.; Wang, X.; Jiang, H.; Li, B.; Qin, P.; et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, W.; Wang, X.; Sui, Q.; Zhang, T.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S.; et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363. [Google Scholar] [CrossRef]
- Luong, D.H.; Phan, T.L.; Ghimire, G.; Duong, D.L.; Lee, Y.H. Revealing antiferromagnetic transition of van der Waals MnPS3 via vertical tunneling electrical resistance measurement. APL. Mater. 2019, 7, 081102. [Google Scholar] [CrossRef]
- Kargar, F.; Coleman, E.A.; Ghosh, S.; Lee, J.; Gomez, M.J.; Liu, Y.; Magana, A.S.; Barani, Z.; Mohammadzadeh, A.; Debnath, B.; et al. Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductors. ACS Nano 2020, 14, 2424–2435. [Google Scholar] [CrossRef]
- Feringa, F.; Bauer, G.E.W.; van Wees, B.J. Observation of magnetization surface textures of the van der Waals antiferromagnet FePS3 by spin Hall magnetoresistance. Phys. Rev. B 2022, 105, 214408. [Google Scholar] [CrossRef]
- Olsen, T. Magnetic anisotropy and exchange interactions of two-dimensional FePS3, NiPS3 and MnPS3 from first principles calculations. J. Phys. D Appl. Phys. 2021, 54, 314001. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Shi, M.Z.; Guo, Z.; Xu, Z.; Wang, J.; Chen, X.H.; Zhang, Y. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Du, S.; Wang, Z.; Gu, B.-L.; Zhang, S.-C.; He, K.; Duan, W.; Xu, Y. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 2019, 5, eaaw5685. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, B.; Zhang, X.; Yuan, S.; Ma, L.; Wang, J. Magnetic two-dimensional layered crystals meet with ferromagnetic semiconductors. InfoMat 2020, 2, 639–655. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Zhong, C.; He, J. Tuning magnetism at the two-dimensional limit: A theoretical perspective. Nanoscale 2021, 13, 19812–19827. [Google Scholar] [CrossRef]
- Tokura, Y.; Kanazawa, N. Magnetic Skyrmion Materials. Chem. Rev. 2021, 121, 2857–2897. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, H.; Wang, S.; Liu, Q.; Jiang, Y.-G.; Zhang, D.W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Z.; Kong, L.; Shi, H.; Zhang, Y.; Cui, M.; Yang, D.-P. MXene-Ti3C2/CuS nanocomposites: Enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Mat. Sci. Eng. C 2019, 104, 110000. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, S.; Li, L.; Wang, A.; Zhong, Z.; Chen, L. Rationally Designed High-Performance Spin Filter Based on Two-Dimensional Half-Metal Cr2NO2. Matter 2019, 1, 1304–1315. [Google Scholar] [CrossRef]
- Heinz, B.; Brächer, T.; Schneider, M.; Wang, Q.; Lägel, B.; Friedel, A.M.; Breitbach, D.; Steinert, S.; Meyer, T.; Kewenig, M.; et al. Propagation of Spin-Wave Packets in Individual Nanosized Yttrium Iron Garnet Magnonic Conduits. Nano Lett. 2020, 20, 4220–4227. [Google Scholar] [CrossRef]
- Song, T.; Cai, X.; Tu, M.W.-Y.; Zhang, X.; Huang, B.; Wilson, N.P.; Seyler, K.L.; Zhu, L.; Taniguchi, T.; Watanabe, K.; et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218. [Google Scholar] [CrossRef]
- Gupta, V.; Cham, T.M.; Stiehl, G.M.; Bose, A.; Mittelstaedt, J.A.; Kang, K.; Jiang, S.; Mak, K.F.; Shan, J.; Buhrman, R.A.; et al. Manipulation of the van der Waals Magnet Cr2Ge2Te6 by Spin–Orbit Torques. Nano Lett. 2020, 20, 7482–7488. [Google Scholar] [CrossRef]
- Mermin, N.D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, H. Magnetic i-MXenes: A new class of multifunctional two-dimensional materials. Nanoscale 2020, 12, 5995–6001. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.; Yan, J.-A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, CrI3. Phys. Rev. B 2018, 98, 144411. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Liang, S.-J.; Ma, Z.; Xu, K.; Liu, X.; Zhang, L.; Admasu, A.S.; Cheong, S.-W.; Wang, L.; et al. Strain-Sensitive Magnetization Reversal of a van der Waals Magnet. Adv. Mater. 2020, 32, 2004533. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, C.; Sanvito, S.; Gu, Y.; Du, A. Hydrogen-Intercalated 2D Magnetic Bilayer: Controlled Magnetic Phase Transition and Half-Metallicity via Ferroelectric Switching. ACS Appl. Mater. Inter. 2022, 14, 1800–1806. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Zeng, R.; Jiang, Q.; Nie, X.; Chen, C.; Jiang, X.; Liu, J.-M. Li-ion intercalation enhanced ferromagnetism in van der Waals Fe3GeTe2 bilayer. Appl. Phys. Lett. 2021, 119, 012405. [Google Scholar] [CrossRef]
- Tang, C.; Ostrikov, K.K.; Sanvito, S.; Du, A. Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer. Nanoscale Horiz. 2021, 6, 43–48. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X.; Zhao, H.; Chen, Y.; He, Q.; Liu, J.; Lv, L.; Yang, J.; Wu, H.; Chen, L. Tuning the magnetic properties of Fe3GeTe2 by doping with 3d transition-metals. Phys. Lett. A 2021, 396, 127219. [Google Scholar] [CrossRef]
- Zhang, B.; Song, G.; Sun, J.; Leng, J.; Zhang, C.; Wang, J. Two-dimensional stable Mn based half metal and antiferromagnets promising for spintronics. Nanoscale 2020, 12, 12490–12496. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.; Das, D.; Samanta, A.; de los Reyes, C.A.; Deng, L.; Alemany, L.B.; Weldeghiorghis, T.K.; Khabashesku, V.N.; Kochat, V.; Jin, Z.; et al. Fluorinated h-BN as a magnetic semiconductor. Sci. Adv. 2017, 3, e1700842. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, X.; Wang, Y.; Krasheninnikov, A.V.; Chen, Z.; Sun, L. Tunable electronic properties and enhanced ferromagnetism in Cr2Ge2Te6 monolayer by strain engineering. Nanotechnology 2021, 32, 485408. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ren, K.; Huang, Z.; Zhu, Z.; Wang, K.; Shen, Z.; Yu, J. Remarkably improved Curie temperature for two-dimensional CrI3 by gas molecular adsorption: A DFT study. Semicond. Sci. Technol. 2021, 36, 075015. [Google Scholar] [CrossRef]
- Wang, K.; Ren, K.; Cheng, Y.; Chen, S.; Zhang, G. The impacts of molecular adsorption on antiferromagnetic MnPS3 monolayers: Enhanced magnetic anisotropy and intralayer Dzyaloshinskii–Moriya interaction. Mater. Horiz. 2022, 9, 2384–2392. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Shan, J.; Mak, K.F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, L.; Wang, Z.; Mak, K.F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, L.; Sanvito, S.; Du, A. Electric-controlled half-metallicity in magnetic van der Waals heterobilayer. J. Mater. Chem. C 2020, 8, 7034–7040. [Google Scholar] [CrossRef]
- Zhang, B.H.; Hou, Y.S.; Wang, Z.; Wu, R.Q. First-principles studies of spin-phonon coupling in monolayer Cr2Ge2Te6. Phys. Rev. B 2019, 100, 224427. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, S.; Zhu, Z.-Z.; Guo, G.-Y. Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6. Phys. Rev. B 2018, 98, 125416. [Google Scholar] [CrossRef]
- Xu, C.; Feng, J.; Xiang, H.; Bellaiche, L. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. NPJ Comput. Mater. 2018, 4, 57. [Google Scholar] [CrossRef]
- Lee, I.; Utermohlen, F.G.; Weber, D.; Hwang, K.; Zhang, C.; van Tol, J.; Goldberger, J.E.; Trivedi, N.; Hammel, P.C. Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev Ferromagnet CrI3. Phys. Rev. Lett. 2020, 124, 017201. [Google Scholar] [CrossRef]
- Wang, K.; Ren, K.; Cheng, Y.; Zhang, M.; Wang, H.; Zhang, G. Effects of molecular adsorption on the spin-wave spectrum and magnon relaxation in two-dimensional Cr2Ge2Te6. Phys. Chem. Chem. Phys. 2020, 22, 22047–22054. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-s.; Wu, R.; Freeman, A. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B 1993, 47, 14932. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.-s.; Wu, R.; Freeman, A. Validity of the force theorem for magnetocrystalline anisotropy. J. Magn. Magn. Mater. 1996, 159, 337–341. [Google Scholar] [CrossRef]
- Peng, S.; Kang, W.; Wang, M.; Cao, K.; Zhao, X.; Wang, L.; Zhang, Y.; Zhang, Y.; Zhou, Y.; Wang, K.L.; et al. Interfacial Perpendicular Magnetic Anisotropy in Sub-20 nm Tunnel Junctions for Large-Capacity Spin-Transfer Torque Magnetic Random-Access Memory. IEEE Magnetics Letters 2017, 8, 1–5. [Google Scholar] [CrossRef]
- Zhuo, W.; Lei, B.; Wu, S.; Yu, F.; Zhu, C.; Cui, J.; Sun, Z.; Ma, D.; Shi, M.; Wang, H.; et al. Manipulating Ferromagnetism in Few-Layered Cr2Ge2Te6. Adv. Mater. 2021, 33, 2008586. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ding, G.; Zhong, C.; Li, S.; Li, D.; Zhang, G. Remarkably enhanced ferromagnetism in a super-exchange governed Cr2Ge2Te6 monolayer via molecular adsorption. J. Mater. Chem. C 2019, 7, 5084–5093. [Google Scholar] [CrossRef]
- Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L.; Kim, K.S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; et al. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Lett. 2012, 12, 4025–4031. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, Z.; Niu, C.-Y.; Li, C.; Cho, J.-H.; Jia, Y. Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study. Nanoscale Res. Lett. 2016, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401. [Google Scholar] [CrossRef]
- Li, B.; Xing, T.; Zhong, M.; Huang, L.; Lei, N.; Zhang, J.; Li, J.; Wei, Z. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wang, G.; Zheng, Z.; Wang, Y.; Zhang, S.; Qi, X.; Tan, P.; Liu, L.; Xu, Z.; Li, Q.; et al. Mechanical responses of boron-doped monolayer graphene. Carbon 2019, 147, 594–601. [Google Scholar] [CrossRef]
- Yarali, M.; Brahmi, H.; Yan, Z.; Li, X.; Xie, L.; Chen, S.; Kumar, S.; Yoon, M.; Xiao, K.; Mavrokefalos, A. Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide. ACS Appl. Mater. Inter. 2018, 10, 4921–4928. [Google Scholar] [CrossRef]
- Tang, X.; Fan, D.; Peng, K.; Yang, D.; Guo, L.; Lu, X.; Dai, J.; Wang, G.; Liu, H.; Zhou, X. Dopant Induced Impurity Bands and Carrier Concentration Control for Thermoelectric Enhancement in p-Type Cr2Ge2Te6. Chem. Mater. 2017, 29, 7401–7407. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Chen, P.; Nahas, Y.; Prokhorenko, S.; Bellaiche, L. Emergence of skyrmionium in a two-dimensional CrGeSe,Te3 Janus monolayer. Phys. Rev. B 2020, 102, 241107. [Google Scholar] [CrossRef]
- Yin, Y.; Li, D.; Hu, Y.; Ding, G.; Zhou, H.; Zhang, G. Phonon stability and phonon transport of graphene-like borophene. Nanotechnology 2020, 31, 315709. [Google Scholar] [CrossRef]
- Verzhbitskiy, I.A.; Kurebayashi, H.; Cheng, H.; Zhou, J.; Khan, S.; Feng, Y.P.; Eda, G. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron 2020, 3, 460–465. [Google Scholar] [CrossRef]
- Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 1959, 10, 87–98. [Google Scholar] [CrossRef]
- Goodenough, J.B. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys. Rev. 1955, 100, 564. [Google Scholar] [CrossRef]
- Cui, Q.; Liang, J.; Shao, Z.; Cui, P.; Yang, H. Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides. Phys. Rev. B 2020, 102, 094425. [Google Scholar] [CrossRef]
- Pizzochero, M.; Yazyev, O.V. Inducing magnetic phase transitions in monolayer CrI3 via lattice deformations. J. Phys. Chem. C 2020, 124, 7585–7590. [Google Scholar] [CrossRef]
- Frey, N.C.; Bandyopadhyay, A.; Kumar, H.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Surface-engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy. ACS Nano 2019, 13, 2831–2839. [Google Scholar] [CrossRef]
- Wang, K.; Hu, T.; Jia, F.; Zhao, G.; Liu, Y.; Solovyev, I.V.; Pyatakov, A.P.; Zvezdin, A.K.; Ren, W. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering. Appl. Phys. Lett. 2019, 114, 092405. [Google Scholar] [CrossRef]
- Li, X.; Ji, S.; Li, S.; Liu, P.; Wu, H.; Niu, W.; Wang, H.; Li, F.; Pu, Y. Tuning the electronic, magnetic and optical properties of monolayer Cr2Ge2Te6 through surface adsorption. Phys. Lett. A 2022, 433, 128000. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Pham, A.; Assadi, M.; Yu, A.; Li, S. Critical role of Fock exchange in characterizing dopant geometry and magnetic interaction in magnetic semiconductors. Phys. Rev. B 2014, 89, 155110. [Google Scholar] [CrossRef]
- Aras, M.; Kılıç, Ç.; Ciraci, S. Magnetic ground state in FeTe2, VS2, and NiTe2 monolayers: Antiparallel magnetic moments at chalcogen atoms. Phys. Rev. B 2020, 101, 054429. [Google Scholar] [CrossRef]
- Gao, H.; Li, M.; Yang, Y.; Zhang, P. First-principles calculation of structural, magnetic and electronic properties of PuO2−xHx, 0 ≤ x ≤ 2. J. Alloys Compd. 2021, 857, 157592. [Google Scholar] [CrossRef]
- Joshi, R.P.; Phillips, J.J.; Mitchell, K.J.; Christou, G.; Jackson, K.A.; Peralta, J.E. Accuracy of density functional theory methods for the calculation of magnetic exchange couplings in binuclear iron(III) complexes. Polyhedron 2020, 176, 114194. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio simulation of the metal/nonmetal transition in expanded fluid mercury. Phys. Rev. B 1997, 55, 7539. [Google Scholar] [CrossRef]
- Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z.; Sun, G.; et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, N.; Zhao, Y.; Jiang, X.; Zhou, S.; Zhao, J. Enhanced Ferromagnetism of CrI3 Bilayer by Self-Intercalation. Chinese Phys. Lett. 2020, 37, 107506. [Google Scholar] [CrossRef]
- Baidya, S.; Yu, J.; Kim, C.H. Tunable magnetic topological insulating phases in monolayer CrI3. Phys. Rev. B 2018, 98, 155148. [Google Scholar] [CrossRef]
- Cheng, H.-X.; Zhou, J.; Wang, C.; Ji, W.; Zhang, Y.-N. Nonvolatile electric field control of magnetism in bilayer CrI3 on monolayer In2Se3. Phys. Rev. B 2021, 104, 064443. [Google Scholar] [CrossRef]
- Georges, A.; Kotliar, G. Hubbard model in infinite dimensions. Phys. Rev. B 1992, 45, 6479. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kang, S.; Yu, J. Effect of Coulomb Interactions on the Electronic and Magnetic Properties of Two-Dimensional CrSiTe3 and CrGeTe3 Materials. J. Electron. Mater. 2019, 48, 1441–1445. [Google Scholar] [CrossRef]
- Gonze, X. Adiabatic density-functional perturbation theory. Phys. Rev. A 1995, 52, 1096. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ren, X.; Xie, J.; Cheng, B.; Liu, W.; An, T.; Qin, H.; Hu, J. Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci. 2019, 480, 300–307. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, Z.; Xue, Y.; Song, C. Strain-induced topological phase transition and enhanced Curie temperature in MnBi2Te4/CrI3 heterojunction. Phys. Rev. Mater. 2022, 6, 014011. [Google Scholar] [CrossRef]
- Guo, S.-D.; Guo, X.-S.; Zhu, Y.-T.; Ang, Y.-S. Predicted ferromagnetic monolayer CrSCl with large vertical piezoelectric response: A first-principles study. Appl. Phys. Lett. 2022, 121, 062403. [Google Scholar] [CrossRef]
System | MTe (μB) | LCr-Te (Å) | θCr-Te-Cr (º) | LCr-Cr (Å) | CCr-Te (eV) | Ef (eV) | Tc (K) |
---|---|---|---|---|---|---|---|
0.3 e doping | −0.088 | 2.772 | 92.053 | 3.989 | −1.034 | −14.62 | 123 |
0.2 e doping | −0.090 | 2.772 | 92.048 | 3.989 | −1.082 | −14.55 | 113 |
0.1 e doping | −0.086 | 2.774 | 91.953 | 3.989 | −1.092 | −14.43 | 98 |
pristine | −0.083 | 2.777 | 91.849 | 3.989 | −1.101 | −14.28 | 85 |
0.1 h doping | −0.089 | 2.779 | 91.744 | 3.989 | −1.130 | −14.05 | 77 |
0.2 h doping | −0.087 | 2.781 | 91.653 | 3.989 | −1.120 | −13.78 | 78 |
0.3 h doping | −0.089 | 2.784 | 91.535 | 3.989 | −1.106 | −13.46 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Wei, Y.; Yang, D.; Wang, K.; Ren, K.; Zhang, G. Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study. Molecules 2023, 28, 3893. https://doi.org/10.3390/molecules28093893
Hou Y, Wei Y, Yang D, Wang K, Ren K, Zhang G. Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study. Molecules. 2023; 28(9):3893. https://doi.org/10.3390/molecules28093893
Chicago/Turabian StyleHou, Yinlong, Yu Wei, Dan Yang, Ke Wang, Kai Ren, and Gang Zhang. 2023. "Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study" Molecules 28, no. 9: 3893. https://doi.org/10.3390/molecules28093893
APA StyleHou, Y., Wei, Y., Yang, D., Wang, K., Ren, K., & Zhang, G. (2023). Enhancing the Curie Temperature in Cr2Ge2Te6 via Charge Doping: A First-Principles Study. Molecules, 28(9), 3893. https://doi.org/10.3390/molecules28093893