Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-Layer Capacitor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of SBEs
2.1.1. FTIR Analysis
- According to a previous study [34], the IR spectra of glycerol consist of a broad absorption band situated at 3282 cm−1 which belongs to the O-H stretch and a tiny doublet at 2932 cm−1 due to the asymmetric stretch of C-H. Other prominent peaks of pure glycerol include C-O-H around 1414 cm−1 and the C-O stretch around 1029 cm−1 [34,35]. Very closely, the results reported in this study show that the O-H and C-H bands of glycerol appear at the vicinity of 3275–3285 cm−1 and 2929–2937 cm−1, respectively. Similarly, the C-O-H and the C-O stretching vibrations occur at 1420 and 1033 cm−1, respectively.
- Compared to the IR spectra of MC/PC and MC/PC/K3PO4 reported by Adam et al. [2], the influence of glycerol on the complexation of MC/PC with K3PO4 is confirmed by the alteration of the IR peaks as presented in Figure 1. As seen, the predominant OH stretch of 50 wt.% MC/PC/K3PO4 (SC0) shifted from 3354 cm−1 to around 3423 cm−1 for the glycerol-plasticized samples. The prominence of the O-H band peaks indicates complexation within the electrolyte, which promotes the dissociation of ionic species, thereby raising the ionic conductivity. Similarly to the report of Gupta and Varshney [36], the shift in the IR band assignment of the polymer–salt complex is attributed to the interplay between polymers’ (here, MC and PC) segmental motion, as well as the ion (here, K+)-hopping mechanism.
- In K3PO4, all potassium atoms are bonded individually. The loosely bonded potassium atom dissociates easily from the parent compound to form K+ and migrates from one point to another. This ion is thus responsible for conduction within the polymer matrix. The addition of glycerol in SBEs creates more pathways for potassium ion mobility and also facilitates the dissociation of ion aggregates from the salt, thereby increasing the concentration of conduction ions [31]. This is evident in the IR band shift observed for the OH stretch of SC50. Similar observations are seen in other band assignments of all of the glycerol-plasticized samples.
- At 2850 cm−1, the C-H asymmetrical stretching of the SBE is highly noticeable. The prominence of this peak grew as the concentration of glycerol rose, suggesting the complex evolution of glycerol in SBE. Similarly to this work, the shift of the C-H peak according to Aziz et al. [37] demonstrates the formation of a complex interaction between the CS-MC-NH4SCN system and the glycerol plasticizer.
- The COO− stretch, C-H rock, and C-O-C stretch in the unplasticized sample (SC0) may be found around 1665 cm−1, 1438 cm−1, and 1014 cm−1, respectively. These peaks were altered by the inclusion of glycerol, with a minor shift noted in each instance as the glycerol content increased. The observed IR peak shift indicates that glycerol content influences the interaction of the polymer–salt complex [38]. The inclusion of glycerol causes more salts to dissolve into free ions (due to its high dielectric constant), resulting in more ions interacting with oxygen atoms in the polymer–salt plasticizer system. Therefore, all changes observed in the FTIR spectra confirm the complexation of MC, PC, K3PO4, and glycerol.
2.1.2. XRD Studies
2.2. Electrochemical Studies of SBEs
2.2.1. EIS Studies
2.2.2. Dielectric and Energy Modulus Studies
2.2.3. Transport Property Studies
2.2.4. LSV and TNM Studies
2.2.5. Device Studies
CV Analysis
3. Materials and Methods
3.1. Materials
3.2. Methodology
3.3. Characterization of Electrolyte Samples
3.4. Electrochemical Studies of Electrolyte Samples
3.5. Measurement of Ion Transference Number
3.6. Dielectric and Electrical Modulus Studies of Electrolyte Samples
3.7. EDLC Fabrication and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Adam, A.A.; Soleimani, H.; Shukur, M.F.B.A.; Dennis, J.O.; Abdulkadir, B.A.; Hassan, Y.M.; Yusuf, J.Y.; Shamsuri, N.A.B.; Rahman, M.O.; Rafukka, S.I. Structural behavior and ion dynamics of methylcellulose/tri-potassium phosphate-based solid biopolymeric electrolytes. Mol. Cryst. Liq. Cryst. 2022, 1–15. [Google Scholar] [CrossRef]
- Adam, A.A.; Soleimani, H.; Shukur, M.F.B.A.; Dennis, J.O.; Hassan, Y.M.; Abdulkadir, B.A.; Yusuf, J.Y.; Ahmed, O.S.S.; Salehan, S.S.; Ayub, S.; et al. Novel composite polymer electrolytes based on methylcellulose-pectin blend complexed with potassium phosphate and ethylene carbonate. Biomass Convers. Biorefinery 2022, 1–18. [Google Scholar] [CrossRef]
- Jamal, H.; Khan, F.; Lim, H.; Kim, J.H. Restraining lithium dendrite formation in all-solid-state Li-metal batteries via the surface modification of the ceramic filler. Sustain. Mater. Technol. 2023, 35. [Google Scholar] [CrossRef]
- Jamal, H.; Khan, F.; Si, H.-R.; Kim, J.H. Enhanced compatibility of a polymer-based electrolyte with Li-metal for stable and dendrite-free all-solid-state Li-metal batteries. J. Mater. Chem. A 2021, 9, 27304–27319. [Google Scholar] [CrossRef]
- Khan, F.; Kim, J.H. N-Functionalized Graphene Quantum Dots with Ultrahigh Quantum Yield and Large Stokes Shift: Efficient Downconverters for CIGS Solar Cells. ACS Photon- 2018, 5, 4637–4643. [Google Scholar] [CrossRef]
- Freunberger, S.A. True performance metrics in beyond-intercalation batteries. Nat. Energy 2017, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Dennis, J.O.; Al-Hadeethi, Y.; Mkawi, E.M.; Adam, A.; Abdulkadir, B.A.; Usman, F.; Hassan, Y.M.; Wadi, I.; Sani, M. State of the Art and New Directions on Electrospun Lignin/Cellulose Nanofibers for Supercapacitor Application: A Systematic Literature Review. Polymers 2020, 12, 2884. [Google Scholar] [CrossRef]
- Aziz, S.B.; Nofal, M.M.; Ghareeb, H.O.; Dannoun, E.M.; Hussen, S.A.; Hadi, J.M.; Ahmed, K.K.; Hussein, A.M. Characteristics of Poly(vinyl Alcohol) (PVA) Based Composites Integrated with Green Synthesized Al3+-Metal Complex: Structural, Optical, and Localized Density of State Analysi. Polymers 2021, 13, 1316. [Google Scholar] [CrossRef]
- Aziz, S.B.; Brevik, I.; Hamsan, M.H.; Brza, M.A.; Nofal, M.; Abdullah, A.M.; Rostam, S.; Al-Zangana, S.; Muzakir, S.K.; Kadir, M.F. Compatible Solid Polymer Electrolyte Based on Methyl Cellulose for Energy Storage Application: Structural, Electrical, and Electrochemical Properties. Polymers 2020, 12, 2257. [Google Scholar] [CrossRef]
- Xu, H.; Xie, J.; Liu, Z.; Wang, J.; Deng, Y. Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes. MRS Energy Sustain. 2020, 7. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, A.L. A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: A topical review. J. Mater. Sci. 2020, 55, 6242–6304. [Google Scholar] [CrossRef]
- Nadirah, B.; Ong, C.; Saheed, M.; Yusof, Y.; Shukur, M. Structural and conductivity studies of polyacrylonitrile/methylcellulose blend based electrolytes embedded with lithium iodide. Int. J. Hydrogen Energy 2020, 45, 19590–19600. [Google Scholar] [CrossRef]
- Shamsuri, N.A.; Zaine, S.N.A.; Yusof, Y.M.; Yahya, W.Z.N.; Shukur, M.F. Effect of ammonium thiocyanate on ionic conductivity and thermal properties of polyvinyl alcohol–methylcellulose–based polymer electrolytes. Ionics 2020, 26, 6083–6093. [Google Scholar] [CrossRef]
- Badry, R.; El-Khodary, S.; Elhaes, H.; Nada, N.; Ibrahim, M. Optical, conductivity and dielectric properties of plasticized solid polymer electrolytes based on blends of sodium carboxymethyl cellulose and polyethylene oxide. Opt. Quantum Electron. 2020, 53, 1–15. [Google Scholar] [CrossRef]
- Abdullah, O.G.; Ahmed, H.T.; Tahir, D.A.; Jamal, G.M.; Mohamad, A.H. Influence of PEG plasticizer content on the proton-conducting PEO:MC-NH4I blend polymer electrolytes based films. Results Phys. 2021, 23, 104073. [Google Scholar] [CrossRef]
- Hamsan, M.H.; Aziz, S.B.; Shukur, M.F.; Kadir, M.F.Z. Protonic cell performance employing electrolytes based on plasticized methylcellulose-potato starch-NH4NO3. Ionics 2019, 25, 559–572. [Google Scholar] [CrossRef]
- Adam, A.A.; Soleimani, H.; Shukur, M.F.B.A.; Dennis, J.O.; Abdulkadir, B.A.; Hassan, Y.M.; Yusuf, J.Y.; Shamsuri, N.A.B. A new approach to understanding the interaction effect of salt and plasticizer on solid polymer electrolytes using statistical model and artificial intelligence algorithm. J. Non-Crystalline Solids 2022, 587, 121597. [Google Scholar] [CrossRef]
- Adam, A.A.; Ali, M.K.M.; Dennis, J.O.; Soleimani, H.; Shukur, M.F.B.A.; Ibnaouf, K.H.; Aldaghri, O.A.; Ibrahem, M.A.; All, N.F.M.A.; Abdulkadir, A.B. Innovative Methylcellulose-Polyvinyl Pyrrolidone-Based Solid Polymer Electrolytes Impregnated with Potassium Salt: Ion Conduction and Thermal Properties. Polymers 2022, 14, 3055. [Google Scholar] [CrossRef]
- Dennis, J.O.; Ali, M.K.M.; Ibnaouf, K.H.; Aldaghri, O.; All, N.F.M.A.; Adam, A.A.; Usman, F.; Hassan, Y.M.; Abdulkadir, B.A. Effect of ZnO Nanofiller on Structural and Electrochemical Performance Improvement of Solid Polymer Electrolytes Based on Polyvinyl Alcohol–Cellulose Acetate–Potassium Carbonate Composites. Molecules 2022, 27, 5528. [Google Scholar] [CrossRef]
- Hamsan, M.H.; Shukur, M.F.; Kadir, M.F.Z. NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor. Ionics 2017, 23, 3429–3453. [Google Scholar] [CrossRef]
- Aziz, S.B.; Brza, M.A.; Mishra, K.; Hamsan, M.H.; Karim, W.O.; Abdullah, R.M.; Kadir, M.F.Z.; Abdulwahid, R.T. Fabrication of high performance energy storage EDLC device from proton conducting methylcellulose: Dextran polymer blend electrolytes. J. Mater. Res. Technol. 2020, 9, 1137–1150. [Google Scholar] [CrossRef]
- Aziz, S.; Dannoun, E.; Hamsan, M.; Ghareeb, H.; Nofal, M.; Karim, W.; Asnawi, A.; Hadi, J.; Kadir, M. A Polymer Blend Electrolyte Based on CS with Enhanced Ion Transport and Electrochemical Properties for Electrical Double Layer Capacitor Applications. Polymers 2021, 13, 930. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, O.G.; Aziz, S.B.; Rasheed, M.A. Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte films. Ionics 2017, 24, 777–785. [Google Scholar] [CrossRef]
- Rajendran, S.; Saratha, R. An evaluation of solid-state electrolyte based on pectin and lithium bis (trifluoromethanesulphonyl)imide for lithium-ion batteries. Mater. Today Proc. 2021, 47, 819–824. [Google Scholar] [CrossRef]
- Dennis, J.O.; Adam, A.A.; Ali, M.K.M.; Soleimani, H.; Shukur, M.F.B.A.; Ibnaouf, K.H.; Aldaghri, O.; Eisa, M.H.; Ibrahem, M.A.; Abdulkadir, A.B.; et al. Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller. Membranes 2022, 12, 706. [Google Scholar] [CrossRef]
- Dey, A.; Karan, S.; De, S. Effect of nanofillers on thermal and transport properties of potassium iodide–polyethylene oxide solid polymer electrolyte. Solid State Commun. 2009, 149, 1282–1287. [Google Scholar] [CrossRef]
- Umadevi, C.; Mohan, K.R.; Achari, V.B.S.; Sharma, A.K.; Rao, V.V.R.N. Discharge characteristics of polymer blend (PVP/PVA) electrolyte films doped with potassium bromide. Ionics 2010, 16, 751–756. [Google Scholar] [CrossRef]
- Nadimicherla, R.; Kalla, R.; Muchakayala, R.; Guo, X. Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 2015, 278, 260–267. [Google Scholar] [CrossRef]
- Vondrák, J.; Reiter, J.; Velická, J.; Sedlaříková, M. PMMA-based aprotic gel electrolytes. Solid State Ionics 2004, 170, 79–82. [Google Scholar] [CrossRef]
- Sagane, F.; Abe, T.; Iriyama, Y.; Ogumi, Z. Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes. J. Power Sources 2005, 146, 749–752. [Google Scholar] [CrossRef]
- Kadir, M.F.Z.; Salleh, N.S.; Hamsan, M.H.; Aspanut, Z.; Majid, N.A.; Shukur, M.F. Biopolymeric electrolyte based on glycerolized methyl cellulose with NH4Br as proton source and potential application in EDLC. Ionics 2018, 24, 1651–1662. [Google Scholar] [CrossRef]
- Asnawi, A.; Hamsan, M.; Aziz, S.; Kadir, M.; Matmin, J.; Yusof, Y. Impregnation of [Emim]Br ionic liquid as plasticizer in biopolymer electrolytes for EDLC application. Electrochim. Acta 2021, 375, 137923. [Google Scholar] [CrossRef]
- Saadiah, M.; Nagao, Y.; Samsudin, A. Enhancement on protonation (H+) with incorporation of flexible ethylene carbonate in CMC–PVA–30 wt % NH4NO3 film. Int. J. Hydrogen Energy 2021, 46, 17231–17245. [Google Scholar] [CrossRef]
- Mohammed, A.D.; Young, D.A.; Vosloo, H.C.M. Synthesis of high-performance superabsorbent glycerol acrylate-cross-linked poly (acrylic acid). Res. Chem. Intermed. 2016, 43, 2187–2200. [Google Scholar] [CrossRef]
- Mena-Cervantes, V.Y.; Hernández-Altamirano, R.; Tiscareño-Ferrer, A. Development of a green one-step neutralization process for valorization of crude glycerol obtained from biodiesel. Environ. Sci. Pollut. Res. 2020, 27, 28500–28509. [Google Scholar] [CrossRef] [PubMed]
- Saadiah, M.; Nagao, Y.; Samsudin, A. Proton (H+) transport properties of CMC–PVA blended polymer solid electrolyte doped with NH4NO3. Int. J. Hydrogen Energy 2020, 45, 14880–14896. [Google Scholar] [CrossRef]
- Aziz, S.; Asnawi, A.; Kadir, M.; Alshehri, S.; Ahamad, T.; Yusof, Y.; Hadi, J. Structural, Electrical and Electrochemical Properties of Glycerolized Biopolymers Based on Chitosan (CS): Methylcellulose (MC) for Energy Storage Application. Polymers 2021, 13, 1183. [Google Scholar] [CrossRef]
- Asnawi, A.S.; Aziz, S.B.; Brevik, I.; Brza, M.A.; Yusof, Y.M.; Alshehri, S.M.; Ahamad, T.; Kadir, M.F.Z. The Study of Plasticized Sodium Ion Conducting Polymer Blend Electrolyte Membranes Based on Chitosan/Dextran Biopolymers: Ion Transport, Structural, Morphological and Potential Stability. Polymers 2021, 13, 383. [Google Scholar] [CrossRef]
- Brza, M.A.; Aziz, S.B.; Anuar, H.; Alshehri, S.M.; Ali, F.; Ahamad, T.; Hadi, J.M. Characteristics of a Plasticized PVA-Based Polymer Electrolyte Membrane and H+ Conductor for an Electrical Double-Layer Capacitor: Structural, Morphological, and Ion Transport Properties. Membranes 2021, 11, 296. [Google Scholar] [CrossRef]
- Gupta, S.; Varshney, P.K. Effect of plasticizer on the conductivity of carboxymethyl cellulose-based solid polymer electrolyte. Polym. Bull. 2019, 76, 6169–6178. [Google Scholar] [CrossRef]
- Pandi, D.V.; Selvasekarapandian, S.; Bhuvaneswari, R.; Premalatha, M.; Monisha, S.; Arunkumar, D.; Junichi, K. Development and characterization of proton conducting polymer electrolyte based on PVA, amino acid glycine and NH4SCN. Solid State Ionics 2016, 298, 15–22. [Google Scholar] [CrossRef]
- Khan, F. N and S co-doped graphene enfolded Ni–Co-layered double hydroxides: An excellent electrode material for high-performance energy storage devices. RSC Adv. 2021, 11, 33895–33904. [Google Scholar] [CrossRef]
- Jothi, M.A.; Vanitha, D.; Bahadur, S.A.; Nallamuthu, N. Proton conducting polymer electrolyte based on cornstarch, PVP, and NH 4 Br for energy storage applications. Ionics 2021, 27, 225–237. [Google Scholar] [CrossRef]
- Noor, N.A.M.; Isa, M.I.N. Investigation on transport and thermal studies of solid polymer electrolyte based on carboxymethyl cellulose doped ammonium thiocyanate for potential application in electrochemical devices. Int. J. Hydrogen Energy 2019, 44, 8298–8306. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hamsan, M.H.; Kadir, M.F.Z.; Woo, H.J. Design of Polymer Blends Based on Chitosan:POZ with Improved Dielectric Constant for Application in Polymer Electrolytes and Flexible Electronics. Adv. Polym. Technol. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.B.; Woo, T.J.; Kadir, M.F.; Ahmed, H.M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 2018, 3, 1–17. [Google Scholar] [CrossRef]
- Aziz, S.B.; Marif, R.B.; Brza, M.A.; Hamsan, M.H.; Kadir, M.F.Z. Employing of Trukhan Model to Estimate Ion Transport Parameters in PVA Based Solid Polymer Electrolyte. Polymers 2019, 11, 1694. [Google Scholar] [CrossRef] [Green Version]
- Hadi, J.M.; Aziz, S.B.; Mustafa, M.S.; Hamsan, M.H.; Abdulwahid, R.T.; Kadir, M.F.; Ghareeb, H.O. Role of nano-capacitor on dielectric constant enhancement in PEO:NH4SCN:xCeO2 polymer nano-composites: Electrical and electrochemical propertie. J. Mater. Res. Technol. 2020, 9, 9283–9294. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, A.L. Temperature and Salt-Dependent Dielectric Properties of Blend Solid Polymer Electrolyte Complexed with LiBOB. Macromol. Res. 2019, 27, 334–345. [Google Scholar] [CrossRef]
- Cyriac, V.; Ismayil; Noor, I.M.; Mishra, K.; Chavan, C.; Bhajantri, R.F.; Masti, S.P. Ionic conductivity enhancement of PVA: Carboxymethyl cellulose poly-blend electrolyte films through the doping of NaI salt. Cellulose 2022, 29, 3271–3291. [Google Scholar] [CrossRef]
- Pritam; Arya, A.; Sharma, A.L. Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics 2020, 26, 745–766. [Google Scholar] [CrossRef]
- Pritam; Arya, A.; Sharma, A.L. Conductivity and Dielectric Spectroscopy of Na+ Ion Conducting Blended Solid Polymer Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2021; pp. 115–124. [Google Scholar] [CrossRef]
- Arof, A.K.; Amirudin, S.; Yusof, S.Z.; Noor, I.M. A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 1856–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, S.B.; Hamsan, M.H.; Kadir, M.F.Z.; Karim, W.O.; Abdullah, R.M. Development of Polymer Blend Electrolyte Membranes Based on Chitosan: Dextran with High Ion Transport Properties for EDLC Application. Int. J. Mol. Sci. 2019, 20, 3369. [Google Scholar] [CrossRef] [Green Version]
- Rudhziah, S.; Rani, M.; Ahmad, A.; Mohamed, N.; Kaddami, H. Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind. Crop. Prod. 2015, 72, 133–141. [Google Scholar] [CrossRef]
- Kiruthika, S.; Malathi, M.; Selvasekarapandian, S.; Tamilarasan, K.; Moniha, V.; Manjuladevi, R. Eco-friendly biopolymer electrolyte, pectin with magnesium nitrate salt, for application in electrochemical devices. J. Solid State Electrochem. 2019, 23, 2181–2193. [Google Scholar] [CrossRef]
- Perumal, P.; Selvin, P.C.; Selvasekarapandian, S.; Abhilash, K.P. Bio-host pectin complexed with dilithium borate based solid electrolytes for polymer batteries. Mater. Res. Express 2019, 6, 115513. [Google Scholar] [CrossRef]
- Aziz, S.B.; Asnawi, A.S.; Mohammed, P.A.; Abdulwahid, R.T.; Yusof, Y.M.; Abdullah, R.M.; Kadir, M. Impedance, circuit simulation, transport properties and energy storage behavior of plasticized lithium ion conducting chitosan based polymer electrolytes. Polym. Test. 2021, 101, 107286. [Google Scholar] [CrossRef]
- Hamsan, M.; Aziz, S.B.; Kadir, M.; Brza, M.; Karim, W.O. The study of EDLC device fabricated from plasticized magnesium ion conducting chitosan based polymer electrolyte. Polym. Test. 2020, 90, 106714. [Google Scholar] [CrossRef]
- Mahalakshmi, M.; Selvanayagam, S.; Selvasekarapandian, S.; Chandra, M.V.L.; Sangeetha, P.; Manjuladevi, R. Magnesium ion-conducting solid polymer electrolyte based on cellulose acetate with magnesium nitrate (Mg(NO3)2·6H2O) for electrochemical studies. Ionics 2020, 26, 4553–4565. [Google Scholar] [CrossRef]
- Rani, M.S.A.; Hassan, N.H.; Ahmad, A.; Kaddami, H.; Mohamed, N.S. Investigation of biosourced carboxymethyl cellulose-ionic liquid polymer electrolytes for potential application in electrochemical devices. Ionics 2016, 22, 1855–1864. [Google Scholar] [CrossRef]
- Badry, R.; Ezzat, H.A.; El-Khodary, S.; Morsy, M.; Elhaes, H.; Nada, N.; Ibrahim, M. Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. J. Mol. Struct. 2020, 1224, 129013. [Google Scholar] [CrossRef]
- Marf, A.S.; Aziz, S.B.; Abdullah, R.M. Plasticized H+ ion-conducting PVA:CS-based polymer blend electrolytes for energy storage EDLC application. J. Mater. Sci. Mater. Electron. 2020, 31, 18554–18568. [Google Scholar] [CrossRef]
- Aziz, S.; Brevik, I.; Brza, M.; Asnawi, A.; Dannoun, E.; Yusof, Y.; Abdulwahid, R.; Hamsan, M.; Nofal, M.M.; Kadir, M. The Study of Structural, Impedance and Energy Storage Behavior of Plasticized PVA:MC Based Proton Conducting Polymer Blend Electrolytes. Materials 2020, 13, 5030. [Google Scholar] [CrossRef] [PubMed]
- Abdulkadir, B.A.; Ojur Dennis, J.; Al-Hadeethi, Y.; Shukur, M.F.B.A.; Mkawi, E.M.; Al-Harbi, N.; Ibnaouf, K.H.; Aldaghri, O.; Usman, F.; Abbas Adam, A. Optimization of the Electrochemical Performance of a Composite Polymer Electrolyte Based on PVA-K2CO3-SiO2 Composite. Polymers 2020, 13, 92. [Google Scholar] [CrossRef]
- Abdulkadir, B.A.; Dennis, J.O.; Adam, A.A.; Hassan, Y.M.; Shamsuri, N.A.; Shukur, M. Preparation and characterization of solid biopolymer electrolytes based on polyvinyl alcohol/cellulose acetate blend doped with potassium carbonate (K2CO3) salt. J. Electroanal. Chem. 2022, 919. [Google Scholar] [CrossRef]
- Abouloula, C.N.; Rizwan, M.; Selvanathan, V.; Yahya, R.; Althubeiti, K.; Alkhammash, H.I.; Akhtaruzzaman; Oueriagli, A. Transformation of Oil Palm Waste-Derived Cellulose into Solid Polymer Electrolytes: Investigating the Crucial Role of Plasticizers. Polymers 2021, 13, 3685. [Google Scholar] [CrossRef]
- Hadi, J.M.; Aziz, S.B.; Kadir, M.F.Z.; El-Badry, Y.A.; Ahamad, T.; Hussein, E.E.; Asnawi, A.S.; Abdullah, R.M.; Alshehri, S.M. Design of plasticized proton conducting Chitosan: Dextran based biopolymer blend electrolytes for EDLC application: Structural, impedance and electrochemical studies. Arab. J. Chem. 2021, 14, 103394. [Google Scholar] [CrossRef]
- Aziz, S.B.; Brza, M.A.; Brevik, I.; Hafiz, M.H.; Asnawi, A.S.; Yusof, Y.M.; Abdulwahid, R.T.; Kadir, M.F. Blending and Characteristics of Electrochemical Double-Layer Capacitor Device Assembled from Plasticized Proton Ion Conducting Chitosan:Dextran:NH4PF6 Polymer Electrolytes. Polymers 2020, 12, 2103. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hamsan, M.H.; Brza, M.A.; Kadir, M.F.Z.; Muzakir, S.K.; Abdulwahid, R.T. Effect of glycerol on EDLC characteristics of chitosan:methylcellulose polymer blend electrolytes. J. Mater. Res. Technol. 2020, 9, 8355–8366. [Google Scholar] [CrossRef]
- Cholant, C.M.; Rodrigues, M.P.; Peres, L.L.; Balboni, R.D.C.; Krüger, L.; Placido, D.N.; Flores, W.H.; Gündel, A.; Pawlicka, A.; Avellaneda, C.O. Study of the conductivity of solid polymeric electrolyte based on PVA/GA blend with addition of acetic acid. J. Solid State Electrochem. 2020, 24, 1867–1875. [Google Scholar] [CrossRef]
- Dannoun, E.M.; Aziz, S.B.; Brza, M.A.; Nofal, M.M.; Asnawi, A.S.; Yusof, Y.M.; Al-Zangana, S.; Hamsan, M.H.; Kadir, M.F.Z.; Woo, H.J. The Study of Plasticized Solid Polymer Blend Electrolytes Based on Natural Polymers and Their Application for Energy Storage EDLC Devices. Polymers 2020, 12, 2531. [Google Scholar] [CrossRef] [PubMed]
- Shamsuri, N.A.; Zaine, S.N.A.; Yusof, Y.M.; Shukur, M.F. Ion conducting methylcellulose-polyvinyl alcohol blend based electrolytes incorporated with ammonium thiocyanate for electric double layer capacitor application. J. Appl. Polym. Sci. 2021, 139. [Google Scholar] [CrossRef]
- Aziz, S.B.; Nofal, M.M.; Abdulwahid, R.T.; Ghareeb, H.O.; Dannoun, E.M.; M. Abdullah, R.; Hamsan, M.H.; Kadir, M.F.Z. Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storage—EEC Modeling, Transport Properties, and Charge-Discharge Characteristics. Polymers 2021, 13, 803. [Google Scholar] [CrossRef]
- Hadi, J.M.; Aziz, S.B.; Brza, M.; Kadir, M.; Abdulwahid, R.T.; Al-Asbahi, B.A.; Ahmed, A.A.A. Structural and energy storage behavior of ion conducting biopolymer blend electrolytes based on methylcellulose: Dextran polymers. Alex. Eng. J. 2022, 61, 9273–9285. [Google Scholar] [CrossRef]
- Yusof, Y.M.; Shukur, M.F.; Hamsan, M.H.; Jumbri, K.; Kadir, M.F.Z. Plasticized solid polymer electrolyte based on natural polymer blend incorporated with lithium perchlorate for electrical double-layer capacitor fabrication. Ionics 2019, 25, 5473–5484. [Google Scholar] [CrossRef]
Samples | Xc (%) |
---|---|
SC0 | 20.26 |
SC10 | 19.89 |
SC20 | 19.43 |
SC30 | 19.27 |
SC40 | 19.18 |
SC50 | 18.77 |
SC60 | 19.09 |
SD50 | 20.65 |
Glycerol Conc. (wt.%) | ƒ (Hz) | ω (rads−1) | τ (s) |
---|---|---|---|
0 | 31,623 | 1.99 × 105 | 5.03 × 10−6 |
10 | 50,119 | 3.15 × 105 | 3.18 × 10−6 |
20 | 63,096 | 3.96 × 105 | 2.52 × 10−6 |
30 | 2511.3 | 1.58 × 105 | 6.34 × 10−5 |
40 | 3162.3 | 1.99 × 104 | 5.03 × 10−5 |
50 | 3981.1 | 2.50 × 104 | 4.00 × 10−5 |
60 | 31,623 | 1.99 × 105 | 5.03 × 10−6 |
Sample | × 10−5 (s/cm) | × 1016 (cm−3) | μ × 10−3 (cm2 V−1 s−2) | × 10−4 (cm2 s−1) | |
---|---|---|---|---|---|
SC10 | 2.68 × 10−6 | 2.36 | 2.27 | 4.22 | 1.09 |
SC20 | 1.42 × 10−5 | 2.81 | 2.30 | 2.55 | 0.66 |
SC30 | 1.03 × 10−5 | 4.25 | 3.33 | 3.89 | 1.00 |
SC40 | 1.31 × 10−4 | 28.49 | 40.20 | 2.94 | 0.76 |
SC50 | 8.76 × 10−5 | 74.55 | 69.92 | 5.61 | 1.45 |
SC60 | 4.22 × 10−5 | 34.52 | 39.72 | 4.39 | 1.13 |
Sample | Potential Window (V) |
---|---|
SC10 | 3.72 |
SC20 | 4.06 |
SC30 | 4.49 |
SC40 | 4.51 |
SC50 | 3.99 |
SC60 | 3.62 |
Host Polymer | Salt | Ionic Conductivity (scm−1) | Potential Window (V) | TNM | Reference |
---|---|---|---|---|---|
Chitosan/Dextran | NH4PF6 | 3.06 × 10−4 | 1.5 | 0.957 | [69] |
Chitosan/Methylcellulose | NH4I | 6.65 × 10−4 | 2.2 | 0.97 | [70] |
Methylcellulose/Potato Starch | NH4NO3 | 4.37 × 10−5 | 1.88 | - | [16] |
Gum Arabic/Polyvinyl Alcohol | Acetic acid | 2.22 × 10−5 | - | - | [71] |
Chitosan/Dextran | NaTf | 6.10 × 10−5 | 2.55 | 0.988 | [38] |
Chitosan/Methylcellulose | NH4NO3 | 1.31 × 10−4 | 1.87 | 0.933 | [22] |
Methylcellulose/Pectin | K3PO4 | 7.46 × 10−4 | 3.99 | 0.959 | This work |
Scan Rates (mV s−1) | Csp (F g−1) |
---|---|
5 | 57.14 |
10 | 37.23 |
20 | 23.56 |
40 | 15.12 |
80 | 9.05 |
100 | 7.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam, A.A.; Soleimani, H.; Dennis, J.O.; Aldaghri, O.A.; Alsadig, A.; Ibnaouf, K.H.; Abubakar Abdulkadir, B.; Wadi, I.A.; Cyriac, V.; Shukur, M.F.B.A. Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-Layer Capacitor. Molecules 2023, 28, 3461. https://doi.org/10.3390/molecules28083461
Adam AA, Soleimani H, Dennis JO, Aldaghri OA, Alsadig A, Ibnaouf KH, Abubakar Abdulkadir B, Wadi IA, Cyriac V, Shukur MFBA. Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-Layer Capacitor. Molecules. 2023; 28(8):3461. https://doi.org/10.3390/molecules28083461
Chicago/Turabian StyleAdam, Abdullahi Abbas, Hassan Soleimani, John Ojur Dennis, Osamah A. Aldaghri, Ahmed Alsadig, Khalid Hassan Ibnaouf, Bashir Abubakar Abdulkadir, Ismael Abdalla Wadi, Vipin Cyriac, and Muhammad Fadhlullah Bin Abd. Shukur. 2023. "Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-Layer Capacitor" Molecules 28, no. 8: 3461. https://doi.org/10.3390/molecules28083461
APA StyleAdam, A. A., Soleimani, H., Dennis, J. O., Aldaghri, O. A., Alsadig, A., Ibnaouf, K. H., Abubakar Abdulkadir, B., Wadi, I. A., Cyriac, V., & Shukur, M. F. B. A. (2023). Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-Layer Capacitor. Molecules, 28(8), 3461. https://doi.org/10.3390/molecules28083461