H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Analysis Principle and Feasibility of GPC3 Electrochemical Aptasensor
2.2. Characterization of H-rGO-Pd NPs
2.3. Electrochemical Study of Au NPs@rGO/SPE and Raman Spectra of the Modified Electrodes
2.4. Electrochemical Characterization of the Modified Electrodes
2.5. SEM Spectroscopy Characterization of the Modified Electrodes
2.6. Optimization of Conditions for GPC3 Electrochemical Aptasensor
2.7. Analytical Performance of GPC3 Electrochemical Aptasensor
2.8. Specificity, Stability, and Reproducibility of GPC3 Electrochemical Nanobiosensor
2.9. Analysis of GPC3 in Actual Human Serum Samples
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Electrochemical Measurements and Apparatus
3.3. Preparation of the H-rGO-Pd NPs Nanozyme and H-rGO-Pd NPs-GPC3Apt Detection Probe
3.4. Construction of the GPC3 Electrochemical Nanobiosensor
3.5. GPC3 Detection Based on H-rGO-Pd NPs Nanozymes-Catalyzed Silver Deposition
3.6. Detection of GPC3 Level in Human Serum Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Approval
References
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Li, A.; Jiang, J.; Zhou, L.; Yu, Z.; Lu, H.; Zheng, S. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 2019, 68, 1014–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, H.; Shang, W.; Wang, K.; Guo, K.; Liu, Y.; Tian, J.; Fang, C. Targeted-detection and sequential-treatment of small hepatocellular carcinoma in the complex liver environment by GPC-3-targeted nanoparticles. Nanobiotechnol. J. 2022, 20, 156. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, Z.; Li, J.; Zhao, S.; Wu, S.; Liu, H.; Hammock, B.D. Generation of dual functional nanobody-nanoluciferase fusion and its potential in bioluminescence enzyme immunoassay for trace glypican-3 in serum. Sens. Actuators B Chem. 2021, 336, 129717. [Google Scholar] [CrossRef]
- Xia, L.; Teng, Q.; Chen, Q.; Zhang, F. Preparation and Characterization of Anti-GPC3 Nanobody Against Hepatocellular Carcinoma. Int. Nanomed. J. 2020, 15, 2197–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, Y.; Koksal, A.R.; Thevenot, P.; Chava, S.; Heidari, Z.; Lin, D.; Dash, S. Experimental Validation of Novel Glypican 3 Exosomes for the Detection of Hepatocellular Carcinoma in Liver Cirrhosis. J. Hepatocell. Carcinoma 2021, 8, 1579–1596. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.-R.; Park, D.-Y.; Kim, J.H.; Lee, J.-P.; Thai, N.Q.; Oh, I.-H.; Kim, Y.-H. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. Nanobiotechnol. J. 2022, 20, 204. [Google Scholar] [CrossRef]
- Du, K.; Li, Y.; Liu, J.; Chen, W.; Wei, Z.; Luo, Y.; Sui, J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol. Ther. 2021, 29, 1572–1584. [Google Scholar] [CrossRef]
- Yu, J.P.; Xu, X.G.; Ma, R.J.; Qin, S.N.; Wang, C.R.; Wang, X.B.; Xu, W.W. Development of a clinical chemiluminescent immunoassay for serum GPC3 and simultaneous measurements alone with AFP and CK19 in diagnosis of hepatocellular carcinoma. J. Clin. Lab. Anal. 2015, 29, 85–93. [Google Scholar] [CrossRef]
- Tahon, A.M.; El-Ghanam, M.Z.; Zaky, S.; Emran, T.M.; Bersy, A.M.; El-Raey, F.; Johar, D. Significance of Glypican-3 in Early Detection of Hepatocellular Carcinoma in Cirrhotic Patients. J. Gastrointest. Cancer 2019, 50, 434–441. [Google Scholar] [CrossRef]
- Yan, J.; Xiong, H.; Cai, S.; Wen, N.; He, Q.; Liu, Y.; Liu, Z. Advances in aptamer screening technologies. Talanta 2019, 200, 124–144. [Google Scholar] [CrossRef] [PubMed]
- Dou, B.; Xu, L.; Jiang, B.; Yuan, R.; Xiang, Y. Aptamer-functionalized and gold nanoparticle array-decorated magnetic graphene nanosheets enable multiplexed and sensitive electrochemical detection of rare circulating tumor cells in whole blood. Anal. Chem. 2019, 91, 10792–10799. [Google Scholar] [CrossRef] [PubMed]
- Roguska, A.; Lesniewski, A.; Opallo, M.; Nogala, W. Mediatorless electrocatalytic oxygen reduction with catalase on mercury-gold amalgam microelectrodes. Electrochem. Commun. 2021, 133, 107167. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, S.G.; Zhang, W.J.; Wang, X.H.; Han, L.; Ling, Y.; Luo, H.Q. Photoelectrochemical platform for glucose sensing based on g-C3N4/ZnIn2S4 composites coupled with bi-enzyme cascade catalytic in-situ precipitation. Sens. Actuators B Chem. 2019, 297, 126818. [Google Scholar] [CrossRef]
- Chung, S.; Sicklick, J.K.; Ray, P.; Hall, D.A. Development of a Soluble KIT Electrochemical Aptasensor for Cancer Theranostics. ACS Sens. 2021, 6, 1971–1979. [Google Scholar] [CrossRef]
- Wei, B.; Zhong, H.; Wang, L.; Liu, Y.; Xu, Y.; Zhang, J.; Wang, H. Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples. J. Biol. Macromol. 2019, 135, 400–406. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, D.; Yu, H.; Fu, Y.; Song, L.; Wu, Y.; Chen, H. Detection of rare CTCs by electrochemical biosensor built on quaternary PdPtCuRu nanospheres with mesoporous architectures. Talanta 2023, 253, 123955. [Google Scholar] [CrossRef]
- Gao, T.; Zhi, J.; Mu, C.; Gu, S.; Xiao, J.; Yang, J.; Xiang, Y. One-step detection for two serological biomarker species to improve the diagnostic accuracy of hepatocellular carcinoma. Talanta 2018, 178, 89–93. [Google Scholar] [CrossRef]
- Sato, F.; Funo, S.; Cai, Z.; Chang, G.; He, Y.; Oyama, M. Modification with platinum of silver-deposited nickel wire electrodes for electrocatalytic oxidation of alcohols. Electrochem. Commun. 2021, 124, 106939. [Google Scholar] [CrossRef]
- Bhatia, A.; Nandhakumar, P.; Kim, G.; Kim, J.; Lee, N.-S.; Yoon, Y.H.; Yang, H. Ultrasensitive Detection of Parathyroid Hormone through Fast Silver Deposition Induced by Enzymatic Nitroso Reduction and Redox Cycling. ACS Sens. 2019, 4, 1641–1647. [Google Scholar] [CrossRef]
- Mu, Z.; Tian, J.; Wang, J.; Zhou, J.; Bai, L. A new electrochemical aptasensor for ultrasensitive detection of endotoxin using Fe-MOF and AgNPs decorated P-N-CNTs as signal enhanced indicator. Appl. Surf. Sci. 2022, 573, 151601. [Google Scholar] [CrossRef]
- Abedanzadeh, S.; Moosavi-Movahedi, Z.; Sheibani, N.; Moosavi-Movahedi, A.A. Nanozymes: Supramolecular perspective. Biochem. Eng. J. 2022, 183, 108463. [Google Scholar] [CrossRef]
- Yaqoob, S.B.; Adnan, R.; Rameez Khan, R.M.; Rashid, M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front. Chem. 2020, 8, 376. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.; Simarro, R.; Reina, J.A.; Bautista, L.F.; Molina, M.C.; González-Benítez, N. New approach for biological synthesis of reduced graphene oxide. Biochem. Eng. J. 2019, 151, 107331. [Google Scholar] [CrossRef]
- Huang, N.; Xu, E.; Xie, J.; Liu, Y.; Deng, Z.; Wang, J.; Ye, Q. A sliver deposition signal-enhanced optical biomolecular detection device based on reduced graphene oxide. Talanta 2022, 249, 123691. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Bai, J.; Li, C.; Meng, Q.; Liang, H.; Sun, W.; Liu, H. A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: Synthesis, characterization and efficient catalysis. Appl. Surf. Sci. 2013, 283, 107–114. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Pei, W.; Cai, L.; Yu, X.; Jiang, H.; Chen, J. Self-assembled recombinant camel serum albumin nanoparticles-encapsulated hemin with peroxidase-like activity for colorimetric detection of hydrogen peroxide and glucose. Int. J. Biol. Macromol. 2021, 193, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Yang, H.; Zhao, J.; Wen, L.; He, C.; Hu, Z.; Hou, C. Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS2 and AuNPs coupling with HRP enzyme signal amplification. Mikrochim. Acta 2022, 189, 49. [Google Scholar] [CrossRef] [PubMed]
- Tsounis, C.; Subhash, B.; Kumar, P.V.; Bedford, N.M.; Zhao, Y.; Shenoy, J.; Amal, R. Pt Single Atom Electrocatalysts at Graphene Edges for Efficient Alkaline Hydrogen Evolution. Adv. Funct. Mater. 2022, 32, 2203067. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, L.; Li, S.; Huang, S.; Sun, Y.; Chen, Y.; Li, X. One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor. J. Colloid Interface Sci. 2020, 566, 473–484. [Google Scholar] [CrossRef]
- Li, J.; Si, Y.; Park, Y.E.; Choi, J.-S.; Jung, S.M.; Lee, J.E.; Lee, H.J. A serotonin voltammetric biosensor composed of carbon nanocomposites and DNA aptamer. Microchim. Acta 2021, 188, 146. [Google Scholar] [CrossRef] [PubMed]
- Amirjani, A.; Kamani, P.; Hosseini, H.R.M.; Sadrnezhaad, S. SPR-based assay kit for rapid determination of Pb2+. Anal. Chim. Acta 2022, 1220, 340030. [Google Scholar] [CrossRef] [PubMed]
- Baghayeri, M.; Nodehi, M.; Amiri, A.; Amirzadeh, N.; Behazin, R.; Iqbal, M.Z. Electrode designed with a nanocomposite film of CuO Honeycombs/Ag nanoparticles electrogenerated on a magnetic platform as an amperometric glucose sensor. Anal. Chim. Acta 2020, 1111, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; He, B.; Zhao, R.; Ren, W.; Suo, Z.; Xu, Y.; Liu, R. Electrochemical aptasensor based on Ce3NbO7/CeO2@ Au hollow nanospheres by using Nb. BbvCI-triggered and bipedal DNA walker amplification strategy for zearalenone detection. J. Hazard. Mater. 2022, 438, 129491. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Feng, H.; Shi, X.; Chen, M.; Liang, J.; Zhou, Z. Highly sensitive electrochemical aptasensor for Glypican-3 based on reduced graphene oxide-hemin nanocomposites modified on screen-printed electrode surface. Bioelectrochemistry 2021, 138, 107696. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Xie, C.-M.; Wang, C.-R.; Wan, Y.; Dong, Z.-N.; Li, M.; Xu, W.-W. Development of a Time-Resolved Fluorescence Immunoassay for the Diagnosis of Hepatocellular Carcinoma Based on the Detection of Glypican-3. J. Fluoresc. 2017, 27, 1479–1485. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, L.; Li, W.; Chen, M.; Feng, H.; Shi, X.; Li, G. Glypican-3 electrochemical aptamer nanobiosensor based on hemin/graphene nanohybrids peroxidase-like catalytic silver deposition. Mikrochim. Acta 2020, 187, 305. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Chen, W.; Chen, H.; Wu, G.; Tan, M.; Zhou, Z. Highly Sensitive Electrochemical Aptasensor for Detection of Glypican-3 Using Hemin-Reduced Graphene Oxide-Platinum Nanoparticles Coupled with Conductive Reduced Graphene Oxide-Gold Nanoparticles. J. Biomed. Nanotechnol. 2021, 17, 2444–2454. [Google Scholar] [CrossRef]
- Jin, H.; Zhao, C.; Gui, R.; Gao, X.; Wang, Z. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal. Chim. Acta 2018, 1025, 154–162. [Google Scholar] [CrossRef]
- Peng, G.; Yu, Y.; Chen, X.; Huang, H. Highly sensitive amperometric α-ketoglutarate biosensor based on reduced graphene oxide-gold nanocomposites. Int. J. Anal. Chem. 2020, 2020, 4901761. [Google Scholar] [CrossRef]
- Patella, B.; Sortino, A.; Mazzara, F.; Aiello, G.; Drago, G.; Torino, C.; Inguanta, R. Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes. Anal. Chim. Acta 2021, 1187, 339124. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Liu, S.; Qi, F.; Qiu, R.; Feng, J.; Ren, X.; Pan, H. A label-free electrochemical immunosensor for CA125 detection based on CMK-3 (Au/Fc@MgAl-LDH) n multilayer nanocomposites modification. Talanta 2022, 241, 123254. [Google Scholar] [CrossRef] [PubMed]
Materials | Method | Linear Range | LOD | Sensitivity | References |
---|---|---|---|---|---|
AF2119/GPN2-NLuc | BLEIA | 1.25–20 ng/mL | 1.5 ng/mL | - | [4] |
Immunoassay kit | ELISA | 0.625–40 ng/mL | 1.5 ng/mL | - | [10] |
Anti-GPC3 McAb | TRFIA | 1.0–50.0 ng/mL | 0.039 ng/mL | - | [36] |
RGO-Hemin/Au NPs/SPE | DPV | 1.0–10.0 μg/mL | 2.86 ng/mL | 0.134 μA μM−1 cm−2 | [35] |
Ag/HGNs-Apt/GPC3/Apt/Au NPs/SPE | DPV | 10–100 μg/mL | 3.16 μg/mL | 0.807 μA μM−1 cm−2 | [37] |
Ag/H-rGO-PdNPs-GPC3Apt/GPC3/GPC3Ab/AuNPs@rGO/SPE | DPV | 0.01–100 μg/mL | 3.30 ng/mL | 1.535 μA μM−1 cm−2 | This Work |
Concentration of GPC3 Added (μg/mL) | Average GPC3 Concentration Measured (μg/mL) | Recovery (%) | RSD (%) | |
---|---|---|---|---|
Normal human serum sample | 25.0 | 26.63 | 106.52 | 8.81 |
40.0 | 41.51 | 103.78 | 1.89 | |
50.0 | 51.95 | 103.90 | 6.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wang, B.; Li, L.; Li, X.; Yan, R.; Liang, J.; Zhou, X.; Li, L.; Zhou, Z. H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3. Molecules 2023, 28, 2271. https://doi.org/10.3390/molecules28052271
Li G, Wang B, Li L, Li X, Yan R, Liang J, Zhou X, Li L, Zhou Z. H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3. Molecules. 2023; 28(5):2271. https://doi.org/10.3390/molecules28052271
Chicago/Turabian StyleLi, Guiyin, Bo Wang, Ling Li, Xinhao Li, Ruijie Yan, Jintao Liang, Xinchun Zhou, Liuxun Li, and Zhide Zhou. 2023. "H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3" Molecules 28, no. 5: 2271. https://doi.org/10.3390/molecules28052271
APA StyleLi, G., Wang, B., Li, L., Li, X., Yan, R., Liang, J., Zhou, X., Li, L., & Zhou, Z. (2023). H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3. Molecules, 28(5), 2271. https://doi.org/10.3390/molecules28052271