Eco-Friendly Fluorine Functionalized Superhydrophobic/Superoleophilic Zeolitic Imidazolate Frameworks–Based Composite for Continuous Oil–Water Separation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication and Characterization of F-ZIF-90@PDA-MF Sponge
2.2. Surface Wettability
2.3. Oil Adsorption and Oil–Water Separation
2.4. Continuous Oil–Water Separation
3. Materials and Methods
3.1. Materials
3.2. Preparation of PDA-Coated MF Sponge
3.3. Preparation of F-ZIF-90@PDA-MF Sponge
3.4. Characterization of Samples
3.5. Oil Adsorption
3.6. Oil–Water Separation Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Joye, S.B. Deepwater horizon, 5 years on. Science 2015, 349, 592–593. [Google Scholar] [CrossRef]
- Fraser, B. Oil in the forest. Science 2016, 353, 641–643. [Google Scholar] [CrossRef]
- Oliveira, L.M.T.M.; Saleem, J.; Bazargan, A.; Duarte, J.L.d.S.; McKay, G.; Meili, L. Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. J. Hazard. Mater. 2021, 407, 124842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, Z.; Lü, Y.; Liu, Y.; Yang, D.; Li, Q.; Qiu, F. Recent progress and future prospects of oil-absorbing materials. Chin. J. Chem. Eng. 2019, 27, 1282–1295. [Google Scholar] [CrossRef]
- Jin, W.; Wang, J.; Wan, H.; Liang, Y.; Huang, S.; Chen, Y.; Wei, P.; Shao, Q.; Wang, Y.; He, Y.; et al. Preparation of recyclable and deformable POM microfiber for oil-water separation with nature-inspired top-bottom strategy. Chem. Eng. J. 2023, 458, 141332. [Google Scholar] [CrossRef]
- Ding, S.; Han, X.; Zhu, L.; Hu, H.; Fan, L.; Wang, S. Cleanup of oils and organic solvents from contaminated water by biomass-based aerogel with adjustable compression elasticity. Water Res. 2023, 232, 119684. [Google Scholar] [CrossRef]
- Peng, M.; Zhu, Y.; Li, H.; He, K.; Zeng, G.M.; Chen, A.W.; Huang, Z.Z.; Huang, T.T.; Yuan, L.; Chen, G.Q. Synthesis and application of modified commercial sponges for oil-water separation. Chem. Eng. J. 2019, 373, 213–226. [Google Scholar] [CrossRef]
- Liu, C.; Chen, S.-H.; Yang-Zhou, C.-H.; Zhang, Q.-G.; Michael, R.N. Application of nano-hydroxyapatite derived from oyster shell in fabricating superhydrophobic sponge for efficient oil/water separation. Molecules 2021, 26, 3703. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Hu, C.; Ni, P.; Zhang, X.; Zhang, W.; Zhang, S.; Tang, J.; Li, T.; Li, Y. Fabrication of robust, superhydrophobic-superoleophilic PVA sponge by one-pot hydrothermal method for oil-water separation. Surf. Interfaces 2023, 37, 102679. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, W.; Xu, X. Robust superhydrophobic magnetic melamine sponge inspired by lotus leaf surface for efficient continuous oil-water separation. Sep. Purif. Technol. 2023, 311, 123251. [Google Scholar] [CrossRef]
- Xue, J.; Zhu, L.; Zhu, X.; Li, H.; Ma, C.; Yu, S.; Sun, D.; Xia, F.; Xue, Q. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption. Sep. Purif. Technol. 2021, 259, 118106. [Google Scholar] [CrossRef]
- Sam, E.K.; Liu, J.; Lv, X. Surface engineering materials of superhydrophobic sponges for oil/water separation: A review. Ind. Eng. Chem. Res. 2021, 60, 2353–2364. [Google Scholar] [CrossRef]
- Dong, X.; Cui, M.; Huang, R.; Su, R.; Qi, W.; He, Z. Polydopamine-assisted surface coating of MIL-53 and dodecanethiol on a melamine sponge for oil-water separation. Langmuir 2020, 36, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Parsaie, A.; Mohammadi-Khanaposhtani, M.; Riazi, M.; Tamsilian, Y. Magnesium stearate-coated superhydrophobic sponge for oil/water separation: Synthesis, properties, application. Sep. Purif. Technol. 2020, 251, 117105. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, Y.; Chen, Y.; Liu, C.-J.; Tu, X. Synthesis, characterization and application of defective metal-organic frameworks: Current status and perspectives. J. Mater. Chem. A 2020, 8, 21526–21546. [Google Scholar] [CrossRef]
- Xiang, W.; Ren, J.; Chen, S.; Shen, C.; Chen, Y.; Zhang, M.; Liu, C.-J. The metal-organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Appl. Energy 2020, 277, 115560. [Google Scholar] [CrossRef]
- Saini, H.; Otyepková, E.; Schneemann, A.; Zbořil, R.; Otyepka, M.; Fischer, R.A.; Jayaramulu, K. Hierarchical porous metal-organic framework materials for efficient oil-water separation. J. Mater. Chem. A 2022, 10, 2751–2785. [Google Scholar] [CrossRef]
- Gao, M.-L.; Zhao, S.-Y.; Chen, Z.-Y.; Liu, L.; Han, Z.-B. Superhydrophobic/superoleophilic MOF composites for oil-water separation. Inorg. Chem. 2019, 58, 2261–2264. [Google Scholar] [CrossRef]
- Xie, L.-H.; Xu, M.-M.; Liu, X.-M.; Zhao, M.-J.; Li, J.-R. Hydrophobic metal-organic frameworks: Assessment, construction, and diverse applications. Adv. Sci. 2020, 7, 1901758. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zou, J.; Han, Y.; Liao, Z.; Lu, P.; Nezamzadeh-Ejhieh, A.; Liu, J.; Peng, Y. Recent advances in Al(iii)/In(iii)-based MOFs for the detection of pollutants. New J. Chem. 2022, 46, 19577–19592. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Zhang, L.; Cheng, Y.; Lu, C.; Liu, Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Metal organic frameworks as efficient adsorbents for drugs from wastewater. Mater. Today Commun. 2022, 31, 103514. [Google Scholar] [CrossRef]
- Ding, M.; Cai, X.; Jiang, H.-L. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Datta, K.K.R.; Fischer, R.A. Hydrophobicity: A key factor en route to applications of metal-organic frameworks. Trends Chem. 2021, 3, 911–925. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Li, H.; Wang, Y. Coating sponge with multifunctional and porous metal-organic framework for oil spill remediation. Chem. Eng. J. 2019, 370, 1181–1187. [Google Scholar] [CrossRef]
- He, Z.W.; Wu, H.Q.; Shi, Z.; Duan, X.; Ma, S.Y.; Chen, J.H.; Kong, Z.; Chen, A.Q.; Sun, Y.P.; Liu, X.G. Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties. Colloids Surf. A 2022, 648, 129142. [Google Scholar] [CrossRef]
- Meng, J.F.; Song, B.Y.; Li, F.; Li, T.H. Ce-MOF-based superhydrophobic polyurethane sponge reinforced by cellulose for efficient oil-water separation. Mater. Today Chem. 2023, 28, 101371. [Google Scholar] [CrossRef]
- Ma, Q.; Cheng, H.; Fane, A.G.; Wang, R.; Zhang, H. Recent development of advanced materials with special wettability for selective oil/water separation. Small 2016, 12, 2186–2202. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Q.; Huang, A. A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols. Chem. Commun. 2016, 52, 3400–3402. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Adiyala, P.R.; Yim, S.J.; Kim, D.P. Pore-surface engineering by decorating metal-oxo nodes with phenylsilane to give versatile super-hydrophobic metal-organic frameworks (MOFs). Angew. Chem. Int. Ed. 2019, 131, 7483–7487. [Google Scholar] [CrossRef]
- DeChellis, D.M.; Ngule, C.M.; Genna, D.T. Removal of hydrocarbon contaminants from water with perfluorocarboxylated UiO-6X derivatives. J. Mater. Chem. A 2020, 8, 5848–5852. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, Z.; Chen, H.; Xiang, Q.; Wang, Q.; Xie, C.; Liu, Y. Superhydrophobic polyurethane sponge based on sepiolite for efficient oil/water separation. J. Hazard. Mater. 2022, 434, 128833. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guo, J.; Xu, H.; Zhang, J.; Hu, N.; Liu, H. One-step fabrication of biodegradable superhydrophobic PLA fabric for continuous oil/water separation. Appl. Surf. Sci. 2022, 576, 151766. [Google Scholar] [CrossRef]
- Deji, Z.; Zhang, X.; Liu, P.; Wang, X.; Abulaiti, K.; Huang, Z. Electrospun UiO-66-F4/polyacrylonitrile nanofibers for efficient extraction of perfluoroalkyl and polyfluoroalkyl substances in environmental media. J. Hazard. Mater. 2022, 430, 128494. [Google Scholar] [CrossRef]
- Lohmann, R.; Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A.B.; Miller, M.F.; Ng, C.A.; Patton, S.; et al. Are fluoropolymers really of low concern for human and environmental health and separate from other PFAS? Environ. Sci. Technol. 2020, 54, 12820–12828. [Google Scholar] [CrossRef] [PubMed]
- Brase, R.A.; Mullin, E.J.; Spink, D.C. Legacy and emerging per- and polyfluoroalkyl substances: Analytical techniques, environmental fate, and health effects. Int. J. Mol. Sci. 2021, 22, 995. [Google Scholar] [CrossRef] [PubMed]
- Gargoubi, S.; Baffoun, A.; Harzallah, O.A.; Hamdi, M.; Boudokhane, C. Water repellent treatment for cotton fabrics with long-chain fluoropolymer and its short-chain eco-friendly alternative. J. Text. Inst. 2020, 111, 835–845. [Google Scholar] [CrossRef]
- Buck, R.C. Toxicology data for alternative “short-chain” fluorinated substances. In Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances; DeWitt, J.C., Ed.; Humana Press: Cham, Switzerland, 2015; pp. 451–477. [Google Scholar] [CrossRef]
- Mei, D.; Li, H.; Liu, L.; Jiang, L.; Zhang, C.; Wu, X.; Dong, H.; Ma, F. Efficient uranium adsorbent with antimicrobial function: Oxime functionalized ZIF-90. Chem. Eng. J. 2021, 425, 130468. [Google Scholar] [CrossRef]
- Xiang, W.; Shen, C.; Lu, Z.; Chen, S.; Li, X.; Zou, R.; Zhang, Y.; Liu, C.-J. CO2 cycloaddition over ionic liquid immobilized hybrid zeolitic imidazolate frameworks: Effect of Lewis acid/base sites. Chem. Eng. Sci. 2021, 233, 116429. [Google Scholar] [CrossRef]
- Li, X.; Yan, B.; Huang, W.; Bian, H.; Wang, X.; Zhu, J.; Dong, S.; Wang, Y.; Chen, W. Room-temperature synthesis of hydrophobic/oleophilic ZIF-90-CF3/melamine foam composite for the efficient removal of organic compounds from wastewater. Chem. Eng. J. 2022, 428, 132501. [Google Scholar] [CrossRef]
- Ghosh, S.; Rana, A.; Kumar, S.; Gogoi, C.; Mukherjee, S.; Manna, U.; Biswas, S. A self-cleaning hydrophobic MOF-based composite for highly efficient and recyclable separation of oil from water and emulsions. Mater. Chem. Front. 2022, 6, 2051–2060. [Google Scholar] [CrossRef]
- Rego, R.M.; Kuriya, G.; Kurkuri, M.D.; Kigga, M. MOF based engineered materials in water remediation: Recent trends. J. Hazard. Mater. 2021, 403, 123605. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Gao, J.; Yao, J.; Zhang, Q. Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coord. Chem. Rev. 2019, 398, 213016. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C.; Na, J.; Hossain, M.S.A.; Yan, X.; Zhang, H.; Amin, M.A.; Qi, J.; Yamauchi, Y.; Li, J. Macroscopic MOF architectures: Effective strategies for practical application in water treatment. Small 2022, 18, 2104387. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Deng, Y.; Wang, C. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. J. Mater. Chem. A 2018, 6, 3258–3263. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Zhou, S.; Lv, X.; Yang, C.; Chen, W.; Hu, Y.; Jiang, W. Facile preparation of ZIF-67 coated melamine sponge for efficient oil/water separation. Ind. Eng. Chem. Res. 2019, 58, 17380–17388. [Google Scholar] [CrossRef]
- Xiang, W.; Gebhardt, S.; Gläser, R.; Liu, C.-J. Millimeter-scale magnetic spherical metal-organic framework core-shell structured composites for recyclable catalytic applications. Microporous Mesoporous Mater. 2020, 300, 110152. [Google Scholar] [CrossRef]
- Deng, Y.; Dai, M.; Wu, Y.; Ali, I.; Zhao, J.; Li, S.; Peng, C. High-efficient novel super-wetting HKUST-1 membrane for oil-water separation: Development, characterization and performance. J. Clean. Prod. 2022, 333, 130109. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, C.; Dong, C.; Shen, C.; Shuai, B.; Li, C.; Li, Y.; An, Q.; Xu, X.; Mai, L. Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery. Nano Res. 2022, 15, 8048–8055. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Feng, S. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation. Adv. Funct. Mater. 2019, 29, 1902488. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.; Chen, Y.; Liu, G.; Gao, J.; Liu, J.; Liu, Z.; Yue, S.; Zhang, L. Facile fabrication of 3D hierarchical micro-nanostructure fluorine-free superhydrophobic materials by a simple and low-cost method for efficient separation of oil-water mixture and emulsion. J. Environ. Chem. Eng. 2021, 9, 106400. [Google Scholar] [CrossRef]
- Xia, Y.; Dai, X.; Gai, J.-G. Preparation of high-performance reverse osmosis membrane by zwitterionic polymer coating in a facile one-step way. J. Appl. Polym. Sci. 2020, 137, 48355. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D porous zinc-organic framework platform for loading of 5-fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Tokranov, A.K.; Nishizawa, N.; Amadei, C.A.; Zenobio, J.E.; Pickard, H.M.; Allen, J.G.; Vecitis, C.D.; Sunderland, E.M. How do we measure poly- and perfluoroalkyl substances (PFASs) at the surface of consumer products? Environ. Sci. Technol. Lett. 2019, 6, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Li, F.S.; Zhao, Y.L.; Liu, C.; Li, Y.Z.; Yang, H.; Fan, K.; Zhang, P.L.; Shan, Y.; Sun, L.C. Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion. Sci. China Chem. 2022, 65, 382–390. [Google Scholar] [CrossRef]
- Loganathan, P.; Datta, K.K.R.; Shanmugan, S. A superhydrophobic covalent zeolitic imidazolate framework-polyhedral oligomeric silsesquioxane hybrid material as a highly efficient and reusable sorbent for organic solvents. Inorg. Chem. Front. 2021, 8, 2288–2298. [Google Scholar] [CrossRef]
- Zheng, K.; Li, W.; Zhou, S.; Huang, G. Facile one-step fabrication of superhydrophobic melamine sponges by poly(phenol-amine) modification method for effective oil-water separation. J. Hazard. Mater. 2022, 429, 128348. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Guo, Z. Nonflammable, robust and recyclable hydrophobic zeolitic imidazolate frameworks/sponge with high oil absorption capacity for efficient oil/water separation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129570. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Z.; Xiao, Y. Controllable magnetic roughness surface with sustainable superhydrophobicity based on magnetorheological colloid. J. Intell. Mater. Syst. Struct. 2021, 32, 1316–1325. [Google Scholar] [CrossRef]
- Wang, C.-J.; Kuan, W.-F.; Lin, H.-P.; Shchipunov, Y.A.; Chen, L.-J. Facile hydrophilic modification of polydimethylsiloxane-based sponges for efficient oil-water separation. J. Ind. Eng. Chem. 2021, 96, 144–155. [Google Scholar] [CrossRef]
- Kim, D.; Kim, D.W.; Buyukcakir, O.; Kim, M.K.; Polychronopoulou, K.; Coskun, A. Highly hydrophobic ZIF-8/carbon nitride foam with hierarchical porosity for oil capture and chemical fixation of CO2. Adv. Funct. Mater. 2017, 27, 1700706. [Google Scholar] [CrossRef]
- Gu, J.; Fan, H.; Li, C.; Caro, J.; Meng, H. Robust superhydrophobic/superoleophilic wrinkled microspherical MOF@rGO composites for efficient oil-water separation. Angew. Chem. Int. Ed. 2019, 131, 5351–5355. [Google Scholar] [CrossRef]
- Azam, T.; Pervaiz, E.; Farrukh, S.; Noor, T. Biomimetic highly hydrophobic stearic acid functionalized MOF sponge for efficient oil/water separation. Mater. Res. Express 2021, 8, 015019. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Uwaezuoke, O.J.; Abu Elella, M.H. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures. Chemosphere 2022, 294, 133644. [Google Scholar] [CrossRef]
- Fan, Q.; Lu, T.; Deng, Y.; Zhang, Y.; Ma, W.; Xiong, R.; Huang, C. Bio-based materials with special wettability for oil-water separation. Sep. Purif. Technol. 2022, 297, 121445. [Google Scholar] [CrossRef]
- Li, H.; Luo, Y.; Yu, F.; Peng, L. Simple and scalable preparation of robust and magnetic superhydrophobic papers by one-step spray-coating for efficient oil-water separation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128449. [Google Scholar] [CrossRef]
- Zhiheng, W.; Yimin, D.; Chengqian, F.; Ling, C.; Qi, L.; Yaqi, L.; Ling, C.; Bo, L.; Yue-Fei, Z.; Yan, L.; et al. A bio-inspired green method to fabricate pH-responsive sponge with switchable surface wettability for multitasking and effective oil-water separation. Appl. Surf. Sci. 2022, 602, 154192. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, X.; Yu, B.; Wang, X.; Guo, Q.; Yang, J. Recyclable polydopamine-functionalized sponge for high-efficiency clean water generation with dual-purpose solar evaporation and contaminant adsorption. ACS Appl. Mater. Interfaces 2019, 11, 32559–32568. [Google Scholar] [CrossRef]
- Ma, W.; Li, Y.; Zhang, M.; Gao, S.; Cui, J.; Huang, C.; Fu, G. Biomimetic durable multifunctional self-cleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances. ACS Appl. Mater. Interfaces 2020, 12, 34999–35010. [Google Scholar] [CrossRef]
- Zhan, Y.; He, S.; Hu, J.; Zhao, S.; Zeng, G.; Zhou, M.; Zhang, G.; Sengupta, A. Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F4@rGO composites for efficient and multitasking oil/water separation applications. J. Hazard. Mater. 2020, 388, 121752. [Google Scholar] [CrossRef]
- Cao, M.; Feng, Y.; Chen, Q.; Zhang, P.; Guo, S.; Yao, J. Flexible Co-ZIF-L@melamine sponge with underwater superoleophobicity for water/oil separation. Mater. Chem. Phys. 2020, 241, 122385. [Google Scholar] [CrossRef]
MOF/Sponge Sorbents | Water Contact Angle/° | Oil Absorption Capacity /g g−1 | Ref. |
---|---|---|---|
ZIF-8@rGO@PU | 171 | 14–29 | [63] |
MF-ZIF-8 | 140 | 10–38 | [45] |
ZIF-POSS@PDA@PU | -- | 19–40 | [57] |
ZIF-90-CF3/MF | 132 | 40.1–108.7 | [40] |
SA@ZIF-8@PU | 140.8 | 30.3–115.4 | [64] |
ZIF-8/MF | 130 | 76–164 | [59] |
Zr-BDC-OH@CF3@MF | 145 | 27–47 | [41] |
UiO-66(COOH)2/PU | 161 | 29–56 | [25] |
MIL-DDT@MF | 151.8 | 54.1–120.2 | [13] |
MS-CMC-HPU-13 | 127 | 66–130 | [24] |
F-ZIF@PDA-MF | 153 | 39.4–130.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, W.; Gong, S.; Zhu, J. Eco-Friendly Fluorine Functionalized Superhydrophobic/Superoleophilic Zeolitic Imidazolate Frameworks–Based Composite for Continuous Oil–Water Separation. Molecules 2023, 28, 2843. https://doi.org/10.3390/molecules28062843
Xiang W, Gong S, Zhu J. Eco-Friendly Fluorine Functionalized Superhydrophobic/Superoleophilic Zeolitic Imidazolate Frameworks–Based Composite for Continuous Oil–Water Separation. Molecules. 2023; 28(6):2843. https://doi.org/10.3390/molecules28062843
Chicago/Turabian StyleXiang, Wenlong, Siyu Gong, and Jiabin Zhu. 2023. "Eco-Friendly Fluorine Functionalized Superhydrophobic/Superoleophilic Zeolitic Imidazolate Frameworks–Based Composite for Continuous Oil–Water Separation" Molecules 28, no. 6: 2843. https://doi.org/10.3390/molecules28062843
APA StyleXiang, W., Gong, S., & Zhu, J. (2023). Eco-Friendly Fluorine Functionalized Superhydrophobic/Superoleophilic Zeolitic Imidazolate Frameworks–Based Composite for Continuous Oil–Water Separation. Molecules, 28(6), 2843. https://doi.org/10.3390/molecules28062843