Triterpenoids from the Leaves of Cyclocarya paliurus and Their Glucose Uptake Activity in 3T3-L1 Adipocytes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Elucidation of the Chemical Structure of Cypaliurusides Z1–Z4 (1−4)
2.2. Predicted Binding Modes of Compounds and PTP1B Using Molecular Docking Analysis
2.3. EtOAc Extract and Dammarane Saponins Enhance Glucose Uptake
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Computational Analysis of Molecular Docking Simulation
3.4. Extraction and Separation of Dammarane Saponins
3.5. Characterization of the Isolates
3.6. Hydrolyses of Novel Compounds to Determine the Linking Sugars
3.7. Assay for the Glucose Uptake Effects of the Fraction and Dammarane Saponins
3.7.1. Cell Viability Assay
3.7.2. Differentiation of 3T3-L1 Adipocytes
3.7.3. Measurement of Glucose Uptake Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.Q.; Niu, P.; Li, J.; Guan, X.L.; Zhang, Y.J.; Li, J. Discovery of atnti-inflammatory triterpenoid glucosides from the Heritiera littoralis dryand. Molecules 2023, 28, 1658. [Google Scholar] [CrossRef] [PubMed]
- Su, H.G.; Liang, H.F.; Hu, G.L.; Zhou, L.; Peng, X.R.; Bi, H.C.; Qiu, M.H. Applanoids A-E as the first examples of C-15/C-20 Michael adducts in Ganoderma triterpenoids and their PXR agonistic activity. Chin. J. Chem. 2022, 40, 2633–2641. [Google Scholar] [CrossRef]
- Kuang, Y.; Li, B.; Wang, Z.L.; Qiao, X.; Ye, M. Terpenoids from the medicinal mushroom Antrodia camphorata: Chemistry and medicinal potential. Nat. Prod. Rep. 2021, 38, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Bruder, M.; Polo, G.; Trivella, D.B.B. Natural allosteric modulators and their biological targets: Molecular signatures and mechanisms. Nat. Prod. Rep. 2020, 37, 488–514. [Google Scholar] [CrossRef]
- Cao, J.Q.; Zhang, X.S.; Qu, F.Z.; Guo, Z.H.; Zhao, Y.Q. Dammarane triterpenoids for pharmaceutical use: A patent review (2005–2014). Expert Opin. Ther. Pat. 2015, 25, 805–817. [Google Scholar] [CrossRef]
- Fan, W.X.; Huang, Y.L.; Zheng, H.; Li, S.Q.; Li, Z.H.; Yuan, L.; Cheng, X.; He, C.S.; Sun, J.F. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed. Pharmacother. 2020, 132, 110915. [Google Scholar] [CrossRef]
- Xu, B.L.; Li, Z.L.; Zeng, T.; Zhan, J.F.; Wang, S.Z.; Ho, C.T.; Li, S.M. Bioactives of Momordica charantia as potential anti-diabetic/hypoglycemic agents. Molecules 2022, 27, 2175. [Google Scholar] [CrossRef]
- Li, J.; Liang, X.Q.; Chang, Y.L.; Huang, Y.; Pan, L.W. Review on the constituents and pharmacological activities of Cyclocarya paliurus. J. Guangxi Normal Univ. (Nat. Sci. Ed.) 2022, 40, 227–252. [Google Scholar] [CrossRef]
- Chen, Z.L.; Jian, Y.Q.; Wu, Q.; Wu, J.; Sheng, W.B.; Jiang, S.; Shehla, N.; Aman, S.; Wang, W. Cyclocarya paliurus (Batalin) Iljinskaja: Botany, ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2022, 285, 114912. [Google Scholar] [CrossRef]
- Jiang, C.H.; Wang, Y.T.; Jin, Q.M.; Zhang, D.J.; Gao, M.; Yao, N.; Yin, Z.Q.; Zhang, J.; Ma, S.P. Cyclocarya paliurus triterpenoids improve diabetes-induced hepatic inflammation via the Rho-kinase-dependent pathway. Front. Pharmacol. 2019, 10, 811. [Google Scholar] [CrossRef]
- Li, J.; Zeng, W.W.; Wu, Y.X.; Zhang, Q.; Luo, M.; Zhu, Y.H.; Yang, X.L.; Guo, A.Y. Integrating transcriptome and experiments reveals the antidiabetic mechanism of Cyclocarya paliurus formula. Mol. Ther. Nucl. Acids. 2018, 13, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, X.L.; Zhu, Y.H.; Luo, M.; Guo, A.Y.; Zhang, Q. Investigating the molecular mechanism of aqueous extract of Cyclocarya paliurus on ameliorating diabetes by transcriptome profiling. Front. Pharmacol. 2018, 9, 912. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cao, Y.N.; Fang, S.Z.; Wang, T.L.; Yin, Z.Q.; Shang, X.L.; Hu, M.H. Antidiabetic effect of Cyclocarya paliurus leaves depends on the contents of antihyperglycemic flavonoids and antihyperlipidemic triterpenoids. Molecules 2018, 23, 1042. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.X.; Ning, Z.W.; Huang, T.; Wen, B.; Liao, C.H.; Lin, C.Y.; Zhao, L.; Xiao, H.T.; Bian, Z.X. Cyclocarya paliurus leaves tea improves dyslipidemia in diabetic mice: A lipidomics-based network pharmacology study. Front. Pharmacol. 2018, 9, 973. [Google Scholar] [CrossRef]
- Sun, H.H.; Tan, J.; Lv, W.Y.; Li, J.; Wu, J.P.; Xu, J.L.; Zhu, H.; Yang, Z.C.; Wang, W.X.; Zou, Z.X.; et al. Hypoglycemic triterpenoid glycosides from Cyclocarya paliurus (sweet tea tree). Bioorg. Chem. 2020, 95, 103493. [Google Scholar] [CrossRef]
- Jiang, X.M.; Lin, Q.X.; He, G.D.; Hou, X.H.; Shan, Z.X.; Du, Y.M. Therapeutic effect of QQL prescription on type 2 diabetic rats. Chin. J. Pathophysiol. 2017, 33, 1794–1800. [Google Scholar]
- Ning, Z.W.; Zhai, L.X.; Huang, T.; Peng, J.; Hu, D.; Xiao, H.T.; Wen, B.; Lin, C.Y.; Zhao, L.; Bian, Z.X. Identification of alpha-glucosidase inhibitors from cyclocarya paliurus tea leaves using UF-UPLC-Q/TOF-MS/MS and molecular docking. Food Funct. 2019, 10, 1893–1902. [Google Scholar] [CrossRef]
- Yao, J.K.; Wang, J.X.; Gao, X.M.; Fu, L.; Gao, F.; Wang, Y.J. Effects of Cyclocarya Paliurus leaves aqueous extract on pancreatic β cell’s apoptosis in type 2 diabetic rats. J. Beijing Univ. Trad. Chin. Med. 2018, 41, 663–669. [Google Scholar]
- The National Health Commission of the People’s Republic of China. Eight new raw materials for foods, such as Euglena gracilis. Bull. Natl. Health Comm. People’s Repub. China 2013, 124, 4. [Google Scholar]
- Yang, D.J.; Zhong, Z.C.; Xie, Z.M. Studies on the sweet principles from the leaves of Cyclocarya paliurus (Batal.) Iljinsk. Acta Pharm. Sin. 1992, 27, 841–844. [Google Scholar]
- Shu, R.G.; Xu, C.R.; Li, L.N. Sweet principles from the leaves of Cyclocarya paliurus (Batal.) Iljinsk. Acta Pharm. Sin. 1995, 30, 757–761. [Google Scholar]
- Fang, Z.J.; Shen, S.N.; Wang, J.M.; Wu, Y.J.; Zhou, C.X.; Mo, J.X.; Lin, L.G.; Gan, L.S. Triterpenoids from Cyclocarya paliurus that enhance glucose uptake in 3T3-L1 adipocytes. Molecules 2019, 24, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.N.; Jiang, C.H.; Tian, Y.S.; Xiao, N.; Wu, Z.F.; Ma, Y.L.; Lin, Z.; Fang, S.Z.; Shang, X.L.; Liu, K. Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: The relationship to AMPK activation. Phytomedicine 2015, 22, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Li, C.G.; Deng, S.P.; Liu, W.; Zhou, D.X.; Huang, Y.; Hao, L.L.; Zhang, G.R.; Su, S.S.; Xu, X.; Yang, R.Y.; et al. α-Glucosidase inhibitory and anti-inflammatory activities of dammarane triterpenoids from the leaves of Cyclocarya paliurus. Bioorg. Chem. 2021, 111, 104847. [Google Scholar] [CrossRef]
- Lee, H.J.; Cho, H.M.; Park, E.J.; Lee, B.W.; Nghiem, D.T.; Pham, H.T.T.; Pan, C.H.; Oh, W.K. Triterpenoid saponins from the leaves and stems of Pericampylus glaucus and their insulin mimetic activities. Bioorg. Chem. 2021, 117, 105445. [Google Scholar] [CrossRef]
- Wu, Z.F.; Meng, F.C.; Cao, L.J.; Jiang, C.H.; Zhao, M.G.; Shang, X.L.; Fang, S.Z.; Ye, W.C.; Zhang, Q.W.; Zhang, J.; et al. Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells. Phytochemistry 2017, 142, 76–84. [Google Scholar] [CrossRef]
- Fei, Y.H.; Lou, H.X. Natural Medicinal Chemistry, 7th ed.; People’s Publishing Agence: Beijing, China, 2016. [Google Scholar]
- Zhou, X.L.; Li, S.B.; Yan, M.Q.; Luo, Q.; Wang, L.S.; Shen, L.L.; Liao, M.L.; Lu, C.H.; Liu, X.Y.; Liang, C.Q. Bioactive dammarane triterpenoid saponins from the leaves of Cyclocarya paliurus. Phytochemistry 2021, 183, 112618. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.Q.; Li, X.L.; Xu, T.H.; Xie, S.X.; Xu, Y.J.; Xu, D.M. Study on chemical constituents of Cyclocarya paliurus. J. Asian Nat. Prod. Res. 2014, 16, 206–209. [Google Scholar] [CrossRef]
- Li, S.; Cui, B.S.; Liu, Q.; Tang, L.; Yang, Y.C.; Jin, X.J.; Shen, Z.F. New triterpenoids from the leaves of Cyclocarya paliurus. Planta Med. 2012, 78, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.M.; Yin, Z.Q.; Zha, M.G.; Jiang, C.H.; Pan, K. Pentacyclic triterpenoids from Cyclocarya paliurus and their antioxidant activities in FFA-induced HepG2 steatosis cells. Phytochemistry 2018, 151, 119–127. [Google Scholar] [CrossRef]
- Yang, H.J.; Jeong, E.J.; Kim, J.W.; Sung, S.H.; Kim, Y.C. Antiproliferative triterpenes from the leaves and twigs of Juglans sinensis on HSC-T6 cells. J. Nat. Prod. 2011, 74, 751–775. [Google Scholar] [CrossRef]
- Jakab, J.; Miskic, B.; Miksic, S.; Juranic, B.; Cosic, V.; Schwarz, D.; Vcev, A. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 67–83. [Google Scholar] [CrossRef]
- Song, Q.Q.; Rao, Y.; Tang, G.H.; Sun, Z.H.; Zhang, J.S.; Huang, Z.S.; Yin, S. Tigliane diterpenoids as a new type of antiadipogenic agents inhibit GR alpha-dexras1 axis in adipocytes. J. Med. Chem. 2019, 62, 2060–2075. [Google Scholar] [CrossRef]
- Sarmiento, M.; Puius, Y.A.; Vetter, S.W.; Keng, Y.F.; Wu, L.; Zhao, Y.; Lawrence, D.S.; Almo, S.C.; Zhang, Z.Y. Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition. Biochemistry 2000, 39, 8171–8179. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δH, Mult (J in Hz) | δC | δH, Mult (J in Hz) | δC | |
1 | 3.05, m; 2.00, m | 36.1 | 3.13, m; 2.08, m | 36.0 |
2 | 1.74, m; 1.68, m | 22.2 | 1.87, m; 1.46, m | 21.4 |
3 | 3.53, br s | 81.6 | 3.60, br s | 81.9 |
4 | 38.5 | 38.6 | ||
5 | 1.54, d, (11.2) | 51.3 | 1.61, m | 50.7 |
6 | 1.53, m; 1.40, m | 18.7 | 1.58, m; 1.46, m | 18.8 |
7 | 1.41, m; 1.06, d, (9.2) | 36.8 | 1.48, m; 1.13, d, (11.7) | 36.8 |
8 | 50.7 | 50.1 | ||
9 | 1.80, m | 54.3 | 1.89, m | 54.3 |
10 | 40.4 | 40.4 | ||
11 | 2.70, m; 1.46, m | 34.1 | 2.65, m; 1.52, m | 34.0 |
12 | 4.36, m | 76.8 | 4.51, td, (10.6, 4.9) | 76.4 |
13 | 1.80, m | 42.5 | 1.73, m | 41.6 |
14 | 41.9 | 41.0 | ||
15 | 1.32, m; 1.01, m | 31.7 | 1.35, m; 0.97, m | 31.6 |
16 | 1.64, m; 1.34, m | 25.9 | 1.72, m; 1.43, m | 26.0 |
17 | 1.53, m | 47.8 | 1.49, m | 50.6 |
18 | 0.90, s | 17.5 | 0.98, s | 17.5 |
19 | 1.29, s | 17.4 | 1.38, s | 17.4 |
20 | 92.6 | 89.9 | ||
21 | 1.36, s | 23.9 | 1.28, s | 24.9 |
22 | 7.64, d, (5.7) | 161.2 | 2.00, m; 1.88, m | 32.0 |
23 | 6.26, d, (5.7) | 121.9 | 2.70, m; 2.59, m | 29.1 |
24 | 173.4 | 176.8 | ||
28 | 0.91, s | 23.5 | 0.96, s | 23.8 |
29 | 1.20, s | 30.4 | 1.26, s | 30.0 |
30 | 0.55, s | 16.9 | 0.62, s | 16.8 |
1′ | 4.68, d, (7.2) | 102.1 | 4.74, d, (6.5) | 102.3 |
2′ | 4.38, dd, (9.2, 7.2) | 72.9 | 4.45, t, (8.9) | 72.1 |
3′ | 4.13, dd, (9.2, 4.2) | 75.2 | 4.27, dd, (8.4, 3.5) | 75.3 |
4′ | 4.19, dd, (8.2, 3.6) | 70.3 | 4.42, m | 69.7 |
5′ | 4.29, dd; (8.2, 3.6), 3.74, m | 66.8 | 4.34, dd, (12.1, 3.7); 3.80, m | 66.9 |
1′′ | 4.87, d, (6.5) | 102.7 | 5.11, d, (7.7) | 102.4 |
2′′ | 4.36, dd, (8.0, 7.2) | 73.1 | 4.16, t, (8.2) | 75.8 |
3′′ | 4.28, dd, (9.2, 4.1) | 75.4 | 4.03, dd, (8.2, 6.5) | 79.2 |
4′′ | 4.40, m | 69.5 | 4.01, dd, (8.2, 6.5) | 78.5 |
5′′ | 4.29, dd, (8.6, 3.2); 3.80, m | 68.1 | 4.31, d, (8.9); 3.78, m | 72.9 |
6′′ | 4.58, dd, (11.4, 2.8); 4.38, m | 63.9 |
Compounds | Retention Times (min) | Types of the Monosaccharides |
---|---|---|
1 | 6.844, 6.847 | L-Ara, L-Ara |
2 | 6.842, 6.562 | L-Ara, D-Glc |
3 | 6.849, 6.561 | L-Ara, D-Glc |
4 | 6.841, 7.419 | L-Ara, D-Qui |
D-Glc | 6.567 | |
L-Ara | 6.843 | |
D-Qui | 7.416 |
Position | 3 | 4 | ||
---|---|---|---|---|
δH, Mult. (J in Hz) | δC | δH, Mult. (J in Hz) | δC | |
1 | 3.01, m; 2.01, m | 36.6 | 3.10, m; 2.06, m | 36.1 |
2 | 1.91, m; 1.74, m | 22.3 | 1.89, m; 1.78, m | 21.8 |
3 | 3.53, m | 81.9 | 3.62, d, (5.1) | 79.8 |
4 | 38.6 | 38.3 | ||
5 | 1.53, (d, 11.2) | 51.4 | 1.60, m | 51.3 |
6 | 1.60, m; 1.40, m | 18.8 | 1.58, m; 1.46, m | 18.6 |
7 | 1.39, m; 1.06, d, (9.2) | 35.9 | 1.47, m; 1.44, m | 36.5 |
8 | 50.7 | 50.6 | ||
9 | 1.80, m | 55.4 | 1.89, m | 54.2 |
10 | 40.4 | 40.3 | ||
11 | 1.98, m; 1.84, m | 34.0 | 1.98, m; 1.84, m | 34.1 |
12 | 4.16, m | 76.0 | 4.51, m | 76.5 |
13 | 1.61, m | 42.3 | 1.73, m | 42.0 |
14 | 41.0 | 41.6 | ||
15 | 1.32, m; 1.03, m | 31.4 | 1.32, m; 1.03, m | 31.5 |
16 | 1.64, m; 1.34, m | 25.8 | 1.83, m; 1.72, m | 25.8 |
17 | 1.53, m | 50.0 | 1.81, m | 49.9 |
18 | 0.90, s | 17.1 | 1.03, s | 17.2 |
19 | 1.34, s | 17.4 | 1.38, s | 17.1 |
20 | 89.7 | 89.9 | ||
21 | 1.47, s | 21.9 | 1.25, s | 23.3 |
22 | 1.98, m; 1.87, m | 32.7 | 1.98, m; 1.84, m | 32.6 |
23 | 2.67, m; 2.51, m | 29.7 | 2.66, m; 2.50, m | 29.7 |
24 | 176.6 | 177.3 | ||
28 | 0.97, s | 23.6 | 1.00, s | 23.2 |
29 | 1.28, s | 30,4 | 1.28, s | 30.3 |
30 | 0.69, s | 16.7 | 0.61, s | 16.7 |
1′ | 5.55, d, (6.5) | 106.9 | 4.75, d, (6.5) | 102.5 |
2′ | 4.89, t, (5.6) | 84.6 | 4.44, m | 72.9 |
3′ | 4.85, m | 79.9 | 4.24, dd, (8.2, 3.5) | 75.3 |
4′ | 4.76, dd, (6.0, 5.0) | 86.0 | 4.40, t, (6.0) | 69.5 |
5′ | 4.40, m; 4.29, d, (9.4) | 63.4 | 4.33, dd, (12.1, 3.7); 3.79, m | 66.9 |
1′′ | 5.12, d, (7.6) | 102.1 | 5.00, d, (7.7) | 101.9 |
2′′ | 4.03, t, (8.3) | 75.0 | 4.07, t, (9.2) | 75.7 |
3′′ | 4.31, t, (9.1) | 78.9 | 4.18, t, (8.9) | 79.0 |
4′′ | 4.05, m | 77.4 | 3.70, t, (9.0) | 78.3 |
5′′ | 4.18, dd, (9.1, 3.2); 3.78, m | 73.4 | 4.41, m, 3.79; dd, (8.9, 2.7) | 72.7 |
6′′ | 4.41, m; 4.30, m | 63.8 | 1.66, d, (7.4) | 19.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Deng, S.; Huang, Y.; Pan, L.; Chang, Y.; Hou, P.; Ren, C.; Xu, W.; Yang, R.; Li, K.; et al. Triterpenoids from the Leaves of Cyclocarya paliurus and Their Glucose Uptake Activity in 3T3-L1 Adipocytes. Molecules 2023, 28, 3294. https://doi.org/10.3390/molecules28083294
Liang X, Deng S, Huang Y, Pan L, Chang Y, Hou P, Ren C, Xu W, Yang R, Li K, et al. Triterpenoids from the Leaves of Cyclocarya paliurus and Their Glucose Uptake Activity in 3T3-L1 Adipocytes. Molecules. 2023; 28(8):3294. https://doi.org/10.3390/molecules28083294
Chicago/Turabian StyleLiang, Xiaoqin, Shengping Deng, Yan Huang, Liwei Pan, Yanling Chang, Ping Hou, Chenyang Ren, Weifeng Xu, Ruiyun Yang, Kanyuan Li, and et al. 2023. "Triterpenoids from the Leaves of Cyclocarya paliurus and Their Glucose Uptake Activity in 3T3-L1 Adipocytes" Molecules 28, no. 8: 3294. https://doi.org/10.3390/molecules28083294
APA StyleLiang, X., Deng, S., Huang, Y., Pan, L., Chang, Y., Hou, P., Ren, C., Xu, W., Yang, R., Li, K., Li, J., & He, R. (2023). Triterpenoids from the Leaves of Cyclocarya paliurus and Their Glucose Uptake Activity in 3T3-L1 Adipocytes. Molecules, 28(8), 3294. https://doi.org/10.3390/molecules28083294