Green One-Pot Syntheses of 2-Sulfoximidoyl-3,6-dibromo Indoles Using N-Br Sulfoximines as Both Brominating and Sulfoximinating Reagents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization
2.2. Extending the Scope of Indole Substrates
2.3. Extending the Scope of N-Br Sulfoximines Substrates
2.4. Control Reactions
3. Chemistry
General Procedure (GP) for the Preparation of Products 3
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-methyl-1H-indole (3aa) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 94% yield. 1H NMR (400 MHz, CDCl3) δ 8.25–8.20 (m, 2H), 7.73–7.68 (m, 1H), 7.66–7.60 (m, 2H), 7.37 (d, J = 1.6 Hz, 1H), 7.26 (s, 1H), 7.22 (dd, J = 8.4, 1.6 Hz, 1H), 3.71 (s, 3H), 3.26 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.2, 137.7, 135.0, 134.1, 129.7, 128.5, 125.6, 123.2, 119.2, 114.5, 112.1, 80.8, 44.6, 30.2.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-butyl-1H-indole (3ab) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-butyl-1H-indole was prepared as black oil in 85% yield. 1H NMR (400 MHz, Chloroform-d) δ 8.25–8.18 (m, 2H), 7.73–7.66 (m, 1H), 7.65–7.58 (m, 2H), 7.37 (d, J = 1.7 Hz, 1H), 7.29–7.18 (m, 3H), 4.18 (dddd, J = 49.3, 14.5, 8.5, 6.7 Hz, 2H), 3.25 (s, 3H), 1.81–1.64 (m, 2H), 1.36 (dt, J = 14.9, 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). 13C NMR (100 MHz, Chloroform-d) δ 139.6, 137.5, 134.2, 134.0, 129.6, 128.5, 125.8, 123.0, 119.2, 114.4, 112.3, 80.4, 44.7, 43.4, 31.9, 20.3, 13.9.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-hexyl-1H-indole (3ac) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-hexyl-1H-indole was prepared as black oil in 80% yield. 1H NMR (400 MHz, DMSO-d6) δ 8.14–8.08 (m, 2H), 7.78–7.72 (m, 1H), 7.71–7.65 (m, 2H), 7.61 (d, J = 1.6 Hz, 1H), 7.17–7.10 (m, 2H), 4.19 (pt, J = 7.9, 4.0 Hz, 2H), 3.51 (s, 3H), 1.63 (qd, J = 10.3, 4.6 Hz, 2H), 1.31–1.19 (m, 6H), 0.87–0.78 (m, 3H). 13C NMR (100 MHz, CDCl3) δ 139.6, 138.3, 133.8, 133.5, 129.5, 127.7, 125.3, 122.4, 118.5, 113.1, 112.1, 77.8, 44.6, 42.5, 30.9, 29.1, 25.8, 22.1, 13.9. HR-MS(ESI), m/z (%): Calcd for C21H25Br2N2OS+ ([M+H]+): 511.0049, Found: 511.0052.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-octyl-1H-indole (3ad) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-octyl-1H-indole was prepared as black oil in 62% yield. 1H NMR (400 MHz, CDCl3) δ 8.26–8.18 (m, 2H), 7.74–7.66 (m, 1H), 7.62 (dd, J = 8.3, 6.7 Hz, 2H), 7.36 (d, J = 1.6 Hz, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.20 (dd, J = 8.4, 1.6 Hz, 1H), 4.28–4.05 (m, 2H), 3.25 (s, 3H), 1.75 (h, J = 6.8 Hz, 2H), 1.36–1.20 (m, 10H), 0.86 (t, J = 6.7 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 139.4, 137.4, 134.1, 134.0, 129.6, 128.5, 125.7, 123.0, 119.2, 114.3, 112.2, 80.4, 44.6, 43.6, 31.9, 29.8, 29.4, 29.3, 27.0, 22.8, 14.3. Calcd for C23H29Br2N2OS+ (M): 539.0362, Found: 539.0355.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-decyl-1H-indole (3ae) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-decyl-1H-indole was prepared as black oil in 65% yield. 1H NMR (400 MHz, CDCl3) δ 8.24–8.19 (m, 2H), 7.71–7.66 (m, 1H), 7.61 (dd, J = 8.4, 6.8 Hz, 2H), 7.36 (d, J = 1.7 Hz, 1H), 7.27 (s, 1H), 7.20 (dd, J = 8.4, 1.6 Hz, 1H), 4.28–4.04 (m, 2H), 3.24 (s, 3H), 1.75 (h, J = 7.4, 7.0 Hz, 2H), 1.37–1.19 (m, 14H), 0.87 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 139.6, 137.5, 134.2, 134.0, 129.6, 128.4, 125.8, 123.0, 119.2, 114.3, 112.2, 80.4, 44.7, 43.6, 32.0, 29.8, 29.7 (2C), 29.4 (2C), 27.0, 22.8, 14.2. HR-MS(ESI), m/z (%): Calcd for C25H33Br2N2OS+ ([M+H]+): 567.0675, Found: 567.0669.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-isopropyl-1H-indole (3af) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-isopropyl-1H-indole was prepared as green oil in 89% yield. 1H NMR (400 MHz, CDCl3) δ 8.29–8.20 (m, 2H), 7.75–7.67 (m, 1H), 7.66–7.58 (m, 3H), 7.32–7.17 (m, 3H), 5.10 (p, J = 7.1 Hz, 1H), 3.23 (s, 3H), 1.64 (d, J = 7.0 Hz, 3H), 1.53 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 139.2, 136.8, 134.1, 132.6, 129.7, 128.5, 126.3, 122.8, 119.5, 114.2, 114.0, 81.2, 47.2, 44.1, 21.7, 21.2.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-benzyl-1H-indole (3ag) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-benzyl-1H-indole was prepared as white solid in 81% yield. M.p.: 162.5–163.4 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.97–7.90 (m, 2H), 7.74–7.67 (m, 1H), 7.61 (dd, J = 8.4, 7.1 Hz, 2H), 7.55 (d, J = 1.5 Hz, 1H), 7.31 (dd, J = 8.1, 6.6 Hz, 2H), 7.27–7.21 (m, 1H), 7.18–7.09 (m, 4H), 5.58–5.40 (m, 2H), 3.50 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 139.2, 138.9, 138.1, 133.8, 133.6, 129.5, 128.6, 127.7, 127.2, 126.9, 125.6, 122.8, 118.6, 113.2, 112.4, 77.7, 45.6, 44.7. HR-MS(ESI), m/z (%): Calcd for C22H19Br2N2OS+ ([M+H]+): 516.9579, Found: 516.9587.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-phenyl-1H-indole (3ah) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-phenyl-1H-indole was prepared as yellow oil in 38% yield. 1H NMR (400 MHz, CDCl3) δ 7.78–7.73 (m, 2H), 7.60–7.49 (m, 3H), 7.49–7.38 (m, 5H), 7.31 (d, J = 8.3 Hz, 1H), 7.26–7.24 (m, 1H), 7.24–7.21 (m, 1H), 3.07 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.6, 137.9, 136.8, 135.0, 133.7, 129.5, 129.4, 129.3, 128.5, 128.1 (2C), 126.1, 123.9, 119.4, 115.0, 112.8, 82.3, 44.9. HR-MS(ESI), m/z (%): Calcd for C21H17Br2N2OS+ ([M+H]+): 502.9423, Found: 502.9429.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-(2-isopropylphenyl)-1H-indole (3ai) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-(2-isopropylphenyl)-1H-indole was prepared as black oil in 77% yield. 1H NMR (400 MHz, CDCl3) δ 7.79–7.71 (m, 1H), 7.58–7.46 (m, 4H), 7.45–7.20 (m, 5H), 7.16–7.09 (m, 1H), 6.94 (dd, J = 16.6, 1.7 Hz, 1H), 3.10 (d, J = 33.4 Hz, 3H), 1.15 (dd, J = 13.2, 6.8 Hz, 3H), 0.99 (dd, J = 6.9, 4.2 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 149.2, 148.4, 140.2 (2C), 139.1, 138.9, 135.8 (2C), 134.6, 134.2, 133.6, 133.5, 130.2, 129.6 (2C), 129.4, 129.3, 128.3, 128.0, 127.2, 126.8, 126.6, 126.5, 126.3, 126.1, 123.7, 123.6, 119.3, 119.1, 114.8, 114.7, 112.7 (2C), 80.4, 80.1, 45.7, 44.8, 28.3, 28.1, 24.8, 24.6, 23.4, 23.0. HR-MS(ESI), m/z (%): Calcd for C24H23Br2N2OS+ ([M+H]+): 544.9892, Found: 544.9900.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-(naphthalen-1-yl)-1H-indole (3aj) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1-(naphthalen-1-yl)-1H-indole was prepared as black oil in 57% yield. 1H NMR (400 MHz, CDCl3) δ 8.04–7.93 (m, 2H), 7.60 (dd, J = 8.3, 7.2 Hz, 1H), 7.55–7.32 (m, 7H), 7.30–7.14 (m, 4H), 6.87 (dd, J = 3.2, 1.7 Hz, 1H), 2.98 (d, J = 12.5 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 139.8 (2C), 139.4, 138.9, 136.1, 136.0, 134.5 (2C), 133.5, 133.4 (2C), 131.6, 131.5, 129.4 (2C), 129.2, 129.1, 128.4, 128.3, 128.1, 128.0, 127.9, 127.4, 127.3, 126.8, 126.7, 126.3 (2C), 125.7, 125.4, 123.9, 123.8, 123.3, 119.4 (2C), 115.0 (2C), 113.1, 113.0, 82.1, 81.1, 45.1, 44.9.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1,4-dimethyl-1H-indole (3ak) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1,4-dimethyl-1H-indole was prepared as yellow oil in 80% yield. 1H NMR (400 MHz, CDCl3) δ 8.30–8.23 (m, 2H), 7.74–7.67 (m, 1H), 7.67–7.60 (m, 2H), 7.23 (d, J = 1.7 Hz, 1H), 6.96 (dd, J = 1.9, 1.0 Hz, 1H), 3.68 (s, 3H), 3.23 (s, 3H), 2.75 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.2, 137.3, 135.2, 134.1, 131.2, 129.6, 128.5, 124.7, 122.8, 114.1, 110.3, 81.0, 44.1, 30.4, 19.3.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1,7-dimethyl-1H-indole (3al) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-1,7-dimethyl-1H-indole was prepared as black solid in 94% yield. M.p.: 122.6–124.2 °C. 1H NMR (400 MHz, CDCl3) δ 8.27–8.18 (m, 2H), 7.73–7.65 (m, 1H), 7.62 (dd, J = 8.3, 6.7 Hz, 2H), 7.29 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 3.96 (s, 3H), 3.23 (s, 3H), 2.81 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.3, 138.3, 134.2, 134.0, 129.6, 128.5, 126.8, 124.8, 120.7, 119.4, 116.9, 81.6, 44.3, 34.0, 19.0. HR-MS(ESI), m/z (%): Calcd for C17H17Br2N2OS+ ([M+H]+): 454.9423, Found:454.9426.
- 3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-7-chloro-1-methyl-1H-indole (3am) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl phenylsulfoximidoyl)-7-chloro-1-methyl-1H-indole was prepared as yellow oil in 63% yield. 1H NMR (400 MHz, CDCl3) δ 8.24–8.18 (m, 2H), 7.73–7.67 (m, 1H), 7.63 (ddt, J = 8.3, 6.8, 1.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 4.08 (s, 3H), 3.26 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.2, 139.1, 134.2, 131.0, 129.7, 128.4, 128.3, 124.9, 117.5, 116.7, 116.2, 81.3, 44.7, 33.4.
- 3,6,7-Tribromo-2-(methyl phenylsulfoximidoyl)-1-methyl-1H-indole (3an) According to the general procedure (GP) for the preparation of product 3, the 3,6,7-tribromo-2-(methyl phenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 46% yield. 1H NMR (400 MHz, DMSO-d6) δ 8.13–8.08 (m, 2H), 7.78–7.72 (m, 1H), 7.71–7.65 (m, 2H), 7.36 (d, J = 8.4 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H), 4.02 (s, 3H), 3.56 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 140.3, 139.2, 133.9, 131.5, 129.5, 127.9, 127.7, 124.7, 117.8, 117.6, 105.3, 79.0, 44.4, 33.0.
- 3,6-Dibromo-2-(methyl p-tolylsulfoximidoyl)-1-methyl-1H-indole (3ba) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl p-tolylsulfoximidoyl)-1-methyl-1H-indole was prepared as purple oil in 84% yield. 1H NMR (400 MHz, CDCl3) δ 8.13–8.05 (m, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 1.7 Hz, 1H), 7.28 (s, 1H), 7.22 (dd, J = 8.4, 1.6 Hz, 1H), 3.71 (s, 3H), 3.24 (s, 3H), 2.48 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 145.2, 137.9, 136.1, 135.0, 130.3, 128.5, 125.6, 123.1, 119.2, 114.5, 112.1, 80.8, 44.7, 30.2, 21.8. HR-MS(ESI), m/z (%): Calcd for C17H17Br2N2OS+ ([M+H]+): 454.9423, Found: 454.9438.
- 3,6-Dibromo-2-(methyl 4-chlorophenylsulfoximidoyl)-1-methyl-1H-indole (3bb) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 4-chlorophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as purple oil in 91% yield. 1H NMR (400 MHz, CDCl3) δ 8.18–8.12 (m, 2H), 7.62–7.56 (m, 2H), 7.36 (d, J = 1.6 Hz, 1H), 7.29–7.19 (m, 2H), 3.69 (s, 3H), 3.25 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 141.0, 137.7, 137.3, 135.0, 130.0, 129.9, 125.5, 123.3, 119.2, 114.7, 112.2, 80.7, 44.7, 30.2. HR-MS(ESI), m/z (%): Calcd for C16H14Br2ClN2OS+ ([M+H]+): 474.8877, Found: 474.8897.
- 3,6-Dibromo-2-(methyl 4-bromophenylsulfoximidoyl)-1-methyl-1H-indole (3bc) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 4-bromophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as purple oil in 88% yield. 1H NMR (400 MHz, DMSO-d6) δ 8.05–8.00 (m, 2H), 7.91–7.86 (m, 2H), 7.60 (d, J = 1.6 Hz, 1H), 7.16 (dd, J = 8.3, 1.6 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 3.68 (s, 3H), 3.57 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 138.8, 138.4, 134.2, 132.5, 129.9, 127.9, 125.1, 122.5, 118.4, 113.2, 112.2, 78.0, 44.3, 29.7.
- 3,6-Dibromo-2-(methyl 4-fluorophenylsulfoximidoyl)-1-methyl-1H-indole (mixture 3bd) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 4-fluorophenylsulfoximidoyl)-1-methyl-1H-indole and 3,6-dibromo-2-(methyl 4-fluorophenylsulfoximidoyl)-1-methyl-1H-indole were prepared as orange solid in about 85% yield (the ratio of trisubstituted product to disubstituted product was about 3.5: 1). 1H NMR (400 MHz, CDCl3, main tri-substituted product) δ 8.24 (dd, J = 9.0, 5.0 Hz, 2H), 7.37 (d, J = 1.6 Hz, 1H),7.32–7.26 (m, 4H), 7.24–7.21 (m, 1H), 3.71 (3H), 3.26 (3H); 13C NMR (100 MHz, CDCl3) (main tri-substituted product) δ 166.2 (d, J = 255.4), 137.5, 135.0, 131.5 (d, J = 9.7 Hz), 125.5, 123.2, 119.2, 117.9, 117.0 (d, J = 22.6 Hz), 114.6, 112.1, 80.8, 44.7, 30.2.
- 3,6-Dibromo-2-(methyl 4-nitrophenylsulfoximidoyl)-1-methyl-1H-indole (3be) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 4-nitrophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as orange solid in 66% yield. M.p.: 157.3–158.1 °C. 1H NMR (400 MHz, DMSO-d6) δ 8.46 (d, J = 8.8 Hz, 2H), 8.36 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 1.7 Hz, 1H), 7.19–7.07 (m, 2H), 3.69 (d, J = 7.3 Hz, 6H). 13C NMR (100 MHz, DMSO-d6) δ 150.4, 145.5, 137.9, 134.2, 129.5, 125.1, 124.6, 122.6, 118.5, 113.3, 112.3, 78.1, 44.0, 29.7.
- 3,6-Dibromo-2-(methyl 3-bromophenylsulfoximidoyl)-1-methyl-1H-indole (3bf) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 3-bromophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 77% yield. 1H NMR (400 MHz, CDCl3) δ 8.37 (t, J = 1.8 Hz, 1H), 8.14 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.81 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.36 (dd, J = 1.6, 0.5 Hz, 1H), 7.28 (d, J = 0.5 Hz, 1H), 7.22 (dd, J = 8.4, 1.6 Hz, 1H), 3.70 (s, 3H), 3.28 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 141.1, 137.2, 137.1, 135.0, 131.4, 131.1, 127.1, 125.5, 123.5, 123.3, 119.3, 114.7, 112.2, 80.8, 44.8, 30.2.
- 3,6-Dibromo-2-(methyl 3-chlorophenylsulfoximidoyl)-1-methyl-1H-indole (3bg) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 3-chlorophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 86% yield. 1H NMR (400 MHz, CDCl3) δ 8.21 (t, J = 1.9 Hz, 1H), 8.09 (ddd, J = 7.9, 1.8, 1.1 Hz, 1H), 7.65 (ddd, J = 8.1, 2.0, 1.1 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.36 (dd, J = 1.6, 0.5 Hz, 1H), 7.27 (d, J = 0.5 Hz, 1H), 7.21 (dd, J = 8.4, 1.6 Hz, 1H), 3.69 (s, 3H), 3.28 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 141.1, 137.1, 135.8, 135.0, 134.3, 130.9, 128.6, 126.6, 125.5, 123.2, 119.3, 114.7, 112.1, 80.7, 44.7, 30.2.
- 3,6-Dibromo-2-(methyl 2-bromophenylsulfoximidoyl)-1-methyl-1H-indole (3bh) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 2-bromophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 85% yield. 1H NMR (400 MHz, CDCl3) δ 8.47 (dd, J = 8.0, 1.7 Hz, 1H), 7.75 (dd, J = 7.9, 1.4 Hz, 1H), 7.55 (td, J = 7.7, 1.3 Hz, 1H), 7.48 (td, J = 7.6, 1.8 Hz, 1H), 7.33–7.31 (m, 1H), 7.22–7.16 (m, 2H), 3.66 (s, 3H), 3.57 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.3, 137.4, 135.9, 134.9, 134.7, 132.8, 128.4, 125.9, 123.0, 120.6, 119.2, 114.3, 111.8, 78.3, 43.7, 29.9.
- 3,6-Dibromo-2-(methyl 2-chlorophenylsulfoximidoyl)-1-methyl-1H-indole (3bi) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 2-chlorophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 89% yield. 1H NMR (400 MHz, DMSO-d6) δ 8.28 (dd, J = 7.9, 1.6 Hz, 1H), 7.75–7.60 (m, 3H), 7.58 (d, J = 1.7 Hz, 1H), 7.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 3.74 (s, 3H), 3.66 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 138.2, 137.3, 135.4, 134.0, 132.1, 132.0, 131.0, 128.2, 125.2, 122.5, 118.4, 113.1, 112.1, 76.5, 43.9, 29.5. HR-MS(ESI), m/z (%): Calcd for C16H14Br2ClN2OS+: 474.8877, Found: 474.8863.
- 3,6-Dibromo-2-(isopropyl phenylsulfoximidoyl)-1-methyl-1H-indole (3bj) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(isopropyl phenylsulfoximidoyl)-1-methyl-1H-indole was prepared as green oil in 74% yield 1H NMR (400 MHz, CDCl3) δ 8.01–7.95 (m, 2H), 7.64–7.59 (m, 1H), 7.56–7.50 (m, 2H), 7.29–7.27 (m, 1H), 7.15 (dd, J = 1.8, 1.1 Hz, 2H), 3.69 (s, 3H), 3.58 (p, J = 6.8 Hz, 1H), 1.45 (d, J = 6.7 Hz, 3H), 1.31 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 138.5, 136.1, 134.7, 133.8, 129.8, 129.4, 126.0, 122.9, 118.8, 113.8, 111.7, 78.7, 58.2, 30.2, 16.8, 16.0. HR-MS(ESI), m/z (%): Calcd for C18H19Br2N2OS+ ([M+H]+): 468.9579, Found: 468.9588.
- 3,6-Dibromo-2-(butyl phenylsulfoximidoyl)-1-methyl-1H-indole (3bk) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(butyl phenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 81% yield. 1H NMR (400 MHz, CDCl3) δ 8.15–8.08 (m, 2H), 7.69–7.63 (m, 1H), 7.58 (dd, J = 8.4, 6.8 Hz, 2H), 7.33 (d, J = 1.6 Hz, 1H), 7.24 (d, J = 3.4 Hz, 1H), 7.18 (dd, J = 8.4, 1.6 Hz, 1H), 3.70 (s, 3H), 3.39 (dddd, J = 54.7, 14.0, 11.2, 5.1 Hz, 2H), 1.76–1.53 (m, 2H), 1.38–1.27 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 138.0, 137.7, 134.8, 133.9, 129.5, 129.0, 125.7, 123.0, 119.0, 114.2, 111.9, 80.2, 56.7, 30.2, 25.3, 21.5, 13.6.
- 3,6-Dibromo-2-(diphenylsulfoximidoyl)-1-methyl-1H-indole (3bl) According to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(diphenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 93% yield. 1H NMR (400 MHz, CDCl3) δ 8.13–8.09 (m, 4H), 7.58–7.46 (m, 6H), 7.30–7.27 (m, 1H), 7.19–7.12 (m, 2H), 3.75 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 140.3, 137.8, 134.9, 133.4, 129.5, 128.5, 125.9, 123.0, 119.1, 114.2, 111.9, 80.5, 30.6. HR-MS(ESI), m/z (%): Calcd for C21H17Br2N2OS+ ([M+H]+): 502.9423, Found: 502.9429.
- 3,6-Dibromo-2-(dibutylsulfoximidoyl)-1-methyl-1H-indole (3bm) According to the general procedure (GP) for the preparation of product 3, the mixture of 3,6-dibromo-2-(dibutylsulfoximidoyl)-1-methyl-1H-indole and 2,6-dibromo-3-(dibutylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 77% yield. 1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 1.6 Hz, 1H), 7.27 (s, 1H), 7.20 (dd, J = 8.4, 1.6 Hz, 1H), 3.66 (d, J = 18.4 Hz, 3H), 3.33–3.14 (m, 4H), 1.99–1.75 (m, 4H), 1.47 (h, J = 7.4 Hz, 4H), 0.95 (t, J = 7.4 Hz, 6H). 13C NMR (for main product) (100 MHz, CDCl3) δ 138.1, 134.8, 125.5, 123.0, 119.0, 114.3, 112.0, 80.8, 52.8, 30.07, 25.1, 21.9, 13.7.
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Somei, M.; Yamada, F. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat. Prod. Rep. 2005, 22, 73–103. [Google Scholar] [CrossRef] [PubMed]
- Crich, D.; Banerjee, A. Chemistry of the Hexahydropyrrolo[2,3-b]indoles: Configuration, Conformation, Reactivity, and Applications in Synthesis. Acc. Chem. Res. 2007, 40, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Cai, X.-H.; Liu, Y.-P.; Li, Y.; Wang, Y.-Y.; Luo, X.-D.; Melodinines, A.−G. Monoterpenoid Indole Alkaloids from Melodinus henryi. J. Nat. Prod. 2010, 73, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. Chem. Rev. 2010, 110, 4489–4497. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z.; Xie, W.; Ma, D. Total Synthesis and Absolute Stereochemical Assignment of (−)-Communesin F. J. Am. Chem. Soc. 2010, 132, 13226–13228. [Google Scholar] [CrossRef]
- Stempel, E.; Gaich, T. Cyclohepta[b]indoles: A Privileged Structure Motif in Natural Products and Drug Design. Acc. Chem. Res. 2016, 49, 2390–2402. [Google Scholar] [CrossRef]
- Wiezorek, S.; Lamers, P.; Bolm, C. Conversion and degradation pathways of sulfoximines. Chem. Soc. Rev. 2019, 48, 5408–5423. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, X.; Chen, F.; He, Z.; Zeng, Q. Syntheses and Transformations of Sulfoximines. Chem. Rec. 2021, 21, 396–416. [Google Scholar] [CrossRef]
- Reetz, M.T.; Bondarev, O.G.; Gais, H.-J.; Bolm, C. BINOL-derived N-phosphino sulfoximines as ligands for asymmetric catalysis. Tetrahedron Lett. 2005, 46, 5643–5646. [Google Scholar] [CrossRef]
- Lu, S.-M.; Bolm, C. Highly Enantioselective Synthesis of Optically Active Ketones by Iridium-Catalyzed Asymmetric Hydrogenation. Angew. Chem. Int. Ed. 2008, 47, 8920–8923. [Google Scholar] [CrossRef]
- Frings, M.; Thomé, I.; Schiffers, I.; Pan, F.; Bolm, C. Catalytic, Asymmetric Synthesis of Phosphonic γ-(Hydroxyalkyl)butenolides with Contiguous Quaternary and Tertiary Stereogenic Centers. Chem. Eur. J. 2014, 20, 1691–1700. [Google Scholar] [CrossRef]
- Lücking, U. Sulfoximines: A Neglected Opportunity in Medicinal Chemistry. Angew. Chem. Int. Ed. 2013, 52, 9399–9408. [Google Scholar] [CrossRef]
- Han, Y.; Xing, K.; Zhang, J.; Tong, T.; Shi, Y.; Cao, H.; Yu, H.; Zhang, Y.; Liu, D.; Zhao, L. Application of sulfoximines in medicinal chemistry from 2013 to 2020. Eur. J. Med. Chem. 2021, 209, 112885. [Google Scholar] [CrossRef]
- Karpel-Massler, G.; Kast, R.E.; Siegelin, M.D.; Dwucet, A.; Schneider, E.; Westhoff, M.A.; Wirtz, C.; Chen, X.Y.; Halatsch, M.E.; Bolm, C. Anti-glioma Activity of Dapsone and Its Enhancement by Synthetic Chemical Modification. Neurochem. Res. 2017, 42, 3382–3389. [Google Scholar] [CrossRef]
- Lane, B.S.; Brown, M.A.; Sames, D. Direct Palladium-Catalyzed C-2 and C-3 Arylation of Indoles: A Mechanistic Rationale for Regioselectivity. J. Am. Chem. Soc. 2005, 127, 8050–8057. [Google Scholar] [CrossRef]
- Seregin, I.V.; Gevorgyan, V. Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem. Soc. Rev. 2007, 36, 1173–1193. [Google Scholar] [CrossRef]
- Lebrasseur, N.; Larrosa, I. Room Temperature and Phosphine Free Palladium Catalyzed Direct C-2 Arylation of Indoles. J. Am. Chem. Soc. 2008, 130, 2926–2927. [Google Scholar] [CrossRef]
- Légaré, M.-A.; Courtemanche, M.-A.; Rochette, É.; Fontaine, F.-G. Metal-free catalytic C-H bond activation and borylation of heteroarenes. Science 2015, 349, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Toutov, A.A.; Liu, W.-B.; Betz, K.N.; Fedorov, A.; Stoltz, B.M.; Grubbs, R.H. Silylation of C–H bonds in aromatic heterocycles by an Earth-abundant metal catalyst. Nature 2015, 518, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Inoue, F.; Saito, T.; Semba, K.; Nakao, Y. C3-Selective alkenylation of N-acylindoles with unactivated internal alkynes by cooperative nickel/aluminium catalysis. Chem. Commun. 2017, 53, 4497–4500. [Google Scholar] [CrossRef]
- Leitch, J.A.; Bhonoah, Y.; Frost, C.G. Beyond C2 and C3: Transition-Metal-Catalyzed C–H Functionalization of Indole. ACS Catal. 2017, 7, 5618–5627. [Google Scholar] [CrossRef] [Green Version]
- Leitch, J.A.; McMullin, C.L.; Mahon, M.F.; Bhonoah, Y.; Frost, C.G. Remote C6-Selective Ruthenium-Catalyzed C–H Alkylation of Indole Derivatives via σ-Activation. ACS Catal. 2017, 7, 2616–2623. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M. C-H Functionalization of Indoles at the C7 Position. J. Synth. Org. Chem Jpn. 2017, 75, 671–672. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Wang, P.; Wang, D.; Wang, M.; Yuan, Y.; Shi, Z. PIII-Chelation-Assisted Indole C7-Arylation, Olefination, Methylation, and Acylation with Carboxylic Acids/Anhydrides by Rhodium Catalysis. Angew. Chem. Int. Ed. 2019, 58, 1504–1508. [Google Scholar] [CrossRef]
- Choi, I.; Mueller, V.; Ackermann, L. Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Lett. 2021, 72, 153064–153070. [Google Scholar] [CrossRef]
- Huang, W.-J.; Ma, Y.-Y.; Liu, L.-X.; Wu, B.; Jiang, G.-F.; Zhou, Y.-G. Chiral Phosphoric Acid-Catalyzed C6 Functionalization of 2,3-Disubstituted Indoles for Synthesis of Heterotriarylmethanes. Org. Lett. 2021, 23, 2393–2398. [Google Scholar] [CrossRef]
- Kawasaki, T.; Nonaka, Y.; Matsumura, K.; Monai, M.; Sakamoto, M. An Efficient Synthetic Method for 2-Methoxy-L,2-dihydro-3H-indol-3-ones. Synth. Commun. 1999, 29, 3251–3261. [Google Scholar] [CrossRef]
- Konstantinova, L.S.; Rakitin, O.A.; Rees, C.W. A one-step synthesis of fused pentathiepins. Chem. Commun. 2002, 11, 1204–1205. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Q.Y.; Liu, J.; Wu, P.; Yi, H.; Lei, A. A trans diacyloxylation of indoles. Chem. Commun. 2012, 48, 3239–3241. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Yu, C. Synthesis of N-aryl-3-(arylimino)-3H-indol-2-amines via hypervalent iodine promoted oxidative diamination of indoles. Tetrahedron Lett. 2018, 59, 1506–1510. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Yu, S. NaClO-Promoted Atroposelective Couplings of 3-Substituted Indoles with Amino Acid Derivatives. Org. Lett. 2019, 21, 4754–4758. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Shi, X.; Sun, W.; Zhao, J.; Zhu, Y.-P.; Liu, L.; Zhu, B. Palladium-Catalyzed C-2 and C-3 Dual C–H Functionalization of Indoles: Synthesis of Fluorinated Isocryptolepine Analogues. Org. Lett. 2020, 22, 4097–4102. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Gao, P.; Shen, Y.-W.; Liang, Y.-M. Palladium-/Copper-Catalyzed Regioselective Amination and Chloroamination of Indoles. Org. Lett. 2011, 13, 4196–4199. [Google Scholar] [CrossRef]
- John, A.; Nicholas, K.M. Copper-Mediated Multiple C–H Functionalization of Aromatic N-Heterocycles: Bromoamination of Indoles and Pyrroles. Organometallics 2012, 31, 7914–7920. [Google Scholar] [CrossRef]
- Moriyama, K.; Ishida, K.; Togo, H. Egioselective Csp2–H dual functionalization of indoles using hypervalent iodine(III): Bromo-amination via 1,3-migration of imides on indolyl(phenyl)iodonium imides. Chem. Commun. 2015, 51, 2273–2276. [Google Scholar] [CrossRef]
- Liu, X.; Tong, K.; Zhang, A.H.; Tan, R.X.; Yu, S. Metal-free chloroamidation of indoles with sulfonamides and NaClO. Org. Chem. Front. 2017, 4, 1354–1357. [Google Scholar] [CrossRef]
- Tu, D.; Luo, J.; Jiang, C. Copper-mediated domino C–H iodination and nitration of indoles. Chem. Commun. 2018, 54, 2514–2517. [Google Scholar] [CrossRef]
- Lei, N.; Shen, Y.; Li, Y.; Tao, P.; Yang, L.; Su, Z.; Zheng, K. Electrochemical Iodoamination of Indoles Using Unactivated Amines. Org. Lett. 2020, 22, 9184–9189. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wang, L.; Frings, M.; Bolm, C. Copper-Catalyzed N-Alkynylations of Sulfoximines with Bromoacetylenes. Org. Lett. 2014, 16, 3796–3799. [Google Scholar] [CrossRef]
- Chen, X.Y.; Bohmann, R.A.; Wang, L.; Dong, S.; Räuber, C.; Bolm, C. Palladium/Copper-Cocatalyzed Oxidative Amidobrominations of Alkenes. Chem. Eur. J. 2015, 21, 10330–10333. [Google Scholar] [CrossRef]
- Yuan, M.; Chen, X.; Lin, S. Synthesis of the Functionalized Enamine. Prog. Chem. 2018, 30, 1082–1096. [Google Scholar]
- Chen, X.Y.; Zhang, L.; Tang, Y.; Yuan, S.; Zhu, B.; Chen, G.; Cheng, X. Green H2O-Promoted Solvent-Free Synthesis of Enaminocarbonyl Compounds with High Stereoselectivity from Electron-Deficient Terminal Alkynes. Synlett 2020, 31, 878–882. [Google Scholar] [CrossRef]
- Akasaka, T.; Furukawa, N.; Oae, S. Sulfoximidoyl radical. Homolytic addition of n-halosulfoximides to olefins. Tetrahedron Lett. 1979, 20, 2035–2038. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, B.; Zhou, S.; Zhou, S.; Wei, W.; Liu, J.; Zhan, Y.; Cheng, D.; Chen, M.; Li, Y.; et al. Sulfimine-Promoted Fast O Transfer: One-step Synthesis of Sulfoximine from Sulfide. ChemistrySelect 2017, 2, 1620–1624. [Google Scholar] [CrossRef]
- Bohnen, C.; Bolm, C. N-Trifluoromethylthiolated Sulfoximines. Org. Lett. 2015, 17, 3011–3013. [Google Scholar] [CrossRef]
- Hong, X.; Tan, Q.; Liu, B.; Xu, B. Isocyanide-Induced Activation of Copper Sulfate: Direct Access to Functionalized Heteroarene Sulfonic Esters. Angew. Chem. Int. Ed. 2017, 56, 3961–3965. [Google Scholar] [CrossRef]
- Antilla, J.C.; Klapars, A.; Buchwald, S.L. The Copper-Catalyzed N-Arylation of Indoles. J. Am. Chem. Soc. 2002, 124, 11684–11688. [Google Scholar] [CrossRef]
- Chen, X.Y.; Tang, Y.N.; Chen, Y.; Sun, C.Y.; Tang, Y.S. The One-Step Preparation of Trisubstituted Indoles. China Patent CN113121403B, 30 December 2022. [Google Scholar]
- Wang, C.; Shi, P.; Bolm, C. Visible light-promoted NH-halogenation of sulfoximines with dichloromethane or dibromomethane. Org. Chem. Front. 2021, 8, 2919–2923. [Google Scholar] [CrossRef]
- Banjare, S.K.; Nanda, T.; Pati, B.V.; Adhikari, G.K.D.; Dutta, J.; Ravikumar, P.C. Breaking the Trend: Insight into Unforeseen Reactivity of Alkynes in Cobalt-Catalyzed Weak Chelation-Assisted Regioselective C(4)–H Functionalization of 3-Pivaloyl Indole. ACS Catalysis 2021, 11, 11579–11587. [Google Scholar] [CrossRef]
- Das, D.; Bhutia, Z.T.; Chatterjee, A.; Banerjee, M. Mechanochemical Pd(II)-Catalyzed Direct and C-2-Selective Arylation of Indoles. J. Org. Chem. 2019, 84, 10764–10774. [Google Scholar] [CrossRef]
Entry | Equiv. of 2a | Solvent | Yield of 3aa | Yield of 4a |
1 | 1 | MeCN | trace | 22% |
2 | 2 | MeCN | trace | 62% |
3 | 3 | MeCN | 94% | trace |
4 | 3 | THF | 80% | trace |
5 | 3 | Toluene | trace | trace |
6 | 3 | 1,4-Dioxane | 72% | trace |
7 | 3 | EtOH | 28% | trace |
8 | 3 | DCE | 64% | trace |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.Y.; Tang, Y.; Xiang, X.; Tang, Y.; Huang, M.; Zheng, S.; Yang, C. Green One-Pot Syntheses of 2-Sulfoximidoyl-3,6-dibromo Indoles Using N-Br Sulfoximines as Both Brominating and Sulfoximinating Reagents. Molecules 2023, 28, 3380. https://doi.org/10.3390/molecules28083380
Chen XY, Tang Y, Xiang X, Tang Y, Huang M, Zheng S, Yang C. Green One-Pot Syntheses of 2-Sulfoximidoyl-3,6-dibromo Indoles Using N-Br Sulfoximines as Both Brominating and Sulfoximinating Reagents. Molecules. 2023; 28(8):3380. https://doi.org/10.3390/molecules28083380
Chicago/Turabian StyleChen, Xiao Yun, Yaonan Tang, Xinran Xiang, Yisong Tang, Mingyang Huang, Shaojun Zheng, and Cuifeng Yang. 2023. "Green One-Pot Syntheses of 2-Sulfoximidoyl-3,6-dibromo Indoles Using N-Br Sulfoximines as Both Brominating and Sulfoximinating Reagents" Molecules 28, no. 8: 3380. https://doi.org/10.3390/molecules28083380
APA StyleChen, X. Y., Tang, Y., Xiang, X., Tang, Y., Huang, M., Zheng, S., & Yang, C. (2023). Green One-Pot Syntheses of 2-Sulfoximidoyl-3,6-dibromo Indoles Using N-Br Sulfoximines as Both Brominating and Sulfoximinating Reagents. Molecules, 28(8), 3380. https://doi.org/10.3390/molecules28083380