A Versatile Method for Synthesis of Light-Activated, Magnet-Steerable Organic–Inorganic Hybrid Active Colloids
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of PS/Inorganic Hybrid Active Colloids
3.3. Characterization of the PS/Inorganic Active Colloids
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, S.N.; Wang, H.G.; Zhou, C.; Wang, W.; Zhang, Z.X. Motor and Rotor in One: Light-Active ZnO/Au Twinned Rods of Tunable Motion Modes. J. Am. Chem. Soc. 2020, 142, 2213–2217. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Chen, J.; Duan, S.; Lv, X.; Wang, J.; Ma, X.; Tang, J.; Wang, W. Bimetallic coatings synergistically enhance the speeds of photocatalytic TiO2 micromotors. Chem. Commun. 2020, 56, 4728–4731. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Duan, W.; Hsu, K.Y.; Wang, Z.; Xu, W.; Wang, Y. Light-Activated Colloidal Micromotors with Synthetically Tunable Shapes and Shape-Directed Propulsion. ACS Appl. Mater. Interfaces 2022, 14, 57113–57121. [Google Scholar] [CrossRef]
- Ikram, M.; Hu, F.; Peng, G.; Basharat, M.; Jabeen, N.; Pan, K.; Gao, Y. Light-Activated Fuel-Free Janus Metal Organic Framework Colloidal Motors for the Removal of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2021, 13, 51799–51806. [Google Scholar] [CrossRef] [PubMed]
- Ghellab, S.E.; Zhang, X.; Yang, Y.; Wang, S.; Basharat, M.; Zhou, X.; Lei, L.; Zhou, Y.; Wang, Y.; Fang, H.; et al. Cell-Mimic Directional Cargo Transportation in a Visible-Light-Activated Colloidal Motor/Lipid Tube System. Small 2022, 19, 2204260. [Google Scholar] [CrossRef] [PubMed]
- Nourhani, A.; Brown, D.; Pletzer, N.; Gibbs, J.G. Engineering Contactless Particle-Particle Interactions in Active Microswimmers. Adv. Mater. 2017, 29, 1703910. [Google Scholar] [CrossRef]
- Zhou, L.; Wei, Y.; Zhang, H.; Zhao, Q.; Zhao, Z.; Guo, Y.; Zhu, S.; Fu, H.; Cai, W. Pt-TiO2 Bilayered Hemispherical Nanoshells with Tunable Pt Distribution for Chemically Self-Propelled Colloidal Motors. ACS Appl. Nano Mater. 2022, 5, 18469–18478. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Kuai, Y.; Cong, J.; Xu, Y.; Piao, H.G.; Pan, L.; Liu, Y. Magnetically Powered Shape-Transformable Liquid Metal Micromotors. Small 2019, 15, 1905446. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, W.; Wang, H.; Zhang, Z. Magnetic matchstick micromotors with switchable motion modes. Chem. Commun. (Camb.) 2021, 57, 3797–3800. [Google Scholar] [CrossRef]
- Shields, C.W.; Han, K.; Ma, F.; Miloh, T.; Yossifon, G.; Velev, O.D. Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation. Adv. Func. Mater. 2018, 28, 1803465. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Li, J.; Tian, C.; Wang, Y. Active colloidal molecules assembled via selective and directional bonds. Nat. Commun. 2020, 11, 2670. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Z.; Lin, X.; Si, T.; He, Q. Gold-Nanoshell-Functionalized Polymer Nanoswimmer for Photomechanical Poration of Single-Cell Membrane. J. Am. Chem. Soc. 2019, 141, 6601–6608. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Liang, C.; You, Y.; Sanchez, S.; Ma, X. Self-Propelled Micro/Nanomotors for On-Demand Biomedical Cargo Transportation. Small 2019, 16, 1902464. [Google Scholar] [CrossRef]
- Erez, S.; Karshalev, E.; Wu, Y.; Wang, J.; Yossifon, G. Electrical Propulsion and Cargo Transport of Microbowl Shaped Janus Particles. Small 2022, 18, e2101809. [Google Scholar] [CrossRef]
- Kong, L.; Rohaizad, N.; Nasir, M.Z.M.; Guan, J.; Pumera, M. Micromotor-Assisted Human Serum Glucose Biosensing. Anal. Chem. 2019, 91, 5660–5666. [Google Scholar] [CrossRef]
- Jurado-Sanchez, B.; Sattayasamitsathit, S.; Gao, W.; Santos, L.; Fedorak, Y.; Singh, V.V.; Orozco, J.; Galarnyk, M.; Wang, J. Self-propelled activated carbon Janus micromotors for efficient water purification. Small 2015, 11, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.; Cai, L.; Liu, R.; Zhang, D.; Zhao, Y.; Sun, L. Self-Propelled Structural Color Cylindrical Micromotors for Heavy Metal Ions Adsorption and Screening. Small 2022, 18, e2204479. [Google Scholar] [CrossRef]
- Parmar, J.; Vilela, D.; Villa, K.; Wang, J.; Sanchez, S. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. J. Am. Chem. Soc. 2018, 140, 9317–9331. [Google Scholar] [CrossRef]
- Zheng, C.; Song, X.; Gan, Q.; Lin, J. High-efficiency removal of organic pollutants by visible-light-driven tubular heterogeneous micromotors through a photocatalytic Fenton process. J. Colloid Interface Sci. 2023, 630, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, M.C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T.B.; Prost, J.; Rao, M.; Simha, R.A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143–1189. [Google Scholar] [CrossRef] [Green Version]
- Laskar, A.; Manna, R.K.; Shklyaev, O.E.; Balazs, A.C. Computer modeling reveals modalities to actuate mutable, active matter. Nat. Commun. 2022, 13, 2689. [Google Scholar] [CrossRef]
- Dong, R.; Hu, Y.; Wu, Y.; Gao, W.; Ren, B.; Wang, Q.; Cai, Y. Visible-Light-Driven Bioi-Based Janus Micromotor in Pure Water. J. Am. Chem. Soc. 2017, 139, 1722–1725. [Google Scholar] [CrossRef] [Green Version]
- Paxton, W.F.; Kistler, K.C.; Olmeda, C.C.; Sen, A.; St Angelo, S.K.; Cao, Y.; Mallouk, T.E.; Lammert, P.E.; Crespi, V.H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, C.; Wang, W.; Zhang, H.P. Bimetallic Microswimmers Speed Up in Confining Channels. Phys. Rev. Lett. 2016, 117, 198001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, J.J.; Velegol, D. Simple fabrication of metallic colloidal doublets having electrical connectivity. Langmuir 2008, 24, 4335–4339. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Mou, F.; Gong, H.; Luo, M.; Guan, J. Light-driven micro/nanomotors: From fundamentals to applications. Chem. Soc. Rev. 2017, 46, 6905–6926. [Google Scholar] [CrossRef]
- Ni, S.; Marini, E.; Buttinoni, I.; Wolf, H.; Isa, L. Hybrid colloidal microswimmers through sequential capillary assembly. Soft Matter 2017, 13, 4252–4259. [Google Scholar] [CrossRef]
- Ibele, M.; Mallouk, T.E.; Sen, A. Schooling Behavior of Light-powered Autonomous Micromotors in Water. Angew. Chem. Int. Ed. 2009, 48, 3308–3312. [Google Scholar] [CrossRef]
- Simmchen, J.; Baeza, A.; Miguel-Lopez, A.; Stanton, M.M.; Vallet-Regi, M.; Ruiz-Molina, D.; Sánchez, S. Dynamics of Novel Photoactive AgCl Microstars and Their Environmental Applications. ChemNanoMat 2017, 3, 65–71. [Google Scholar] [CrossRef]
- Chen, C.; Mou, F.; Xu, L.; Wang, S.; Guan, J.; Feng, Z.; Wang, Q.; Kong, L.; Li, W.; Wang, J.; et al. Light-Steered Isotropic Semiconductor Micromotors. Adv. Mater. 2017, 29, 1603374. [Google Scholar] [CrossRef]
- Wang, H.; Li, B.; Yodh, A.G.; Zhang, Z. Stimuli-Responsive Shape Switching of Polymer Colloids by Temperature-Sensitive Absorption of Solvent. Angew. Chem. Int. Ed. 2016, 55, 9952–9955. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Du, S.; Zhang, Z. Synthesis of Polystyrene Particles with Precisely Controlled Degree of Concaveness. Polymers 2018, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Hueckel, T.; Sacanna, S. Mix-and-Melt Colloidal Engineering. ACS Nano 2018, 12, 3533–3540. [Google Scholar] [CrossRef]
- Gong, Z.; Hueckel, T.; Yi, G.R.; Sacanna, S. Patchy particles made by colloidal fusion. Nature 2017, 550, 234–238. [Google Scholar] [CrossRef]
- Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 2006, 55, 193–208. [Google Scholar] [CrossRef]
- Wang, W.; Duan, W.; Ahmed, S.; Mallouk, T.E.; Sen, A. Small power: Autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 2013, 8, 531–554. [Google Scholar] [CrossRef]
- Eskandarloo, H.; Kierulf, A.; Abbaspourrad, A. Light-harvesting synthetic nano- and micromotors: A review. Nanoscale 2017, 9, 12218–12230. [Google Scholar] [CrossRef]
- Palacci, J.; Sacanna, S.; Kim, S.H.; Yi, G.R.; Pine, D.J.; Chaikin, P.M. Light-activated self-propelled colloids. Phil. Trans. R. Soc. A 2014, 372, 20130372. [Google Scholar] [CrossRef]
- Hong, Y.; Diaz, M.; Córdova-Figueroa, U.M.; Sen, A. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Adv. Funct. Mater. 2010, 20, 1568–1576. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, H.; Li, Z.; Wang, W. Chemistry pumps: A review of chemically powered micropumps. Lab Chip 2016, 16, 1797–1811. [Google Scholar] [CrossRef]
- Yuan, K.; de la Asunción-Nadal, V.; Jurado-Sánchez, B.; Escarpa, A. 2D Nanomaterials Wrapped Janus Micromotors with Built-in Multiengines for Bubble, Magnetic, and Light Driven Propulsion. Chem. Mater. 2020, 32, 1983–1992. [Google Scholar] [CrossRef]
- Peyer, K.E.; Zhang, L.; Nelson, B.J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Chung, H.-E.; Kwon, J.-H.; Yoon, H.-G.; Kim, W. Facile Synthesis of Silver Chloride Nanocubes and Their Derivatives. Bull. Korean Chem. Soc. 2010, 31, 2918–2922. [Google Scholar] [CrossRef] [Green Version]
- Eiden-Assmann, S.; Widoniak, J.; Maret, G. Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TiO2 Particles. Chem. Mater. 2004, 16, 6–11. [Google Scholar] [CrossRef]
- He, K.; Zhao, G.; Han, G. Template-free synthesis of TiO2 microspheres with tunable particle size via a non-aqueous sol–gel process. CrystEngComm 2014, 16, 7881–7884. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, J.; Gu, F.; Li, C. Large-Scaled, Uniform, Monodispersed ZnO Colloidal Microspheres. J. Phys. Chem. 2008, 112, 12138–12141. [Google Scholar] [CrossRef]
- Sugimoto, T.; Khan, M.M.; Muramatsu, A. Preparation of monodisperse peanut-type α-Fe2O3 particles from condensed ferric hydroxide gel. Colloids Surf. A Physicochem. Eng. Asp. 1993, 70, 167–169. [Google Scholar] [CrossRef]
- Youssef, M.; Hueckel, T.; Yi, G.-R.; Sacanna, S. Shape-shifting colloids via stimulated dewetting. Nat. Commun. 2016, 7, 12216. [Google Scholar] [CrossRef] [Green Version]
- Okubo, M.; Shiozaki, M.; Tsujihiro, M.; Tsukuda, Y. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid Polym. Sci. 1991, 269, 222–226. [Google Scholar] [CrossRef]
- Sheu, H.; El-Aasser, M.; Vanderhoff, J. Phase separation in polystyrene latex interpenetrating polymer networks. J. Polym. Sci. Part A Polym. Chem. 1990, 28, 629–651. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, D.; Chen, L.; Du, S.; Yang, X.; Wang, H.; Zhang, Z. A Versatile Method for Synthesis of Light-Activated, Magnet-Steerable Organic–Inorganic Hybrid Active Colloids. Molecules 2023, 28, 3048. https://doi.org/10.3390/molecules28073048
Geng D, Chen L, Du S, Yang X, Wang H, Zhang Z. A Versatile Method for Synthesis of Light-Activated, Magnet-Steerable Organic–Inorganic Hybrid Active Colloids. Molecules. 2023; 28(7):3048. https://doi.org/10.3390/molecules28073048
Chicago/Turabian StyleGeng, Dejia, Lei Chen, Sinan Du, Xiang Yang, Huaguang Wang, and Zexin Zhang. 2023. "A Versatile Method for Synthesis of Light-Activated, Magnet-Steerable Organic–Inorganic Hybrid Active Colloids" Molecules 28, no. 7: 3048. https://doi.org/10.3390/molecules28073048
APA StyleGeng, D., Chen, L., Du, S., Yang, X., Wang, H., & Zhang, Z. (2023). A Versatile Method for Synthesis of Light-Activated, Magnet-Steerable Organic–Inorganic Hybrid Active Colloids. Molecules, 28(7), 3048. https://doi.org/10.3390/molecules28073048