Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis
Abstract
:1. Introduction
2. Overview of Phage Display Technology
3. Application of Phage Display in the Antibacterial Field
3.1. Therapeutic Peptides or Antibodies Targeting a Single Molecule
3.1.1. Targeting of Bacterial Virulence Factors
- (1)
- Outer membrane protein U (OmpU)
- (2)
- The type III secretion system (T3SS)
- (3)
- P. aeruginosa exotoxin A (ETA)
- (4)
- Urease
- (5)
- MrkA
3.1.2. Targeting Resistance-Associated Proteins
3.1.3. Targeting Proteins Necessary for Bacterial Survival
- (1)
- UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA)
- (2)
- Histidine-containing phosphorylated carrier protein (HPr)
- (3)
- Lipid II and lipid I
- (4)
- Isocitrate lyase (ICL)
3.2. Targeting Whole Bacterial Cells
3.2.1. E. coli
3.2.2. Listeria Monocytogenes
3.2.3. S. aureus
3.2.4. P. aeruginosa
3.3. Identification of Molecular Interaction Sites
3.3.1. R-TEM β-Lactamase
3.3.2. β-Lactamase Inhibitory Protein (BLIP)
3.3.3. Ribosome
3.4. Detection or Diagnosis of Pathogenic Bacteria
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yaghoubi, S.; Zekiy, A.O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: Narrative review. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2022, 41, 1003–1022. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.M.; Eisen, J.A.; Salzberg, S.L. Microbial genome sequencing. Nature 2000, 406, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.; Penchovsky, R. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria. Expert Opin. Ther. Targets 2019, 23, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef]
- Mimmi, S.; Maisano, D.; Quinto, I.; Iaccino, E. Phage Display: An Overview in Context to Drug Discovery. Trends Pharmacol. Sci. 2019, 40, 87–91. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Xie, S. Harnessing Phage Display for the Discovery of Peptide-Based Drugs and Monoclonal Antibodies. Curr. Med. Chem. 2021, 28, 8267–8274. [Google Scholar] [CrossRef]
- Lai, J.Y.; Lim, T.S. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int. J. Biol. Macromol. 2020, 163, 640–648. [Google Scholar] [CrossRef]
- Watters, J.M.; Telleman, P.; Junghans, R.P. An optimized method for cell-based phage display panning. Immunotechnology Int. J. Immunol. Eng. 1997, 3, 21–29. [Google Scholar] [CrossRef]
- Zambrano-Mila, M.S.; Blacio, K.E.S.; Vispo, N.S. Peptide Phage Display: Molecular Principles and Biomedical Applications. Ther. Innov. Regul. Sci. 2020, 54, 308–317. [Google Scholar] [CrossRef]
- Jaroszewicz, W.; Morcinek-Orłowska, J.; Pierzynowska, K.; Gaffke, L.; Węgrzyn, G. Phage display and other peptide display technologies. FEMS Microbiol. Rev. 2022, 46, fuab052. [Google Scholar] [CrossRef] [PubMed]
- Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage display: Concept, innovations, applications and future. Biotechnol. Adv. 2010, 28, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Roth, K.D.R.; Wenzel, E.V.; Ruschig, M.; Steinke, S.; Langreder, N.; Heine, P.A.; Schneider, K.T.; Ballmann, R.; Fühner, V.; Kuhn, P.; et al. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front. Cell. Infect. Microbiol. 2021, 11, 697876. [Google Scholar] [CrossRef] [PubMed]
- Sohier, J.S.; Laurent, C.; Chevigné, A.; Pardon, E.; Srinivasan, V.; Wernery, U.; Lassaux, P.; Steyaert, J.; Galleni, M. Allosteric inhibition of VIM metallo-β-lactamases by a camelid nanobody. Biochem. J. 2013, 450, 477–486. [Google Scholar] [CrossRef]
- Kim, H.; Jang, J.H.; Kim, S.C.; Cho, J.H. Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. Eur. J. Med. Chem. 2020, 185, 111814. [Google Scholar] [CrossRef]
- Kelly, M.; Cambray, S.; McCarthy, K.A.; Wang, W.; Geisinger, E.; Ortiz-Marquez, J.; van Opijnen, T.; Gao, J. Peptide Probes of Colistin Resistance Discovered via Chemically Enhanced Phage Display. ACS Infect. Dis. 2020, 6, 2410–2418. [Google Scholar] [CrossRef]
- Adaligil, E.; Patil, K.; Rodenstein, M.; Kumar, K. Discovery of Peptide Antibiotics Composed of d-Amino Acids. ACS Chem. Biol. 2019, 14, 1498–1506. [Google Scholar] [CrossRef]
- Benson, R.E.; Gottlin, E.B.; Christensen, D.J.; Hamilton, P.T. Intracellular expression of Peptide fusions for demonstration of protein essentiality in bacteria. Antimicrob. Agents Chemother. 2003, 47, 2875–2881. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.H.; Immormino, R.M.; Gewirth, D.T.; Raetz, C.R. Structure of UDP-N-acetylglucosamine acyltransferase with a bound antibacterial pentadecapeptide. Proc. Natl. Acad. Sci. USA 2006, 103, 10877–10882. [Google Scholar] [CrossRef] [Green Version]
- Dangkulwanich, M.; Raetz, C.R.H.; Williams, A.H. Structure guided design of an antibacterial peptide that targets UDP-N-acetylglucosamine acyltransferase. Sci. Rep. 2019, 9, 3947. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, K.A.; Kelly, M.A.; Li, K.; Cambray, S.; Hosseini, A.S.; van Opijnen, T.; Gao, J. Phage Display of Dynamic Covalent Binding Motifs Enables Facile Development of Targeted Antibiotics. J. Am. Chem. Soc. 2018, 140, 6137–6145. [Google Scholar] [CrossRef]
- Hart, P.’t.; Wood, T.M.; Tehrani, K.; van Harten, R.M.; Śleszyńska, M.; Rentero Rebollo, I.; Hendrickx, A.P.A.; Willems, R.J.L.; Breukink, E.; Martin, N.I. De novo identification of lipid II binding lipopeptides with antibacterial activity against vancomycin-resistant bacteria. Chem. Sci. 2017, 8, 7991–7997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flachbartova, Z.; Pulzova, L.; Bencurova, E.; Potocnakova, L.; Comor, L.; Bednarikova, Z.; Bhide, M. Inhibition of multidrug resistant Listeria monocytogenes by peptides isolated from combinatorial phage display libraries. Microbiol. Res. 2016, 188, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Yang, K.L. Identification of peptide inhibitors of penicillinase using a phage display library. Anal. Biochem. 2016, 494, 4–9. [Google Scholar] [CrossRef]
- Sainath Rao, S.; Mohan, K.V.; Atreya, C.D. A peptide derived from phage display library exhibits antibacterial activity against E. coli and Pseudomonas aeruginosa. PLoS ONE 2013, 8, e56081. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.C.; Chen, C.Y.; Chang, C.W.; Huang, K.J.; Lin, S.P.; Lin, S.H.; Chang, D.K.; Lin, M.R.; Shiuan, D. A dodecapeptide (YQVTQSKVMSHR) exhibits antibacterial effect and induces cell aggregation in Escherichia coli. Appl. Microbiol. Biotechnol. 2012, 94, 755–762. [Google Scholar] [CrossRef]
- Lamichhane, T.N.; Abeydeera, N.D.; Duc, A.C.; Cunningham, P.R.; Chow, C.S. Selection of peptides targeting helix 31 of bacterial 16S ribosomal RNA by screening M13 phage-display libraries. Molecules 2011, 16, 1211–1239. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Chow, D.C.; Huang, W.; Palzkill, T. Identification of a β-lactamase inhibitory protein variant that is a potent inhibitor of Staphylococcus PC1 β-lactamase. J. Mol. Biol. 2011, 406, 730–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainath Rao, S.; Mohan, K.V.; Nguyen, N.; Abraham, B.; Abdouleva, G.; Zhang, P.; Atreya, C.D. Peptides panned from a phage-displayed random peptide library are useful for the detection of Bacillus anthracis surrogates B. cereus 4342 and B. anthracis Sterne. Biochem. Biophys. Res. Commun. 2010, 395, 93–98. [Google Scholar] [CrossRef]
- Ch’ng, A.C.W.; Schepergerdes, L.; Choong, Y.S.; Hust, M.; Lim, T.S. Antimicrobial antibodies by phage display: Identification of antibody-based inhibitor against mycobacterium tuberculosis isocitrate lyase. Mol. Immunol. 2022, 150, 47–57. [Google Scholar] [CrossRef]
- Yan, Z.H.; Zhao, B.; Pang, Y.; Wang, X.J.; Yi, L.; Wang, H.L.; Yang, B.; Wei, P.J.; Jia, H.Y.; Li, S.P.; et al. Generation of mycobacterial lipoarabinomannan-specific monoclonal antibodies and their ability to identify mycobacterium isolates. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 2021, 54, 437–446. [Google Scholar] [CrossRef]
- Yu, J.; Sun, Z.; Sun, X.; Sun, X.; Wei, H.; Jia, W.; Pang, M.; Zhang, L.; Deng, H. Selection and characterization of a Vibrio parahaemolyticus OmpU antibody by phage display. Microb. Pathog. 2020, 143, 104136. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, M.; Echiverri, C.; Raymond, L.; Cadena, E.; Reside, E.; Gler, M.T.; Oda, T.; Ito, R.; Higashiyama, R.; Katsuragi, K.; et al. Lipoarabinomannan in sputum to detect bacterial load and treatment response in patients with pulmonary tuberculosis: Analytic validation and evaluation in two cohorts. PLoS Med. 2019, 16, e1002780. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, X.; Qian, Y.; Yi, H.; Song, K.; Zhu, H.; Zonta, F.; Chen, W.; Ji, Q.; Miersch, S.; et al. A Potent Anti-SpuE Antibody Allosterically Inhibits Type III Secretion System and Attenuates Virulence of Pseudomonas Aeruginosa. J. Mol. Biol. 2019, 431, 4882–4896. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Seesuay, W.; Mahasongkram, K.; Sookrung, N.; Ampawong, S.; Reamtong, O.; Diraphat, P.; Chaicumpa, W.; Indrawattana, N. Human single-chain antibodies that neutralize Pseudomonas aeruginosa-exotoxin A-mediated cellular apoptosis. Sci. Rep. 2019, 9, 14928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouladi, M.; Sarhadi, S.; Tohidkia, M.; Fahimi, F.; Samadi, N.; Sadeghi, J.; Barar, J.; Omidi, Y. Selection of a fully human single domain antibody specific to Helicobacter pylori urease. Appl. Microbiol. Biotechnol. 2019, 103, 3407–3420. [Google Scholar] [CrossRef]
- Kim, D.; Jang, S.; Oh, J.; Han, S.; Park, S.; Ghosh, P.; Rhee, D.K.; Lee, S. Molecular characterization of single-chain antibody variable fragments (scFv) specific to Pep27 from Streptococcus pneumoniae. Biochem. Biophys. Res. Commun. 2018, 501, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Kim, G.; Oh, J.; Lee, S.; Kim, D.; Kim, K.H.; Kim, Y.H.; Rhee, D.K.; Lee, S. Molecular characterization of a single-chain antibody variable fragment (scFv) specific for PspA from Streptococcus pneumoniae. Biochem. Biophys. Res. Commun. 2017, 482, 141–146. [Google Scholar] [CrossRef]
- Shahsavarian, M.A.; Chaaya, N.; Costa, N.; Boquet, D.; Atkinson, A.; Offmann, B.; Kaveri, S.V.; Lacroix-Desmazes, S.; Friboulet, A.; Avalle, B.; et al. Multitarget selection of catalytic antibodies with β-lactamase activity using phage display. FEBS J. 2017, 284, 634–653. [Google Scholar] [CrossRef] [Green Version]
- Nian, S.; Wu, T.; Ye, Y.; Wang, X.; Xu, W.; Yuan, Q. Development and identification of fully human scFv-Fcs against Staphylococcus aureus. BMC Immunol. 2016, 17, 8. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, Y.; Wang, X.; Li, Y.; Wang, L.; Li, X. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system. Int. Immunopharmacol. 2016, 35, 149–154. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, C.S.; Pennini, M.; Pelletier, M.; Rajan, S.; Zha, J.; Chen, Y.; Cvitkovic, R.; Sadowska, A.; Heidbrink Thompson, J.; et al. Target-Agnostic Identification of Functional Monoclonal Antibodies Against Klebsiella pneumoniae Multimeric MrkA Fimbrial Subunit. J. Infect. Dis. 2016, 213, 1800–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, Y.; Zhu, J. Anti-Staphylococcus aureus single-chain variable region fragments provide protection against mastitis in mice. Appl. Microbiol. Biotechnol. 2016, 100, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Orth, K. Virulence determinants for Vibrio parahaemolyticus infection. Curr. Opin. Microbiol. 2013, 16, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Osorio, C.G.; Martinez-Wilson, H.; Camilli, A. The ompU Paralogue vca1008 is required for virulence of Vibrio cholerae. J. Bacteriol. 2004, 186, 5167–5171. [Google Scholar] [CrossRef] [Green Version]
- Horna, G.; Ruiz, J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol. Res. 2021, 246, 126719. [Google Scholar] [CrossRef]
- Allured, V.S.; Collier, R.J.; Carroll, S.F.; McKay, D.B. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc. Natl. Acad. Sci. USA 1986, 83, 1320–1324. [Google Scholar] [CrossRef] [Green Version]
- Kulkeaw, K.; Sakolvaree, Y.; Srimanote, P.; Tongtawe, P.; Maneewatch, S.; Sookrung, N.; Tungtrongchitr, A.; Tapchaisri, P.; Kurazono, H.; Chaicumpa, W. Human monoclonal ScFv neutralize lethal Thai cobra, Naja kaouthia, neurotoxin. J. Proteom. 2009, 72, 270–282. [Google Scholar] [CrossRef]
- Blaser, M.J.; Berg, D.E. Helicobacter pylori genetic diversity and risk of human disease. J. Clin. Invest. 2001, 107, 767–773. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.N.; Clegg, S. Klebsiella pneumoniae and type 3 fimbriae: Nosocomial infection, regulation and biofilm formation. Future Microbiol. 2012, 7, 991–1002. [Google Scholar] [CrossRef]
- Raetz, C.R.; Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef] [Green Version]
- Postma, P.W.; Lengeler, J.W.; Jacobson, G.R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 1993, 57, 543–594. [Google Scholar] [CrossRef] [PubMed]
- Lux, R.; Jahreis, K.; Bettenbrock, K.; Parkinson, J.S.; Lengeler, J.W. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc. Natl. Acad. Sci. USA 1995, 92, 11583–11587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waygood, E.B.; Reiche, B.; Hengstenberg, W.; Lee, J.S. Characterization of mutant histidine-containing proteins of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1987, 169, 2810–2818. [Google Scholar] [CrossRef] [Green Version]
- Breukink, E.; de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 2006, 5, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Heinis, C.; Rutherford, T.; Freund, S.; Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 2009, 5, 502–507. [Google Scholar] [CrossRef]
- Timmerman, P.; Beld, J.; Puijk, W.C.; Meloen, R.H. Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. Chembiochem. A Eur. J. Chem. Biol. 2005, 6, 821–824. [Google Scholar] [CrossRef]
- Deyle, K.; Kong, X.D.; Heinis, C. Phage Selection of Cyclic Peptides for Application in Research and Drug Development. Acc. Chem. Res. 2017, 50, 1866–1874. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, T.N.; Mayr, L.M.; Minor, D.L., Jr.; Milhollen, M.A.; Burgess, M.W.; Kim, P.S. Identification of D-peptide ligands through mirror-image phage display. Science 1996, 271, 1854–1857. [Google Scholar] [CrossRef] [Green Version]
- Pappenheimer, J.R.; Dahl, C.E.; Karnovsky, M.L.; Maggio, J.E. Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc. Natl. Acad. Sci. USA 1994, 91, 1942–1945. [Google Scholar] [CrossRef] [Green Version]
- Mashabela, G.T.; de Wet, T.J.; Warner, D.F. Mycobacterium tuberculosis Metabolism. Microbiol. Spectr. 2019, 7, a021121. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Long, Q.; Yang, D.; Xie, J. Identification of mannich base as a novel inhibitor of Mycobacterium tuberculosis isocitrate by high-throughput screening. Int. J. Biol. Sci. 2011, 7, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, B.N.; Chin, C.F.; Choong, Y.S.; Ismail, A.; Lim, T.S. Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen. Toxicon Off. J. Int. Soc. Toxinology 2016, 117, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.; Cresence, V.M.; Rejitha, J.S.; Lekshmi, M.U.; Dharsana, K.S.; Prasad, S.P.; Vijila, H.M. Listeria--review of epidemiology and pathogenesis. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 2007, 40, 4–13. [Google Scholar]
- Zhen, Y.H.; Jin, L.J.; Li, X.Y.; Guo, J.; Li, Z.; Zhang, B.J.; Fang, R.; Xu, Y.P. Efficacy of specific egg yolk immunoglobulin (IgY) to bovine mastitis caused by Staphylococcus aureus. Vet. Microbiol. 2009, 133, 317–322. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Jin, L.; Zhen, Y.; Lu, Y.; Li, S.; You, J.; Wang, L. Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: A review. Biotechnol. Adv. 2011, 29, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, J.H.; Kim, S.C.; Cho, J.H. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J. Antimicrob. Chemother. 2014, 69, 121–132. [Google Scholar] [CrossRef]
- Frère, J.M.; Dubus, A.; Galleni, M.; Matagne, A.; Amicosante, G. Mechanistic diversity of beta-lactamases. Biochem. Soc. Trans. 1999, 27, 58–63. [Google Scholar] [CrossRef]
- Fisher, J.F.; Mobashery, S. Three decades of the class A beta-lactamase acyl-enzyme. Curr. Protein Pept. Sci. 2009, 10, 401–407. [Google Scholar] [CrossRef]
- Dellus-Gur, E.; Elias, M.; Caselli, E.; Prati, F.; Salverda, M.L.; de Visser, J.A.; Fraser, J.S.; Tawfik, D.S. Negative Epistasis and Evolvability in TEM-1 β-Lactamase--The Thin Line between an Enzyme’s Conformational Freedom and Disorder. J. Mol. Biol. 2015, 427, 2396–2409. [Google Scholar] [CrossRef] [Green Version]
- Strynadka, N.C.; Jensen, S.E.; Johns, K.; Blanchard, H.; Page, M.; Matagne, A.; Frère, J.M.; James, M.N. Structural and kinetic characterization of a beta-lactamase-inhibitor protein. Nature 1994, 368, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Palzkill, T.; Chow, D.C. Structural insight into the kinetics and DeltaCp of interactions between TEM-1 beta-lactamase and beta-lactamase inhibitory protein (BLIP). J. Biol. Chem. 2009, 284, 595–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Zhou, D.; Steitz, T.A.; Polikanov, Y.S.; Gagnon, M.G. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annu. Rev. Biochem. 2018, 87, 451–478. [Google Scholar] [CrossRef] [Green Version]
- Saraiya, A.A.; Lamichhane, T.N.; Chow, C.S.; SantaLucia, J., Jr.; Cunningham, P.R. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA. J. Mol. Biol. 2008, 376, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Fourmy, D.; Yoshizawa, S.; Puglisi, J.D. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J. Mol. Biol. 1998, 277, 333–345. [Google Scholar] [CrossRef]
- Kim, E.H.; Choi, S.Y.; Kwon, M.K.; Tran, T.D.; Park, S.S.; Lee, K.J.; Bae, S.M.; Briles, D.E.; Rhee, D.K. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine 2012, 30, 2008–2019. [Google Scholar] [CrossRef] [PubMed]
- Shaper, M.; Hollingshead, S.K.; Benjamin, W.H., Jr.; Briles, D.E. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect. Immun. 2004, 72, 5031–5040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandyopadhyay, A.; McCarthy, K.A.; Kelly, M.A.; Gao, J. Targeting bacteria via iminoboronate chemistry of amine-presenting lipids. Nat. Commun. 2015, 6, 6561. [Google Scholar] [CrossRef] [Green Version]
- Muteeb, G.; Rehman, M.T.; Ali, S.Z.; Al-Shahrani, A.M.; Kamal, M.A.; Ashraf, G.M. Phage Display Technique: A Novel Medicinal Approach to Overcome An tibiotic Resistance by Using Peptide-Based Inhibitors Against β-Lactamases. Curr. Drug Metab. 2017, 18, 90–95. [Google Scholar] [CrossRef]
- Christensen, D.J.; Gottlin, E.B.; Benson, R.E.; Hamilton, P.T. Phage display for target-based antibacterial drug discovery. Drug Discov. Today 2001, 6, 721–727. [Google Scholar] [CrossRef]
- Mahdavi, S.Z.B.; Oroojalian, F.; Eyvazi, S.; Hejazi, M.; Baradaran, B.; Pouladi, N.; Tohidkia, M.R.; Mokhtarzadeh, A.; Muyldermans, S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int. J. Biol. Macromol. 2022, 208, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Dunn, I.S. Assembly of functional bacteriophage lambda virions incorporating C-terminal peptide or protein fusions with the major tail protein. J. Mol. Biol. 1995, 248, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, I.N.; Maruyama, H.I.; Brenner, S. Lambda foo: A lambda phage vector for the expression of foreign proteins. Proc. Natl. Acad. Sci. USA 1994, 91, 8273–8277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambrano, N.; Froechlich, G.; Lazarevic, D.; Passariello, M.; Nicosia, A.; De Lorenzo, C.; Morelli, M.J.; Sasso, E. High-Throughput Monoclonal Antibody Discovery from Phage Libraries: Challenging the Current Preclinical Pipeline to Keep the Pace with the Increasing mAb Demand. Cancers 2022, 14, 1325. [Google Scholar] [CrossRef] [PubMed]
Target | Bacterial Strain | Library | Product | Potential Application | Time | Reference |
---|---|---|---|---|---|---|
OprF | P. aeruginosa | Ph.D.-12 peptide library | PA2 (SQRKLAAKLTSK) PA2-GNU7 (SQRKLAAKLTSK-GGGRLLRPLLQLLKQKLR) | Antimicrobial candidates | 2020 | [15] |
CR bacteria | CR bacteria | APBA-dimer peptide library | MAK30 (ACmDPNRMDRCm) SEC5(ACmKPLHSRSCm) SEC18(ACmSERQHLQCm) | Detection of bacteria | 2020 | [16] |
Cep-1 Ala-2 Lac-4 | S. aureus MRSA VRE | Bicyclic peptide libraries (BC-A, BC-B) | P14 (CQTDVCQRTIC) P15 (CSLITQCGGVGC) P18 (CGGGICRTHNC) | Antimicrobial candidates | 2019 | [17] |
LpxA | E. coli | Recombinant M13 phage library | P920 (SSGWMLDPIAGKWSR) CR20 (WMLDPIAGKWSR) | Antimicrobial candidates | 2019 2003 2006 | [18,19,20] |
S. aureus | S. aureus | APBA-dimer peptide library | KAM5 (ACmVSPRSHECm) | Detection of S. aureus | 2018 | [21] |
A.baumannii | LOS−A. baumannii | APBA-dimer peptide library | KAM8 (ACmTLPNGPRCm) | Detection of LOS− A. baumannii | 2018 | [21] |
Lipid II | G+ bacteria | Bicyclic peptide library | P8 (ACLLQSLLCPYSTHRCG) P8-D-C10 lipopeptides | Antimicrobial candidates | 2017 | [22] |
MDR L. monocytogenes | MDR L. monocytogenes | Ph.D.-12 peptide library | L2 (DQFVHDVKGTKH) L3 (NSWIQAPDTKSI) | Antimicrobial candidates | 2016 | [23] |
Penicillinase | ND | Ph.D.-12 peptide library | P2 (NIYTTPWGSNWS) | Antimicrobial candidates | 2015 | [24] |
E. coli | E. coli, P. aeruginosa | Ph.D.-12 peptide library | EC5 (RLLFRKIRRLKR) | Antimicrobial candidates | 2013 | [25] |
R-HPr protein | E. coli DH5α | Ph.D.-12 peptide library | AP1 (YQVTQSKVMSHR) | Antimicrobial candidates | 2012 | [26] |
h31 | E. coli DH5 | Ph.D.-7 - peptide library | CVRPFAL, TLWDLIP | Antimicrobial candidates | 2011 | [27] |
PC1 β- lactamase | S. aureus | BLIP combinatorial peptide libraries | BLIP K74G mutant | Further research for BLIP residues | 2011 | [28] |
B. cereus | B. anthracis | Ph.D.-12 peptide library | BBP-1 (AETVESCLAKSH) BBP-2 (ALTLHPQPLDHP) | Detection of B. anthracis | 2010 | [29] |
Target | Bacterial Strain | Library | Product | Potential Application | Time | Reference |
---|---|---|---|---|---|---|
ICL | MTB | HuscFv library | a-rICL-C6 | Antimicrobial candidates | 2022 | [30] |
LAM | MTB | Immunized rabbit scFv library | Rabbit anti-LAM IgG mAbs | Detection of MTB | 2021 | [31] |
OmpU | V. parahaemolyticus | Human sdAb library | UAb28 | Antimicrobial candidates | 2020 | [32] |
LAM | MTB | Immunized rabbit and chicken scFv library | Three mAbs (S4-20, G3, and TB) | Detection of MTB | 2019 | [33] |
SpuE | P. aeruginosa | HuscFv library | ScFv5 | Antimicrobial candidates | 2019 | [34] |
ETA | P. aeruginosa | HuscFv library | ETA bound-HuscFvs | Antimicrobial candidates | 2019 | [35] |
Flap region of urease enzyme | H. pylori | Human semi-synthetic antibody library | VL antibody C3 | Antimicrobial candidates | 2019 | [36] |
Pep27 | S. pneumoniae | HuscFv library | Two HuscFvs (E2 and F9) | Detection of S. pneumoniae | 2018 | [37] |
PspA | S. pneumoniae | HuscFv library | HuscFv 2B11 | Detection of S. pneumoniae | 2017 | [38] |
Pep90, penam sulfone derivative | ND | Immunized mice scFv library | P90C1, P90C2, P90C3, PSC1 and PSC2 | Further information on the structure about β-lactamase catalytic function | 2017 | [39] |
S. aureus | S. aureus | HuscFv library | ScFv-Fcs (S78, S117) | Antimicrobial candidates | 2016 | [40] |
S. aureus | S. aureu | Immunized chicken T7 scFv antibody library | SFV6 | Antimicrobial candidates | 2016 | [41] |
MrkA | K. pneumoniae | HuscFv library | IgG1 (KP3, KP16) | Antimicrobial candidates | 2016 | [42] |
S. aureus soluble whole-cell antigen | S. aureus | Immunized cows bovine scFv library | 8 anti- S. aureus scFvs | Antimicrobial candidates | 2016 | [43] |
VIM-4 MβL | ND | Immunized llama and dromedary nanobody library | NbVIM_38 nanobody | Antimicrobial candidates | 2013 | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Nie, D.; Hu, Y.; Chen, Z.; Hou, Z.; Li, M.; Xue, X. Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis. Molecules 2023, 28, 2621. https://doi.org/10.3390/molecules28062621
Zhao H, Nie D, Hu Y, Chen Z, Hou Z, Li M, Xue X. Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis. Molecules. 2023; 28(6):2621. https://doi.org/10.3390/molecules28062621
Chicago/Turabian StyleZhao, Hui, Dan Nie, Yue Hu, Zhou Chen, Zheng Hou, Mingkai Li, and Xiaoyan Xue. 2023. "Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis" Molecules 28, no. 6: 2621. https://doi.org/10.3390/molecules28062621
APA StyleZhao, H., Nie, D., Hu, Y., Chen, Z., Hou, Z., Li, M., & Xue, X. (2023). Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis. Molecules, 28(6), 2621. https://doi.org/10.3390/molecules28062621