Improving the Reaction Kinetics by Annealing MoS2/PVP Nanoflowers for Sodium-Ion Storage
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Hollow MoS2/Carbon NFs
3.3. Synthesis of MoS2 NFs
3.4. Materials Characterization
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, H.C.; Qu, G.; Yin, H.B.; Zhang, J.A. Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. J. Mater. Chem. A 2020, 8, 15358–15372. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ji, X.; Gaskell, K.; Wang, P.F.; Wang, L.; Xu, J.; Sun, R.; Borodin, O.; Wang, C. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 2021, 374, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Fisher, C.A. Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43, 185–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Yuan, P.; Zan, L.; Qu, G.; Tu, Y.; Zhu, K.; Wei, Y.; Wei, Z.; Zheng, F.; Zhang, M.; et al. Probing the active sites of 2D nanosheets with Fe-N-C carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances. Nano Res. 2021, 15, 7154–7162. [Google Scholar] [CrossRef]
- Li, X.L.; Li, T.C.; Huang, S.; Zhang, J.; Pam, M.E.; Yang, H.Y. Controllable Synthesis of Two-Dimensional Molybdenum Disulfide (MoS2) for Energy-Storage Applications. ChemSusChem 2020, 13, 1379–1391. [Google Scholar] [CrossRef]
- Kim, J.; Choi, M.S.; Shin, K.H.; Kota, M.; Kang, Y.; Lee, S.; Lee, J.Y.; Park, H.S. Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture. Adv. Mater. 2019, 31, e1803444. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2, 710–721. [Google Scholar] [CrossRef]
- Shi, C.; Owusu, K.A.; Xu, X.; Zhu, T.; Zhang, G.; Yang, W.; Mai, L. 1D Carbon-Based Nanocomposites for Electrochemical Energy Storage. Small 2019, 15, e1902348. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Wu, Q.; Han, Y.; Wu, X.; Ji, P.; Zhou, M.; Diao, G.; Chen, M. Confined growth of 2D MoS2 nanosheets in N-doped pearl necklace-like structured carbon nanofibers with boosted lithium and sodium storage performance. Chem. Commun. 2019, 56, 141–144. [Google Scholar] [CrossRef]
- Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. Adv. Mater. 2020, 32, e1903826. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zan, L.; Wei, Y.; Guo, K.; Yan, W.; Deng, D.; Zhang, J.-N. Catalytic effect of carbon-based electrode materials in energy storage devices. Sci. China Mater. 2022, 65, 3229. [Google Scholar] [CrossRef]
- Soares, D.M.; Mukherjee, S.; Singh, G. TMDs beyond MoS2 for Electrochemical Energy Storage. Chem.-Eur. J. 2020, 26, 6320–6341. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Luan, D.; Lou, X.W.D. Recent Advances on Mixed Metal Sulfides for Advanced Sodium-Ion Batteries. Adv. Mater. 2020, 32, e2002976. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Tran, D.; Qian, J.; Ding, F.Y.; Losic, D. MoS2/Graphene Composites as Promising Materials for Energy Storage and Conversion Applications. Adv. Mater. Interfaces 2019, 6, 1900915. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, P.; Niu, B.; Liu, Y.; Xin, W.; Chen, W.; Kong, X.Y.; Zhang, Z.; Jiang, L.; Wen, L. Metallic Two-Dimensional MoS2 Composites as High-Performance Osmotic Energy Conversion Membranes. J. Am. Chem. Soc. 2021, 143, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Z.; Lian, G.; Li, Y.; Jing, L.; Zhao, M.; Cui, D.; Wang, Q.; Yu, H.; Wong, C.P. Electron-Injection and Atomic-Interface Engineering toward Stabilized Defected 1T-Rich MoS2 as High Rate Anode for Sodium Storage. ACS Nano 2022, 16, 12425–12436. [Google Scholar] [CrossRef]
- Zheng, F.; Wei, Z.; Xia, H.; Tu, Y.; Meng, X.; Zhu, K.; Zhao, J.; Zhu, Y.; Zhang, J.; Yang, Y.; et al. 3D MoS2 foam integrated with carbon paper as binder-free anode for high performance sodium-ion batteries. J. Energy Chem. 2022, 65, 26–33. [Google Scholar] [CrossRef]
- Deng, J.; Zeng, C.; Ma, C.; von Bulow, J.F.; Zhang, L.; Deng, D.H.; Tian, Z.Q.; Bao, X.H. Graphene layer reinforcing mesoporous molybdenum disulfide foam as high-performance anode for sodium-ion battery. Mater. Today Energy 2018, 8, 151–156. [Google Scholar] [CrossRef]
- Liu, C.L.; Bai, Y.; Zhao, Y.; Yao, H.; Pang, H. MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Mater. 2020, 33, 470–502. [Google Scholar] [CrossRef]
- Xiao, Y.; Lee, S.H.; Sun, Y.K. The Application of Metal Sulfides in Sodium Ion Batteries. Adv. Energy Mater. 2017, 7, 1601329. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Han, F.; Wang, F.; Liu, Q.D.; Zhou, D.W.; Zhang, F.Q.; Xu, S.H.; Fan, C.L.; Li, X.K.; Liu, J.S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, P.; Zan, L.; Qu, G.; Dong, H.; Wei, Y.; Yu, Y.; Wei, Z.; Yan, W.; Hu, J.S.; et al. Evolution of Stabilized 1T-MoS2 by Atomic-Interface Engineering of 2H-MoS2/Fe-Nx towards Enhanced Sodium Ion Storage. Angew. Chem. Int. Ed. 2023, 62, e202218282. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Zhang, Q.; Zheng, F.; Liu, Y.; Li, Y.; Ou, X.; Xiong, X.; Yang, C.; Liu, M. Construction of MoS2/C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries. ACS Nano 2018, 12, 12578–12586. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Y.; Zhang, D.; Wang, Y.; Luo, X.; Liu, X.; Kim, J.K.; Luo, Y. Inter-overlapped MoS2/C composites with large-interlayer-spacing for high-performance sodium-ion batteries. Nanoscale Horiz. 2020, 5, 1127–1135. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liu, S.Y.; Vinayan, B.P.; Zhao-Karger, Z.; Diemant, T.; Wang, K.; Behm, R.J.; Kubel, C.; Klingeler, R.; Fichtner, M. Hetero-layered MoS2/C composites enabling ultrafast and durable Na storage. Energy Storage Mater. 2019, 21, 115–123. [Google Scholar] [CrossRef]
- Chen, B.A.; Lu, H.H.; Zhou, J.W.; Ye, C.; Shi, C.S.; Zhao, N.Q.; Qiao, S.Z. Porous MoS2/Carbon Spheres Anchored on 3D Interconnected Multiwall Carbon Nanotube Networks forUltrafast Na Storage. Adv. Energy Mater. 2018, 8, 1702909. [Google Scholar] [CrossRef]
- Liu, Q.; Fang, Q.; Chu, W.S.; Wan, Y.Y.; Li, X.L.; Xu, W.Y.; Habib, M.; Tao, S.; Zhou, Y.; Liu, D.B.; et al. Electron-Doped 1T-MoS2 via Interface Engineering for Enhanced Electrocatalytic Hydrogen Evolution. Chem. Mater. 2017, 29, 4738–4744. [Google Scholar] [CrossRef]
- Liu, F.; Xiao, Y.; Han, P.; Liu, Y.; Qin, G. Fabricating ferromagnetic MoS2-based composite exposed to simulated sunlight for sodium storage. Nanoscale 2019, 11, 21081–21092. [Google Scholar] [CrossRef]
- Fang, Y.; Luan, D.; Chen, Y.; Gao, S.; Lou, X.W. Rationally Designed Three-Layered Cu2S@Carbon@MoS2 Hierarchical Nanoboxes for Efficient Sodium Storage. Angew. Chem.-Int. Ed. 2020, 59, 7178–7183. [Google Scholar] [CrossRef]
- Ng, B.; Duan, X.; Liu, F.; Agar, E.; White, R.E.; Mustain, W.E.; Jin, X. Investigation of Transport and Kinetic Nonideality in Solid Li-Ion Electrodes through Deconvolution of Electrochemical Impedance Spectra. J. Electrochem. Soc. 2020, 167, 020523. [Google Scholar] [CrossRef]
- Xia, H.; Li, K.; Zhang, J. Interfacial engineering of Ag nanodots/MoSe2 nanoflakes/Cu(OH)2 hybrid-electrode for lithium-ion battery. J. Colloid Interface Sci. 2019, 557, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Di, H.; Hui, X.; Zhao, D.; Wang, R.; Wang, C.; Yin, L. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 246–257. [Google Scholar] [CrossRef]
- Manikandan, B.; Ramar, V.; Yap, C.; Balaya, P. Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra. J. Power Source 2017, 361, 300–309. [Google Scholar] [CrossRef]
- Chao, D.; Liang, P.; Chen, Z.; Bai, L.; Shen, H.; Liu, X.; Xia, X.; Zhao, Y.; Savilov, S.V.; Lin, J.; et al. Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays. ACS Nano 2016, 10, 10211–10219. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zan, L.; Qu, G.; Tu, Y.; Dong, H.; Wei, Y.; Zhu, K.; Yu, Y.; Hu, Y.; Deng, D.; et al. Evolution of a solid electrolyte interphase enabled by FeNX/C catalysts for sodium-ion storage. Energy Environ. Sci. 2022, 15, 771–779. [Google Scholar] [CrossRef]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.L.; Tolbert, S.H.; Abruna, H.D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, R.; Ai, W.; Chen, B.; Du, H.; Wu, L.; Zhang, H.; Huang, W.; Yu, T. Controllable Design of MoS2 Nanosheets Anchored on Nitrogen-Doped Graphene: Toward Fast Sodium Storage by Tunable Pseudocapacitance. Adv. Mater. 2018, 30, e1800658. [Google Scholar] [CrossRef] [PubMed]
- Gui, D.; Wei, Z.; Chen, J.; Yan, L.; Li, J.; Zhang, P.; Zhao, C. Boosting the sodium storage of the 1T/2H MoS 2@ SnO 2 heterostructure via a fast surface redox reaction. J. Mater. Chem. A. 2021, 9, 463–471. [Google Scholar] [CrossRef]
- Han, W.; Xia, Y.; Yang, D.; Dong, A. Exfoliation of large-flake, few-layer MoS 2 nanosheets mediated by carbon nanotubes. Chem. Commun. 2021, 57, 4400–4403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zan, L.; Chen, J. Improving the Reaction Kinetics by Annealing MoS2/PVP Nanoflowers for Sodium-Ion Storage. Molecules 2023, 28, 2948. https://doi.org/10.3390/molecules28072948
Li Y, Zan L, Chen J. Improving the Reaction Kinetics by Annealing MoS2/PVP Nanoflowers for Sodium-Ion Storage. Molecules. 2023; 28(7):2948. https://doi.org/10.3390/molecules28072948
Chicago/Turabian StyleLi, Yuan, Lingxing Zan, and Jingbo Chen. 2023. "Improving the Reaction Kinetics by Annealing MoS2/PVP Nanoflowers for Sodium-Ion Storage" Molecules 28, no. 7: 2948. https://doi.org/10.3390/molecules28072948
APA StyleLi, Y., Zan, L., & Chen, J. (2023). Improving the Reaction Kinetics by Annealing MoS2/PVP Nanoflowers for Sodium-Ion Storage. Molecules, 28(7), 2948. https://doi.org/10.3390/molecules28072948