Anti-SARS-CoV-2 Activity of Ampelozizyphus amazonicus (Saracura-Mirá): Focus on the Modulation of the Spike-ACE2 Interaction by Chemically Characterized Bark Extracts by LC-DAD-APCI-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. A. amazonicus Extracts Inhibit at Least Half of RBD:ACE2 Complex Formation In Vitro
2.2. Chemical Characterization of A. amazonicus Bark Extracts Reveal the Presence of Saponins, Triterpenes, and Phenolic Compounds
2.3. Clean-Up Procedure with Lead Acetate Removes Phenolic Compounds and Promotes Differences in Biological Activity
2.4. The Characterized Extracts Can Inhibit SARS-CoV-2 In Vitro Replication
3. Materials and Methods
3.1. Chemicals, Materials and Plant Extracts
3.2. Clean-Up Procedure with Lead Acetate
3.3. Sample Preparation for Chemical Investigation
3.4. Sample Preparation for RBD:ACE2 Inhibition Assays
3.5. LC-DAD-APCI-MS/MS Analysis
3.6. Total Phenolic Content (TPC)
3.7. Lumit™ RBD:ACE2 Interaction Assays
3.8. Calu-3 Cytotoxicity Assay
3.9. Inhibition of SARS-CoV-2 Replication in Calu-3 Cells
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | Angiotensin-converting Enzyme 2 |
RBD | Receptor Binding Domain |
ACN | Acetonitrile |
APCI | Atmospheric Pressure Chemical Ionization |
CC50 | Half-maximal Cytotoxic Concentration |
CGEN | Conselho de Gestão do Patrimônio Genético |
CID | Collision-induced Dissociation |
COVID-19 | Coronavirus Disease 2019 |
DAD | Diode Array Detector |
DMSO | Dimethyl Sulfoxide |
EC50 | Half-maximal Effective Concentration |
EtOH | Ethanol |
FRET | Fluorescence Resonance Energy Transfer |
LC | Liquid Chromatography |
MS | Mass Spectrometry |
MTT | 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide |
ORF | Open Reading Frame |
RBD | Receptor Binding Domain |
Rt | Retention time |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
SP | Spike Protein |
UHPLC | Ultra High-Performance Liquid Chromatography |
WHO | World Health Organization |
References
- WHO—World Health Organization Coronavirus Dashboard. Available online: https://covid19.who.int (accessed on 28 February 2023).
- Wang, M.-Y.; Zhao, R.; Gao, L.-J.; Gao, X.-F.; Wang, D.-P.; Cao, J.-M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell Infect. Microbiol. 2020, 10, 587269. [Google Scholar] [CrossRef]
- Lopes-Pacheco, M.; Silva, P.L.; Cruz, F.F.; Battaglini, D.; Robba, C.; Pelosi, P.; Morales, M.M.; Caruso Neves, C.; Rocco, P.R.M. Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Front. Physiol. 2021, 12, 593223. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q.; Guo, D. Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 Genome, Structure, Evolution, Pathogenesis and Therapies: Structural Genomics Approach. Biochim. Biophys. Acta 2020, 1866, 165878. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G.-Y.; Katsamba, P.S.; Sampson, J.M.; Schön, A.; Bimela, J.; et al. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a PH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host Microbe 2020, 28, 867–879.e5. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and Evolution of Pathogenic Coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, Y.I.; Park, S.J.; Kim, I.K.; Choi, Y.K.; Kim, S.-H. Safe, High-Throughput Screening of Natural Compounds of MERS-CoV Entry Inhibitors Using a Pseudovirus Expressing MERS-CoV Spike Protein. Int. J. Antimicrob. Agents 2018, 52, 730–732. [Google Scholar] [CrossRef]
- Omrani, M.; Keshavarz, M.; Nejad Ebrahimi, S.; Mehrabi, M.; McGaw, L.J.; Ali Abdalla, M.; Mehrbod, P. Potential Natural Products against Respiratory Viruses: A Perspective to Develop Anti-COVID-19 Medicines. Front. Pharmacol. 2021, 11, 586993. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.E.; Senol Deniz, F.S. Natural Products as Potential Leads against Coronaviruses: Could They Be Encouraging Structural Models against SARS-CoV-2? Nat. Prod. Bioprospect. 2020, 10, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.M.; Simas, R.C.; Miranda, M.; Campos, M.F.; Gomes, B.A.; Siqueira, M.M.; do Vale, G.; Gomes de Almeida, C.V.; Leitão, S.G.; Leitão, G.G. Amazonian Siparuna Extracts as Potential Anti-Influenza Agents: Metabolic Fingerprinting. J. Ethnopharmacol. 2021, 270, 113788. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Deng, S.; Bai, Y.; Guo, J.; Kai, G.; Huang, X.; Jia, X. Promising Natural Products against SARS-CoV-2: Structure, Function, and Clinical Trials. Phytother. Res. 2022, 36, 3833–3858. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Lima, C.R.; Fintelman-Rodrigues, N.; Sacramento, C.Q.; de Freitas, C.S.; Vazquez, L.; Temerozo, J.R.; Rocha, M.E.N.; Dias, S.S.G.; Carels, N.; et al. Agathisflavone, a Natural Biflavonoid That Inhibits SARS-CoV-2 Replication by Targeting Its Proteases. Int. J. Biol. Macromol. 2022, 222, 1015–1026. [Google Scholar] [CrossRef]
- Wei, W.; Kong, N.; Liu, M.-Z.; Han, T.; Xu, J.-F.; Liu, C. Anisodamine Potently Inhibits SARS-CoV-2 Infection in Vitro and Targets Its Main Protease. Biochem. Biophys. Res. Commun. 2022, 616, 8–13. [Google Scholar] [CrossRef]
- Tahir ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.-L. Structural Basis of SARS-CoV-2 3CLpro and Anti-COVID-19 Drug Discovery from Medicinal Plants. J. Pharm. Anal. 2020, 10, 313–319. [Google Scholar] [CrossRef]
- Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An Investigation into the Identification of Potential Inhibitors of SARS-CoV-2 Main Protease Using Molecular Docking Study. J. Biomol. Struct. Dyn. 2021, 39, 3347–3357. [Google Scholar] [CrossRef]
- Santos-Filho, O. Identification of Potential Inhibitors of Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Main Protease from Non-Natural and Natural Sources: A Molecular Docking Study. J. Braz. Chem. Soc. 2020, 31, 2638–2643. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, K.; Zhang, X.; Deng, S.; Peng, B. In Silico Screening of Chinese Herbal Medicines with the Potential to Directly Inhibit 2019 Novel Coronavirus. J. Integr. Med. 2020, 18, 152–158. [Google Scholar] [CrossRef]
- Thuy, B.T.P.; My, T.T.A.; Hai, N.T.T.; Hieu, L.T.; Hoa, T.T.; Thi Phuong Loan, H.; Triet, N.T.; van Anh, T.T.; Quy, P.T.; van Tat, P.; et al. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega 2020, 5, 8312–8320. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-H.; Cheng, T.; Liu, B.-Y.; Chi, J.; Shu, T.; Wang, T. Structures of the SARS-CoV-2 Spike Glycoprotein and Applications for Novel Drug Development. Front. Pharmacol. 2022, 13, 955648. [Google Scholar] [CrossRef] [PubMed]
- Raman, K.; Rajagopal, K.; Islam, F.; Dhawan, M.; Mitra, S.; Aparna, B.; Varakumar, P.; Byran, G.; Choudhary, O.P.; Emran, T.B. Role of Natural Products towards the SARS-CoV-2: A Critical Review. Ann. Med. Surg. 2022, 80, 104062. [Google Scholar] [CrossRef] [PubMed]
- Christenhusz, M.J.M.; Byng, J.W. The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa 2016, 261, 201. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.B. de Flora da Reserva Ducke, Amazonas, Brasil: Rhamnaceae. Rodriguésia 2006, 57, 247–249. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.; Berry, P.E. Ampelozizyphus guaquirensis (Rhamnaceae), a New Tree Species Endemic to the Venezuelan Coastal Cordillera. Brittonia 2008, 60, 131–135. [Google Scholar] [CrossRef]
- Aymard, G.A.; Castro-Lima, F. A Second Tree Species of Ampelozizyphus (Rhamnaceae), from the Upper Cuyarí River Basin, Guianía (Colombia). Harv. Pap. Bot. 2015, 20, 161–166. [Google Scholar] [CrossRef]
- de Oliveira, D.R.; Costa, A.L.M.A.; Leitão, G.G.; Castro, N.G.; dos Santos, J.P.; Leitão, S.G. Estudo Etnofarmacognóstico da Saracuramirá (Ampelozizyphus amazonicus Ducke), Uma Planta Medicinal Usada Por Comunidades Quilombolas do Município de Oriximiná-PA, Brasil. Acta Amazon. 2011, 41, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Peçanha, L.M.T.; Fernandes, P.D.; Simen, T.J.-M.; de Oliveira, D.R.; Finotelli, P.V.; Pereira, M.V.A.; Barboza, F.F.; da Almeida, T.S.; Carvalhal, S.; Pierucci, A.P.T.R.; et al. Immunobiologic and Antiinflammatory Properties of a Bark Extract from Ampelozizyphus amazonicus Ducke. Biomed. Res. Int. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Simen, T.J.M.; Finotelli, P.V.; Barboza, F.F.; Pereira, M.A.; Pierucci, A.P.T.R.; Moura, M.R.L.; de Oliveira, D.R.; Abraçado, L.G.; Celano, R.; de Souza Figueiredo, F.; et al. Spray-Dried Extract from the Amazonian Adaptogenic Plant Ampelozizyphus amazonicus Ducke (Saracura-Mirá): Chemical Composition and Immunomodulatory Properties. Food Res. Int. 2016, 90, 100–110. [Google Scholar] [CrossRef]
- Leitão, S.G.; Leitão, G.G.; de Oliveira, D.R. Saracura-Mirá, a Proposed Brazilian Amazonian Adaptogen from Ampelozizyphus amazonicus. Plants 2022, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- de Silva, J.R.A.; Corrêa, G.M.; Carvalho, J.R.; Costa, R.A.; Pinheiro, M.L.B.; Araujo, L.M.; Amaral, A.C.F. Analyses of Ampelozizyphus amazonicus, a Plant Used in Folk Medicine of the Amazon Region. Pharmacogn. Mag. 2009, 4, 75–80. [Google Scholar]
- Figueiredo, F.S.; Celano, R.; de Sousa Silva, D.; das Neves Costa, F.; Hewitson, P.; Ignatova, S.; Piccinelli, A.L.; Rastrelli, L.; Guimarães Leitão, S.; Guimarães Leitão, G. Countercurrent Chromatography Separation of Saponins by Skeleton Type from Ampelozizyphus amazonicus for Off-Line Ultra-High-Performance Liquid Chromatography/High Resolution Accurate Mass Spectrometry Analysis and Characterisation. J. Chromatogr. A 2017, 1481, 92–100. [Google Scholar] [CrossRef]
- Mendonça, S.C.; Simas, R.C.; Reis Simas, D.L.; Leitão, S.G.; Leitão, G.G. Mass Spectrometry as a Tool for the Dereplication of Saponins from Ampelozizyphus amazonicus Ducke Bark and Wood. Phytochem. Anal. 2021, 32, 262–282. [Google Scholar] [CrossRef]
- Alves, J.; Engel, L.; de Vasconcelos Cabral, R.; Rodrigues, E.L.; de Jesus Ribeiro, L.; Higa, L.M.; da Costa Ferreira Júnior, O.; Castiñeiras, T.M.P.P.; de Carvalho Leitão, I.; Tanuri, A.; et al. A Bioluminescent and Homogeneous SARS-CoV-2 Spike RBD and hACE2 Interaction Assay for Antiviral Screening and Monitoring Patient Neutralizing Antibody Levels. Sci. Rep. 2021, 11, 18428. [Google Scholar] [CrossRef] [PubMed]
- Brandao, M.G.L.; Lacaille-Dubois, M.-A.; Teixera, M.A.; Wagner, H. Triterpene Saponins from the Roots of Ampelozizyphus amazonicus. Phytochemistry 1992, 31, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Brandao, M.G.L.; Lacaille-Dubois, M.-A.; Teixeira, M.A.; Wagner, H. A Dammarane-Type Saponin from the Roots of Ampelozizyphus amazonicus. Phytochemistry 1993, 34, 1123–1127. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant Drug Analysis, 2nd ed.; Springer: Berlin, Germany, 1996. [Google Scholar]
- Pawlowska, A.M.; Camangi, F.; Bader, A.; Braca, A. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) Fruits. Food Chem. 2009, 112, 858–862. [Google Scholar] [CrossRef]
- Gu, D.; Yang, Y.; Bakri, M.; Chen, Q.; Xin, X.; Aisa, H.A. A LC/QTOF-MS/MS Application to Investigate Chemical Compositions in a Fraction with Protein Tyrosine Phosphatase 1B Inhibitory Activity from Rosa Rugosa Flowers. Phytochem. Anal. 2013, 24, 661–670. [Google Scholar] [CrossRef]
- Waridel, P.; Wolfender, J.-L.; Ndjoko, K.; Hobby, K.R.; Major, H.J.; Hostettmann, K. Evaluation of Quadrupole Time-of-Flight Tandem Mass Spectrometry and Ion-Trap Multiple-Stage Mass Spectrometry for the Differentiation of C-Glycosidic Flavonoid Isomers. J. Chromatogr. A 2001, 926, 29–41. [Google Scholar] [CrossRef]
- Hassan, H.A.; Hassan, A.R.; Mohamed, E.A.R.; Al-Khdhairawi, A.; Karkashan, A.; Attar, R.; Allemailem, K.S.; al Abdulmonem, W.; Shimizu, K.; Abdel-Rahman, I.A.M.; et al. Conducting the RBD of SARS-CoV-2 Omicron Variant with Phytoconstituents from Euphorbia Dendroides to Repudiate the Binding of Spike Glycoprotein Using Computational Molecular Search and Simulation Approach. Molecules 2022, 27, 2929. [Google Scholar] [CrossRef] [PubMed]
- Arimboor, R. Plant Phenolics with Antiviral Activities against Human Coronavirus and Structure-Activity Relationships—A Review. Pharmacogn. Rev. 2021, 15, 96–106. [Google Scholar] [CrossRef]
- Jena, A.B.; Kanungo, N.; Nayak, V.; Chainy, G.B.N.; Dandapat, J. Catechin and Curcumin Interact with S Protein of SARS-CoV2 and ACE2 of Human Cell Membrane: Insights from Computational Studies. Sci. Rep. 2021, 11, 2043. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-Y.; Pan, Y.-C.; Wu, T.-Y.; Yao, T.-Y.; Wang, W.-J.; Shen, W.-J.; Ahmed, A.; Chan, S.-T.; Tang, C.-H.; Huang, W.-C.; et al. Potential Natural Products That Target the SARS-CoV-2 Spike Protein Identified by Structure-Based Virtual Screening, Isothermal Titration Calorimetry and Lentivirus Particles Pseudotyped (Vpp) Infection Assay. J. Tradit. Complement. Med. 2022, 12, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Y.; Yao, S.; Ge, H.; Zhu, Y.; Chen, K.; Chen, W.; Zhang, Y.; Zhu, W.; Wang, H.; et al. Discovery of Potential Small Molecular SARS-CoV-2 Entry Blockers Targeting the Spike Protein. Acta Pharmacol. Sin. 2022, 43, 788–796. [Google Scholar] [CrossRef]
- Vijayakumar, B.G.; Ramesh, D.; Joji, A.; Jayachandra prakasan, J.; Kannan, T. In Silico Pharmacokinetic and Molecular Docking Studies of Natural Flavonoids and Synthetic Indole Chalcones against Essential Proteins of SARS-CoV-2. Eur. J. Pharmacol. 2020, 886, 173448. [Google Scholar] [CrossRef] [PubMed]
- Bharathi, M.; Sivamaruthi, B.S.; Kesika, P.; Thangaleela, S.; Chaiyasut, C. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron, B.1.1.529 Spike Protein Trimer. Mar. Drugs 2022, 20, 148. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Mujawdiya, P.K.; Lysiuk, R.; Shanaida, M.; Peana, M.; Gasmi Benahmed, A.; Beley, N.; Kovalska, N.; Bjørklund, G. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals 2022, 15, 1049. [Google Scholar] [CrossRef]
- Munafo, F.; Donati, E.; Brindani, N.; Ottonello, G.; Armirotti, A.; de Vivo, M. Quercetin and Luteolin Are Single-Digit Micromolar Inhibitors of the SARS-CoV-2 RNA-Dependent RNA Polymerase. Sci. Rep. 2022, 12, 10571. [Google Scholar] [CrossRef]
- Kumar, S.; Paul, P.; Yadav, P.; Kaul, R.; Maitra, S.S.; Jha, S.K.; Chaari, A. A Multi-Targeted Approach to Identify Potential Flavonoids against Three Targets in the SARS-CoV-2 Life Cycle. Comput. Biol. Med. 2022, 142, 105231. [Google Scholar] [CrossRef]
- Derosa, G.; Maffioli, P.; D’Angelo, A.; di Pierro, F. A Role for Quercetin in Coronavirus Disease 2019 (COVID-19). Phytother. Res. 2021, 35, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Goris, T.; Pérez-Valero, Á.; Martínez, I.; Yi, D.; Fernández-Calleja, L.; San León, D.; Bornscheuer, U.T.; Magadán-Corpas, P.; Lombó, F.; Nogales, J. Repositioning Microbial Biotechnology against COVID-19: The Case of Microbial Production of Flavonoids. Microb. Biotechnol. 2021, 14, 94–110. [Google Scholar] [CrossRef] [PubMed]
- Arokiyaraj, S.; Stalin, A.; Kannan, B.S.; Shin, H. Geranii herba as a Potential Inhibitor of SARS-CoV-2 Main 3CLpro, Spike RBD, and Regulation of Unfolded Protein Response: An in Silico Approach. Antibiotics 2020, 9, 863. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.R.; Antunes, B.S.; do Nascimento, G.O.; Kawall, J.C.d.S.; Oliveira, J.V.B.; Silva, K.G.d.S.; Costa, M.A.d.T.; Oliveira, C.R. Antiviral Activity of Medicinal Plant-Derived Products against SARS-CoV-2. Exp. Biol. Med. 2022, 247, 1797–1809. [Google Scholar] [CrossRef] [PubMed]
- Liskova, A.; Samec, M.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Al-Ishaq, R.K.; Abotaleb, M.; Nosal, V.; Kajo, K.; Ashrafizadeh, M.; et al. Flavonoids against the SARS-CoV-2 Induced Inflammatory Storm. Biomed. Pharmacother. 2021, 138, 111430. [Google Scholar] [CrossRef] [PubMed]
- Mollica, A.; Zengin, G.; Sinan, K.I.; Marletta, M.; Pieretti, S.; Stefanucci, A.; Etienne, O.K.; Jekő, J.; Cziáky, Z.; Bahadori, M.B.; et al. A Study on Chemical Characterization and Biological Abilities of Alstonia boonei Extracts Obtained by Different Techniques. Antioxidants 2022, 11, 2171. [Google Scholar] [CrossRef]
- Mollica, A.; Scioli, G.; Della Valle, A.; Cichelli, A.; Novellino, E.; Bauer, M.; Kamysz, W.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Castillo-López, R.; et al. Phenolic Analysis and in Vitro Biological Activity of Red Wine, Pomace and Grape Seeds Oil Derived from Vitis vinifera L. Cv. Montepulciano d’Abruzzo. Antioxidants 2021, 10, 1704. [Google Scholar] [CrossRef]
- Jureka, A.; Silvas, J.; Basler, C. Propagation, Inactivation, and Safety Testing of SARS-CoV-2. Viruses 2020, 12, 622. [Google Scholar] [CrossRef]
- Kumar, S.; Sarma, P.; Kaur, H.; Prajapat, M.; Bhattacharyya, A.; Avti, P.; Sehkhar, N.; Kaur, H.; Bansal, S.; Kuhad, A.; et al. Tissue and Cell Clinically Relevant Cell Culture Models and Their Significance in Isolation, Pathogenesis, Vaccine Development, Repurposing and Screening of New Drugs for SARS-CoV-2: A Systematic Review. Tissue Cell 2021, 70, 101497. [Google Scholar] [CrossRef]
- Sobolewska, D.; Galanty, A.; Grabowska, K.; Makowska-Wąs, J.; Wróbel-Biedrawa, D.; Podolak, I. Saponins as Cytotoxic Agents: An Update (2010–2018). Part I—Steroidal Saponins. Phytochem. Rev. 2020, 19, 139–189. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Shin, E.-C. Hyper-Inflammatory Responses in COVID-19 and Anti-Inflammatory Therapeutic Approaches. BMB Rep. 2022, 55, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Qin, C.; Fei, Y.; Shen, M.; Zhou, Y.; Zhang, Y.; Zeng, X.; Zhang, S. Anti-Inflammatory and Immune Therapy in Severe Coronavirus Disease 2019 (COVID-19) Patients: An Update. Clin. Immunol. 2022, 239, 109022. [Google Scholar] [CrossRef] [PubMed]
- Yantih, N.; Syabillawati, U.; Mulatsari, E.; Sumaryono, W. In Silico Screening of Ziziphus spina-Christi (L.) Desf. and Strychnos ligustrine compounds as a protease inhibitor of SARS-CoV-2. J. Exp. Biol. Agric. Sci. 2021, 9, S208–S214. [Google Scholar] [CrossRef]
- Lyu, M.; Fan, G.; Xiao, G.; Wang, T.; Xu, D.; Gao, J.; Ge, S.; Li, Q.; Ma, Y.; Zhang, H.; et al. Traditional Chinese Medicine in COVID-19. Acta Pharm. Sin. B 2021, 11, 3337–3363. [Google Scholar] [CrossRef]
- Park, J.D.; Rhee, D.K.; Lee, Y.H. Biological Activities and Chemistry of Saponins from Panax ginseng CA Meyer. Phytochem. Rev. 2005, 4, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.H. Ginseng Protects ACE2-Transgenic Mice from SARS-CoV-2 Infection. Front. Biosci. 2022, 27, 180. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Rabbi Mashrur, F.; Runa, N.J.; Kwon, K.W.; Hosseinzadeh, H.; Cho, J.Y. Ginseng, a Promising Choice for SARS-COV-2: A Mini Review. J. Ginseng. Res. 2022, 46, 183–187. [Google Scholar] [CrossRef]
- Lima, R.; Silva, M.V.T.; Gomes, B.A.; Macedo, E.H.B.C.; Santana, M.N.; Amaral, A.C.F.; Silva, J.R.A.; Corrêa, P.G.; Godoy, R.L.O.; Santiago, M.C.P.A.; et al. Chemical Profile and Hematoprotective Activity of Artisanal Jabuticaba (Plinia jabuticaba) Wine and Derived Extracts. Fermentation 2023, 9, 157. [Google Scholar] [CrossRef]
- WHO—World Health Organization TAG-VE Statement on Omicron Sublineages BQ.1 and XBB. Available online: https://www.who.int/news/item/27-10-2022-tag-ve-statement-on-omicron-sublineages-bq.1-and-xbb (accessed on 12 February 2023).
Compound | Rt (min) | [M-H]− m/z | Molecular Formula | MS2 | Aglycone | Sugar Residue a |
---|---|---|---|---|---|---|
1 | 13.6 | 959.4 | C48H80O19 | 941 (-H2O), 817 (-C8H14O2), 797 (-Hex), 779 (-H2O-Hex), 655 (-C8H14O2-Hex), 509 (-C8H1402-Hex-dHex) | 16-keto-tetrahydroxydammar-23-ene | 2Hex, 1dHex |
2 | 15.0 | 973.3 | C49H82O19 | 913 (-C2H4O2), 841 (-Pen), 811 (-Hex), 781 (-C2H4O2-Pen), 751 (C2H4O2-Pen), 619 (C2H4O2-Pen-Hex) | konarigenin | 2Hex, 1Pen |
3 | 16.6 | 943.4 | C48H80O18 | 811 (-Pen), 781 (-Hex), 763 (-H2O-Hex), 649 (’Hex-Pen), 479 (-C9H16O2-Hex-d-Hex), 347 (-C9H16O2-Hex-dHex-Pen) | 16-keto-tetrahydroxydammar-24-methylene | 1Hex, 1dHex, 1Pen |
4 | 17.0 | 957.3 | C49H82O18 | 801 (-C9H16O2) 811 (-dHex), 795 (-Hex), 649 (-Hex-dHex) | 16-keto-tetrahydroxydammar-24-methylene | 2dHex, 1Hex |
5 | 18.9 | 1059.3 | C52H84O22 | 927 (-Pen), 897 (-Hex), 879 (-H2O-hex), 756 (-Hex-Pen), 735 (-2Hex), 603 (-2Hex-Pen), 453 (-H2O-2Hex-2Pen) | jujubogenin | 2Hex, 2Pen |
6 | 20.7 | 897.5 | C46H74O17 | 765 (-Pen), 735 (-Hex), 603 (-Pen-Hex), 471 (-Hex-2Pen) | jujubogenin | 1Hex, 2Pen |
Compound | Class | Compound Molecular Formula | Rt (min) | [M-H]− m/z | MS2 | λmax | Reference |
---|---|---|---|---|---|---|---|
7 | flavonoid | C-glycosylated flavonoid (UI) * | 0.96 | 621.4 | 603 (M-H-H2O), 531 (M-H-90), 501 (M-H-120) 441 2x (M-H-90), 381 2x (M-H-120) | 295 | - |
8 | chalcone | 3′,5′di-C-glucosyl phloretin C27H34O15 | 0.96 | 597.5 | 579 (M-H-H2O), 507 (M-H-90), 477 (M-H-120) 417 2x (M-H-90), 357 2x (M-H-120) | 285 | [40] |
9 | flavonol | quercetin 3-O-deoxyhexoside C21H20O11 | 0.98 | 465.7 [M-H +H2O]− adduct | 319 (-dHex), 301 (-dHex-H2O) 283 (-dHex-2H2O) 255 (-dHex-2H2O -CO) | 255, 355 | [41] |
Time Post-Infection (h) | #74 | #75 | #76 | #76_Pb | #156 | |
---|---|---|---|---|---|---|
EC50 (µg·mL−1) | 24 | 32.79 ± 3.4 | <25.0 | 26.50 ± 1.3 | 33.61 ± 3.2 | <25.0 |
Code Number | Code | Extraction Preparation Method | Ref. |
---|---|---|---|
#74 | SART | Aqueous bark extract prepared in the laboratory scale according to the traditional beverage | [30] |
#75 | SET-MT | Ethanol bark extract prepared after the aqueous extraction of extract #74 | - |
#76 | SETMA | Ethanol bark extract prepared by percolation | [34] |
#156 | SARFLORA | Aqueous bark extract prepared in a pilot-scale industrial plant, according to the traditional method | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, M.F.; Mendonça, S.C.; Peñaloza, E.M.C.; de Oliveira, B.A.C.; Rosa, A.S.; Leitão, G.G.; Tucci, A.R.; Ferreira, V.N.S.; Oliveira, T.K.F.; Miranda, M.D.; et al. Anti-SARS-CoV-2 Activity of Ampelozizyphus amazonicus (Saracura-Mirá): Focus on the Modulation of the Spike-ACE2 Interaction by Chemically Characterized Bark Extracts by LC-DAD-APCI-MS/MS. Molecules 2023, 28, 3159. https://doi.org/10.3390/molecules28073159
Campos MF, Mendonça SC, Peñaloza EMC, de Oliveira BAC, Rosa AS, Leitão GG, Tucci AR, Ferreira VNS, Oliveira TKF, Miranda MD, et al. Anti-SARS-CoV-2 Activity of Ampelozizyphus amazonicus (Saracura-Mirá): Focus on the Modulation of the Spike-ACE2 Interaction by Chemically Characterized Bark Extracts by LC-DAD-APCI-MS/MS. Molecules. 2023; 28(7):3159. https://doi.org/10.3390/molecules28073159
Chicago/Turabian StyleCampos, Mariana Freire, Simony Carvalho Mendonça, Evelyn Maribel Condori Peñaloza, Beatriz A. C. de Oliveira, Alice S. Rosa, Gilda Guimarães Leitão, Amanda R. Tucci, Vivian Neuza S. Ferreira, Thamara Kelcya F. Oliveira, Milene Dias Miranda, and et al. 2023. "Anti-SARS-CoV-2 Activity of Ampelozizyphus amazonicus (Saracura-Mirá): Focus on the Modulation of the Spike-ACE2 Interaction by Chemically Characterized Bark Extracts by LC-DAD-APCI-MS/MS" Molecules 28, no. 7: 3159. https://doi.org/10.3390/molecules28073159
APA StyleCampos, M. F., Mendonça, S. C., Peñaloza, E. M. C., de Oliveira, B. A. C., Rosa, A. S., Leitão, G. G., Tucci, A. R., Ferreira, V. N. S., Oliveira, T. K. F., Miranda, M. D., Allonso, D., & Leitão, S. G. (2023). Anti-SARS-CoV-2 Activity of Ampelozizyphus amazonicus (Saracura-Mirá): Focus on the Modulation of the Spike-ACE2 Interaction by Chemically Characterized Bark Extracts by LC-DAD-APCI-MS/MS. Molecules, 28(7), 3159. https://doi.org/10.3390/molecules28073159