Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification
Abstract
:1. Introduction
2. Results
2.1. Feasibility Study of the Fluorescent Biosensor
2.2. Optimization of the Testing Conditions
2.3. Sensitivity of the Aptamer Biosensor
2.4. Specificity and Stability of the Aptamer Biosensor
2.5. Actual Sample Testing
3. Materials and Methods
3.1. Materials and Reagents
3.2. Apparatus
3.3. Optimization of the Experimental Conditions
3.4. Detection of β-Lg
3.5. Selectivity Experiment
3.6. Stability and Reproducibility Experiment
3.7. Detection of β-Lg in Actual Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Renz, H.; Allen, K.J.; Sicherer, S.H.; Sampson, H.A.; Lack, G.; Beyer, K.; Oettgen, H.C. Food Allergy. Nat. Rev. Dis. Prim. 2018, 4, 17098. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Sampson, H.A. Food Allergy. J. Allergy Clin. Immunol. 2010, 125, S116–S125. [Google Scholar] [CrossRef] [PubMed]
- McClain, S.; Bowman, C.; Fernández-Rivas, M.; Ladics, G.S.; Ree, R.V. Allergic Sensitization: Food-and Protein-Related Factors. Clin. Transl. Allergy 2014, 4, 11. [Google Scholar] [CrossRef]
- Pecora, V.; Mennini, M.; Calandrelli, V.; Patriarca, G.; Valluzzi, R.; Fierro, V. How to Actively Treat Food Allergy. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 248–257. [Google Scholar] [CrossRef]
- Park, Y.W.; Haenlein, G.F. Milk and Dairy Products in Human Nutrition: Production, Composition and Health; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Yin, J.Y.; Huo, J.S.; Xin, X.; Jing, S.; Huang, J. Study on the Simultaneously Quantitative Detection for β-Lactoglobulin and Lactoferrin of Cow Milk by Using Protein Chip Technique. Biomed. Environ. Sci. 2017, 30, 875–886. [Google Scholar] [PubMed]
- Aoki, T.; Iskandar, S.; Yoshida, T.; Takahashi, K.; Hattori, M. Reduced Immunogenicity of β-Lactoglobulin by Conjugating with Chitosan. Biosci. Biotechnol. Biochem. 2006, 70, 2349–2356. [Google Scholar] [CrossRef]
- Pan, M.; Hong, L.; Yang, J.; Xie, X.; Liu, K.; Wang, S. Fabrication and Evaluation of a Portable and Reproducible Quartz Crystal Microbalance Immunochip for Label-Free Detection of β-Lactoglobulin Allergen in Milk Products. Food Sci. Hum. Wellness 2022, 11, 1315–1321. [Google Scholar] [CrossRef]
- Kürzl, C.; Wohlschläger, H.; Schiffer, S.; Kulozik, U. Concentration, Purification and Quantification of Milk Protein Residues Following Cleaning Processes Using a Combination of SPE and RP-HPLC. MethodsX 2022, 9, 101695. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Li, M.; Yang, Y.; Wang, Z.; Miao, J.; Zhao, Z.; Yang, J. Detection of the Adulteration of Camel Milk Powder with Cow Milk by Ultra-High Performance Liquid Chromatography (UPLC). Int. Dairy J. 2021, 121, 105117. [Google Scholar] [CrossRef]
- Ji, J.; Zhu, P.; Pi, F.; Sun, C.; Sun, J.; Jia, M.; Ying, C.; Zhang, Y.; Sun, X. Development of a Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Detection of the Main Milk Allergens. Food Control 2017, 74, 79–88. [Google Scholar] [CrossRef]
- Boitz, L.I.; Fiechter, G.; Seifried, R.K.; Mayer, H.K. A Novel Ultra-High Performance Liquid Chromatography Method for the Rapid Determination of β-Lactoglobulin as Heat Load Indicator in Commercial Milk Samples. J. Chromatogr. A 2015, 1386, 98–102. [Google Scholar] [CrossRef]
- Khan, M.U.; Lin, H.; Hang, T.; Zhao, J.; Dasanayaka, B.P.; Zhang, J.; Ahmed, I.; Zhang, Z.; Jiang, Y.; Qazi, I.M. Development of a Sandwich Enzyme-Linked Immunosorbent Kit for Reliable Detection of Milk Allergens in Processed Food. Anal. Biochem. 2022, 648, 114667. [Google Scholar] [CrossRef]
- He, S.; Li, X.; Gao, J.; Tong, P.; Chen, H. Development of Sandwich ELISA for Testing Bovine β-Lactoglobulin Allergenic Residues by Specific Polyclonal Antibody against Human IgE Binding Epitopes. Food Chem. 2017, 227, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Pan, M.; Yang, X.; Xie, X.; Liu, K.; Yang, J.; Wang, S.; Wang, S. A UCMPs@ MIL-100 Based Thermo-Sensitive Molecularly Imprinted Fluorescence Sensor for Effective Detection of β-Lactoglobulin Allergen in Milk Products. J. Nanobiotechnol. 2022, 20, 51. [Google Scholar] [CrossRef]
- Duan, N.; Yao, T.; Li, C.; Wang, Z.; Wu, S. Surface-Enhanced Raman Spectroscopy Relying on Bimetallic Au–Ag Nanourchins for the Detection of the Food Allergen β-Lactoglobulin. Talanta 2022, 245, 123445. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.P.; Mohd Naim, N.F.; Keasberry, N.A.; Ahmed, M.U. Electrochemical Detection of Β-Lactoglobulin Allergen Using Titanium Dioxide/Carbon Nanochips/Gold Nanocomposite-based Biosensor. Electroanalysis 2022, 34, 684–691. [Google Scholar] [CrossRef]
- Li, Z.; Wen, F.; Li, Z.; Zheng, N.; Jiang, J.; Xu, D. Simultaneous Detection of α-Lactoalbumin, β-Lactoglobulin and Lactoferrin in Milk by Visualized Microarray. BMC Biotechnol. 2017, 17, 72. [Google Scholar] [CrossRef]
- Horká, M.; Šalplachta, J.; Karásek, P.; Roth, M. Sensitive Identification of Milk Protein Allergens Using On-Line Combination of Transient Isotachophoresis/Micellar Electrokinetic Chromatography and Capillary Isoelectric Focusing in Fused Silica Capillary with Roughened Part. Food Chem. 2022, 377, 131986. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-Based Biosensors. TrAC Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Kim, Y.S.; Raston, N.H.A.; Gu, M.B. Aptamer-Based Nanobiosensors. Biosens. Bioelectron. 2016, 76, 2–19. [Google Scholar]
- Liu, C.; Lu, C.; Tang, Z.; Chen, X.; Wang, G.; Sun, F. Aptamer-Functionalized Magnetic Nanoparticles for Simultaneous Fluorometric Determination of Oxytetracycline and Kanamycin. Microchim. Acta 2015, 182, 2567–2575. [Google Scholar] [CrossRef]
- Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S.-K.; Lee, J.; Shin, J.H.; Ban, C. Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction. Anal. Chem. 2015, 87, 9869–9875. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wu, T.; Zhang, Y.; Ling, N.; Zheng, L.; Zhang, S.-L.; Sun, Y.; Wang, X.; Ye, Y. Engineering of a Dual-Recognition Ratiometric Fluorescent Nanosensor with a Remarkably Large Stokes Shift for Accurate Tracking of Pathogenic Bacteria at the Single-Cell Level. Anal. Chem. 2020, 92, 13396–13404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Wang, F.; Zhang, Y.; Wang, H.; Liu, Y. In Situ Formation of Gold Nanoparticles Decorated Ti3C2 MXenes Nanoprobe for Highly Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Anal. Chem. 2020, 92, 5546–5553. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Yan, X.; Li, M.; Liu, H.; Li, J.; Wang, L.; Wang, K.; Lu, X.; Wang, S.; He, B. Ultrasensitive Detection of Chloramphenicol Using Electrochemical Aptamer Sensor: A Mini Review. Electrochem. Commun. 2020, 120, 106835. [Google Scholar] [CrossRef]
- Sun, L.; Wu, L.; Zhao, Q. Aptamer Based Surface Plasmon Resonance Sensor for Aflatoxin B1. Microchim. Acta 2017, 184, 2605–2610. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, Y.; Xiu, F.-R.; Hou, J. An Aptamer-Based Colorimetric Sensing of Acetamiprid in Environmental Samples: Convenience, Sensitivity and Practicability. Sens. Actuators B Chem. 2020, 304, 127359. [Google Scholar] [CrossRef]
- Zuo, X.; Zhang, H.; Zhu, Q.; Wang, W.; Feng, J.; Chen, X. A Dual-Color Fluorescent Biosensing Platform Based on WS2 Nanosheet for Detection of Hg2+ and Ag+. Biosens. Bioelectron. 2016, 85, 464–470. [Google Scholar] [CrossRef]
- Wang, P.; Wang, A.; Hassan, M.M.; Ouyang, Q.; Li, H.; Chen, Q. A Highly Sensitive Upconversion Nanoparticles-WS2 Nanosheet Sensing Platform for Escherichia Coli Detection. Sens. Actuators B Chem. 2020, 320, 128434. [Google Scholar] [CrossRef]
- Bi, X.; Li, L.; Luo, L.; Liu, X.; Li, J.; You, T. A Ratiometric Fluorescence Aptasensor Based on Photoinduced Electron Transfer from CdTe QDs to WS2 NTs for the Sensitive Detection of Zearalenone in Cereal Crops. Food Chem. 2022, 385, 132657. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, Y.; Zhou, P.; Wang, C.; Tao, H.; Wu, Y. Colorimetric Detection of Kanamycin Residue in Foods Based on the Aptamer-Enhanced Peroxidase-Mimicking Activity of Layered WS2 Nanosheets. J. Agric. Food Chem. 2021, 69, 2884–2893. [Google Scholar] [CrossRef]
- Hong, C.; Zhang, X.; Ye, S.; Yang, H.; Huang, Z.; Yang, D.; Cai, R.; Tan, W. Aptamer-Pendant DNA Tetrahedron Nanostructure Probe for Ultrasensitive Detection of Tetracycline by Coupling Target-Triggered Rolling Circle Amplification. ACS Appl. Mater. Interfaces 2021, 13, 19695–19700. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, M.; Li, M.; Xiao, Z.; Ling, L. Hybridization Chain Reaction and DNAzyme-based Dual Signal Amplification Strategy for Sensitive Fluorescent Sensing of Aflatoxin B1 by using the Pivot of Triplex DNA. Food Res. Int. 2022, 158, 111538. [Google Scholar] [CrossRef]
- Zhou, H.; Duan, S.; Huang, J.; He, F. An Ultrasensitive Electrochemical Biosensor for Pseudomonas Aeruginosaassay based on a Rolling Circle Amplification-Assisted Multipedal DNA Walker. Chem. Commun. 2020, 56, 6273–6276. [Google Scholar] [CrossRef]
- Lu, C.; Li, J.; Lin, M.; Wang, Y.; Yang, H.; Chen, X.; Chen, G. Amplified Aptamer-based Assay through Catalytic Recycling of the Analyte. Angew. Chem. Int. Ed. 2010, 122, 8632–8635. [Google Scholar] [CrossRef]
- Ma, L.; Guo, T.; Pan, S.; Zhang, Y. A Fluorometric Aptasensor for Patulin based on the Use of Magnetized Graphene Oxide and DNase I-Assisted Target Recycling Amplification. Microchim. Acta 2018, 185, 487. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Wang, C.; Li, C.; Wang, H.; Zhao, Y. Amplified using DNase I and Aptamer/Graphene Oxide for Sensing Prostate Specific Antigen in Human Serum. Sens. Actuators B Chem. 2017, 244, 928–933. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, R.; Liu, Z. Establishing water-soluble layered WS2 nanosheet as a platform for biosensing. Anal. Chem. 2014, 86, 3610–3615. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Li, J.; Liu, Q.; Qiu, L.; Tan, W. Nucleic acid-functionalized transition metal nanosheets for biosensing applications. Biosens. Bioelectron. 2017, 89, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Aurelio, R.D.; Piekarska, M.; Temblay, J.; Pleasants, M.; Trinh, L.; Rodgers, T.L.; Tothill, I.E. Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors 2018, 8, 32. [Google Scholar] [CrossRef]
- Amor-Gutiérrez, O.; Selvolini, G.; Fernández-Abedul, M.T.; de la Escosura-Muñiz, A.; Marrazza, G. Folding-Based Electrochemical Aptasensor for the Determination of β-Lactoglobulin on Poly-L-Lysine Modified Graphite Electrodes. Sensors 2020, 20, 2349. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Zourob, M. In Vitro Selection of DNA Aptamers Targeting β-Lactoglobulin and Their Integration in Graphene-Based Biosensor for the Detection of Milk Allergen. Biosens. Bioelectron. 2017, 91, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Wang, J.; Wang, Y.; Huang, Z.; Yang, H.; Yang, D.; Cai, R.; Tan, W. Fluorescence Detection of Milk Allergen β-Lactoglobulin Based on Aptamers and WS2 Nanosheets. J. Mater. Chem. B 2022, 10, 6752–6757. [Google Scholar] [CrossRef] [PubMed]
Methods | Linear Range (μg·mL−1) | LOD (μg·mL−1) | References |
---|---|---|---|
QCM immunochip | 0.5–1000 | 0.04 | [8] |
LC-MS/MS | 0.48–31.25 | 0.2 | [11] |
UPLC | 20–560 | 7 | [12] |
Sandwich ELISA | 0.03125–8 | 1.96 × 10−3 | [14] |
Fluorescence sensor | 100–800 | 43 | [15] |
Surface Plasmon Resonance | 0.49–1000 | 0.164 | [41] |
Electrochemical aptasensor | 1 × 10−4–0.01 | 9 × 10−5 | [42] |
Fluorescence aptamer biosensor | 1 × 10−3–0.1 | 3.44 × 10−4 | This work |
Milk Samples | Detected Concentration (mg·mL−1) | t-Test | |
---|---|---|---|
This Work | HPLC | ||
1 | 3.48 ± 0.16 | 3.39 ± 0.04 | 0.92 |
2 | 3.53 ± 0.17 | 3.62 ± 0.08 | 0.82 |
3 | 3.90 ± 0.09 | 4.07 ± 0.07 | 2.60 |
Samples | β-Lg Spiked (ng·mL−1) | β-Lg Found (ng·mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Infant formula | - | Not detected | - | - |
1 | 0.978 | 97.8 | 3.8 | |
10 | 9.95 | 99.5 | 3.3 | |
100 | 94.31 | 94.3 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, S.; Chen, W.; Wang, J.; Li, K.; Hong, C.; Zhang, K.; Chen, Q. Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification. Molecules 2023, 28, 3502. https://doi.org/10.3390/molecules28083502
Wang Y, Chen S, Chen W, Wang J, Li K, Hong C, Zhang K, Chen Q. Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification. Molecules. 2023; 28(8):3502. https://doi.org/10.3390/molecules28083502
Chicago/Turabian StyleWang, Yuying, Sisi Chen, Wanmei Chen, Jingjing Wang, Kun Li, Chengyi Hong, Kailong Zhang, and Quansheng Chen. 2023. "Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification" Molecules 28, no. 8: 3502. https://doi.org/10.3390/molecules28083502
APA StyleWang, Y., Chen, S., Chen, W., Wang, J., Li, K., Hong, C., Zhang, K., & Chen, Q. (2023). Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification. Molecules, 28(8), 3502. https://doi.org/10.3390/molecules28083502