Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of the Investigated Soil and Amendments
2.2. Characteristics of Amendments
2.2.1. FTIR Analysis of Amendments
2.2.2. SEM-EDS Analysis of Amendments
2.3. Alteration of OC, pH, and EC after a 30-Day Incubation with Biochar and Apatite
2.4. Effects of Amendments on the Chemical Fractions of Heavy Metals in the Treated Soil
2.4.1. Speciation of Lead
2.4.2. Speciation of Zinc
2.5. Mechanism for Immobilizing Heavy Metals
2.6. Statistics
2.6.1. Correlation of the Exchangeable Fraction of Pb and Zn with Soil Properties (pH, OC, and EC)
2.6.2. PCA Analysis of the Chemical Fractions of Zinc and Lead with pH, OC, and EC
3. Materials and Methods
3.1. Sample Collection and Amendment Preparation
3.2. Experimental Design
3.3. Analysis Methods of Soil and Amendment
3.3.1. Physicochemical Analysis
3.3.2. Heavy Metal Analysis
3.3.3. Surface Characteristics of Amendments
3.4. Statistical Analysis
4. Conclusions
- (i)
- The physicochemical properties of biochar and apatite were analyzed such as the pH, heavy metal content, and surface characteristics. All amendments including CB400, CB600, and apatite had high pH values and a low content of heavy metals (Pb, Zn, Cd), which are suitable for remediating heavy metals in soils. Additionally, the surface properties of these materials were investigated using FTIR, SEM-EDS, and BET. The FTIR and EDS results showed that CB400 was richer in organic functional groups than CB600, and the apatite was rich in phosphate. At the same time, the SEM and BET results illustrated that CB600 was superior to CB400, and AP in surface area, which might have facilitated the better potential absorption of CB600 than that of CB400 and AP.
- (ii)
- After 30 days of incubation, the biochars and apatite positively impacted the soil properties of the treated soil sample such as the pH, OC, and EC. These values of the treated soil samples significantly increased in comparison with those of the untreated samples. The higher the ratio of the amendment incubated, the higher the pH, OC, and EC values, promoting heavy metal remediation in contaminated soil.
- (iii)
- After 30 days of incubation, the biochars and apatite had a diverse impact on the Pb and Zn chemical fractions in the treated soil at different application rates. At the same time, the amendments also could increase the F2, F3, F4, and F5 of Pb and Zn by turning them into more stable forms in natural conditions. The main mechanisms are still unknown. However, they might take place via the exchange, precipitation, and complexation reaction of the functional groups and minerals of CB400 and AP as well as the physical adsorption of the large, porous surface of CB600. The most effective application rates of biochar and apatite were 5% and 10% of biochar, while the 3% ratio had no or a slight effect on changing the exchangeable fraction of Pb and Zn. BC400 and CB600 had the same impact on the exchangeable fraction of Pb and Zn when applied at the same ratio of 3, 5, and 10%, indicating that many mechanisms of cation exchange, physical adsorption, precipitation and complexation might occur in contaminated soil when being incubated with CB400 and CB600 as well as the combination of CB400/AP and CB600/AP. This study showed that CB400, CB600, and apatite could be auspicious materials for remediating heavy metals in heavy metal polluted soil.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffa, C.M.; Chiampo, F.; Shanthakumar, S. Remediation of metal/metalloid-polluted soils: A short review. Appl. Sci. 2021, 11, 4134. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks, and best available strategies for remediation. Int. Sch. Res. Not. 2014, 2011, 402647. [Google Scholar]
- Zhou, J.M.; Dang, Z.; Cai, M.F.; Liu, C.Q. Soil Heavy Metal Pollution Around the Dabaoshan Mine, Guangdong Province, China. Pedosphere 2007, 17, 588–594. [Google Scholar] [CrossRef]
- Sun, Z.; Xie, X.; Wang, P.; Hu, Y.; Cheng, H. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Demková, L.; Jezný, T.; Bobulská, L. Assessment of soil heavy metal pollution in a former mining area-before and after the end of mining activities. Soil Water Res. 2017, 12, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Ma, K.; Fan, Y.; Peng, X.; Mao, J.; Zhou, D. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal. Environ. Sci. Pollut. Res. 2016, 23, 10808–10817. [Google Scholar] [CrossRef]
- Hussain, L.A.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Kumar, A.M. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicol. Environ. Saf. 2017, 145, 313–323. [Google Scholar] [CrossRef]
- Li, W.; Ni, P.; Yi, Y. Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils. Sci. Total Environ. 2019, 671, 741–753. [Google Scholar] [CrossRef]
- Seshadri, B.; Bolan, N.S.; Choppala, G.; Kunhikrishnan, A.; Sanderson, P.; Wang, H. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 2017, 184, 197–206. [Google Scholar] [CrossRef]
- Mignardi, S.; Corami, A.; Ferrini, V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere 2012, 86, 354–360. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Zeng, G.; Wan, J.; Huang, D.; Hu, L.; Huang, C.; Cheng, M. Precipitation, adsorption and rhizosphere effect: The mechanisms for Phosphate-induced Pb immobilization in soils—A review. J. Hazard Mater. 2017, 339, 354–367. [Google Scholar] [CrossRef]
- Kulikowska, D.; Gusiatin, Z.M.; Bułkowska, K.; Klik, B. Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time. J. Hazard Mater. 2015, 300, 882–891. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016, 227, 1–18. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef]
- Irfan, M.; Mudassir, M.; Khan, M.J.; Dawar, K.M.; Muhammad, D.; Mian, I.A. Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Altaf Hussain, L.; Guo, Z.; Zhang, Z.; Li, R.; Mahar, A.; Awasthi, M.K. Use of Biochar as an Amendment for Remediation of Heavy Metal-Contaminated Soils: Prospects and Challenges. Pedosphere 2017, 27, 991–1014. [Google Scholar]
- Jin, Y.; Luan, Y.; Ning, Y.; Wang, L. Effects and mechanisms of microbial remediation of heavy metals in soil: A critical review. Appl. Sci. 2018, 8, 1336. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, Y.; Zhan, W.; Zheng, K.; Wang, J.; Zhang, C. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci. Total Environ. 2020, 729, 139060. [Google Scholar] [CrossRef]
- Wang, J.; Shi, L.; Zhai, L.; Zhang, H.; Wang, S.; Zou, J. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicol. Environ. Saf. 2021, 207, 111261. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Chen, T.; Xu, W.; Huang, J.; Jiang, S.; Yan, B. Application research of biochar for the remediation of soil heavy metals contamination: A review. Molecules 2020, 25, 3167. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Joseph, S.; Tsechansky, L.; Privat, K.; Schreiter, I.J.; Schüth, C. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Sci. Total Environ. 2018, 626, 953–961. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Eduah, J.O.; Nartey, E.K.; Abekoe, M.K.; Breuning-Madsen, H.; Andersen, M.N. Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma 2019, 341, 10–17. [Google Scholar] [CrossRef]
- Zhang, L.; Tong, L.; Zhu, P.; Huang, P.; Tan, Z.; Qin, F. Adsorption of chlortetracycline onto biochar derived from corn cob and sugarcane bagasse. Water Sci. Technol. 2018, 78, 1336–1347. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, J.; Hou, D.; Tsang, D.C.W.; Ok, Y.S.; Alessi, D.S. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ. Int. 2019, 122, 357–362. [Google Scholar] [CrossRef]
- Cotter-Howells, J.; Caporn, S. Remediation of contaminated land by formation of heavy metal phosphates. Appl. Geochem. 1996, 11, 335–342. [Google Scholar] [CrossRef]
- Chen, X.; Wright, J.V.; Conca, J.L.; Peurrung, L.M. Evaluation of heavy metal remediation using mineral apatite. Water Air Soil Pollut. 1997, 98, 57–78. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, G.; Mao, R. Effects of particle sizes of rock phosphate on immobilizing heavy metals in lead zinc mine soils. J. Soil Sci. Plant Nutr. 2014, 14, 258–266. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Nguyen, X.T.; Nguyen, T.V.; Nguyen, T.T.; Vu, T.Q.; Nguyen, H.T. Treatment of Cd2+ and Cu2+ Ions Using Modified Apatite Ore. J. Chem. 2020, 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Li, D.; Xie, C.; Zheng, X.; Yin, J.; Li, Z. Combined Application of Apatite, Biochar, and Organic Fertilizer for Remediation of Soils Co-Contaminated With Heavy Metals: Insight into Reducing Heavy Metal Transport and Shifting Soil Microbial Community Structure. SSRN Electron. J. 2022, 58, 1–55. [Google Scholar] [CrossRef]
- Dang, V.M.; Van, H.T.; Duong, H.T.M.; Nguyen, D.H.; Chao, H.P.; Nguyen, L.H. Evaluation of fly ash, apatite and rice straw derived-biochar in varying combinations for in situ remediation of soils contaminated with multiple heavy metals. Soil Sci. Plant Nutr. 2020, 66, 379–388. [Google Scholar] [CrossRef]
- Dang, V.M.; Joseph, S.; Van, H.T.; Mai, T.L.A.; Duong, T.M.H.; Weldon, S. Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: The significant role of minerals on the biochar surfaces. Environ. Techno. 2018, 40, 1–17. [Google Scholar] [CrossRef]
- Vuong, T.X.; Joseph, S.; Tu, B.M.; Nguyen, T.T.T.; Duong, T.H.; Pham, D.T.N. Chemical Fractionations of Lead and Zinc in the Contaminated Soil Amended with the Blended Biochar/Apatite. Molecules 2022, 27, 8044. [Google Scholar] [CrossRef]
- Yang, F.; Wang, B.; Shi, Z.; Li, L.; Li, Y.; Mao, Z. Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar. Environ. Pollut. Bioavailab. 2021, 33, 55–65. [Google Scholar] [CrossRef]
- Kali, A.; Amar, A.; Loulidi, I.; Jabri, M.; Hadey, C.; Lgaz, H. Characterization and adsorption capacity of four low-cost adsorbents based on coconut, almond, walnut, and peanut shells for copper removal. Biomass Convers. Biorefinery 2022, 3, 1–12. [Google Scholar] [CrossRef]
- Piccirillo, C.; Moreira, I.S.; Novais, R.M.; Fernandes, A.J.S.; Pullar, R.C.; Castro, P.M.L. Biphasic apatite-carbon materials derived from pyrolysed fish bones for effective adsorption of persistent pollutants and heavy metals. J. Environ. Chem. Eng. 2017, 5, 4884–4894. [Google Scholar] [CrossRef]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A. Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl Sci. 2019, 9, 1149. [Google Scholar] [CrossRef] [Green Version]
- Tun, Z.M.; Myat, Z.M.; Win, T.T.; Maung, Y.M. Characterization of activated carbons from coconut and peanut shells biomass. J. Myanmar. Acad. Arts Sci. 2020, 18, 65–74. [Google Scholar]
- Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Haberhauer, G.; Mentler, A. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutri. Soil Sci. 2007, 170, 522–529. [Google Scholar] [CrossRef]
- Behazin, E.; Ogunsona, E.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M.; Anyia, A.O. Mechanical, chemical, and physical properties of wood and perennial grass biochars for possible composite application. BioResources 2016, 11, 1334–1348. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, H.; Jiang, Z.; Zhao, J.; Wang, Z.; Pan, B. Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environ. Sci. Technol. 2018, 52, 10369–10379. [Google Scholar] [CrossRef]
- Huang, D.; Liu, L.; Zeng, G.; Xu, P.; Huang, C.; Deng, L. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 2017, 174, 545–553. [Google Scholar] [CrossRef]
- Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 2017, 237, 57–63. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.; Johnson, M.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-derived Black Carbon(Biochar)- Supporting Information. Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Tang, J.; Gao, K.; He, R.; Zhao, H.; Werner, D. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics. RSC Adv. 2017, 7, 14640–14648. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Kumar, U.; Bhattacharyya, P. Synthesis and characterization of exfoliated biochar from four agricultural feedstock. Environ. Sci. Pollut Res. 2019, 26, 7272–7286. [Google Scholar] [CrossRef]
- Nikčević, I.; Jokanović, V.; Mitrić, M.; Nedić, Z.; Makovec, D.; Uskoković, D. Mechanochemical synthesis of nanostructured fluorapatite/ fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. J. Solid State Chemis. 2004, 177, 2565–2574. [Google Scholar] [CrossRef]
- Wang, J.; Chao, Y.; Wan, Q.; Zhu, Z.; Yu, H. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater. 2009, 5, 1798–1807. [Google Scholar] [CrossRef]
- Lee, J.; Sarmah, A.K.; Kwon, E.E. Production and formation of biochar. Biochar from Biomass. Waste Fundam. Appl. 2018, 1, 3–18. [Google Scholar]
- Mari, S.S.; Janakiraman, T.; Paramasivan, B. Characterization of engineered corn cob biochar produced in allothermal pyrolysis reactor. Mater. Today Proc. 2021, 47, 312–317. [Google Scholar] [CrossRef]
- Derakhshan, N.Z.; Jung, M.; Kim, K.H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 2018, 40, 927–953. [Google Scholar] [CrossRef]
- Cao, X. Immobilization of heavy metals in contaminated soils amended by phosphate-, carbonate-, and silicate-based materials: From lab to field. In Twenty Years of Research and Development on Soil Pollution and Remediation in China; Springer: Singapore, 2018; pp. 535–543. [Google Scholar] [CrossRef]
- Kumar, A.; Tsechansky, L.; Lew, B.; Raveh, E.; Frenkel, O.; Graber, E.R. Biochar alleviates phytotoxicity in Ficus elastica grown in Zn-contaminated soil. Sci. Total Environ. 2018, 618, 188–198. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Li, J.; Song, Y.; Hua, M.; Li, W.; Wen, Y.; Li, T.; He, X. Assessing the fractionation and bioavailability of heavy metals in soil–rice system and the associated health risk. Environ. Geochem. Health 2011, 4, 44. [Google Scholar] [CrossRef]
- Puga, A.P.; Melo, L.C.A.; de Abreu, C.A.; Coscione, A.R.; Paz-Ferreiro, J. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res. 2016, 164, 25–33. [Google Scholar] [CrossRef]
- Dai, S.; Li, H.; Yang, Z.; Dai, M.; Dong, X.; Ge, X. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum. Ecol. Risk Assess 2018, 24, 1887–1900. [Google Scholar] [CrossRef]
- Awad, M.; Liu, Z.; Skalicky, M.; Dessoky, E.S.; Brestic, M.; Mbarki, S. Fractionation of heavy metals in multi-contaminated soil treated with biochar using the sequential extraction procedure. Biomolecules 2021, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.H.; Li, Z.G.; Liu, X.D.; Wang, B.; Zhou, G.L.; Huang, X.X. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecol. Eng. 2017, 98, 183–188. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; McGrouther, K.; Huang, H.; Lu, K.; Guo, X. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut Res. 2016, 23, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.; Moustafa-Farag, M.; Wei, L.; Huang, Q.; Liu, Z. Effect of garden waste biochar on the bioavailability of heavy metals and growth of Brassica juncea (L.) in a multi-contaminated soil. Arab J. Geosci. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Xu, W.; Shafi, M.; Penttinen, P.; Hou, S.; Wang, X.; Ma, J. Bioavailability of heavy metals in contaminated soil as affected by different mass ratios of biochars. Environ Technol. 2020, 41, 3329–3337. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef]
- Vuong, X.T.; Vu, L.D.; Duong, A.T.T.; Duong, H.T.; Hoang, T.H.T.; Luu, M.N.T. Speciation and environmental risk assessment of heavy metals in soil from a lead/zinc mining site in Vietnam. Int. J. Environ. Sci. Technol. 2022, 6, 1–16. [Google Scholar] [CrossRef]
- Golui, D.; Datta, S.P.; Dwivedi, B.S.; Meena, M.C.; Trivedi, V.K.; Jaggi, S. Assessing Geoavailability of Zinc, Copper, Nickel, Lead and Cadmium in Polluted Soils Using Short Sequential Extraction Scheme. Soil Sediment Contam. 2021, 30, 74–91. [Google Scholar] [CrossRef]
- Awad, M.; El-Sayed, M.M.; Li, X.; Liu, Z.; Mustafa, S.K.; Ditta, A. Diminishing heavy metal hazards of contaminated soil via biochar supplementation. Sustainability 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef]
- Xu, C.; Chen, H.X.; Xiang, Q.; Zhu, H.H.; Wang, S.; Zhu, Q.H. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil–rice (Oryza sativa L.) system. Environ. Sci. Pollut. Res. 2018, 25, 1147–1456. [Google Scholar] [CrossRef]
- Houben, D.; Evrard, L.; Sonnet, P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013, 92, 1450–1457. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Y.; Qiu, Y.; Che, L.; Xue, C. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Sci. Total Environ. 2019, 646, 1281–1289. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Lin, H.; Li, G.; Dong, Y.; Li, J. Effect of pH on the release of heavy metals from stone coal waste rocks. Int. J. Miner Process. 2017, 165, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.S.; Tang, C.S.; Gu, K.; Shi, B. Remediation of heavy-metal-contaminated soils by biochar: A review. Environ. Geotech. 2019, 9, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Choppala, G.; Lee, S.J.; Bolan, N.; Chung, J.W.; Edraki, M. Comparative Sorption of Pb and Cd by Biochars and Its Implication for Metal Immobilization in Soils. Water Air Soil Pollut. 2013, 224, 1–13. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Mehmood, S.; Saeed, D.A.; Rizwan, M.; Khan, M.N.; Aziz, O.; Bashir, S. Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol. Biochem. 2018, 132, 345–355. [Google Scholar] [CrossRef]
- Banat, K.M.; Howari, F.M.; To’mah, M.M. Chemical fractionation and heavy metal distribution in agricultural soils, north of Jordan Valley. Soil Sediment Contam. 2007, 16, 89–107. [Google Scholar] [CrossRef]
- Mehmood, S.; Imtiaz, M.; Bashir, S.; Rizwan, M.; Irshad, S.; Yuvaraja, G. Leaching Behavior of Pb and Cd and Transformation of Their Speciation in Co-Contaminated Soil Receiving Different Passivators. Environ. Eng. Sci. 2019, 36, 749–759. [Google Scholar] [CrossRef]
- Hagemann, N. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T. Comparative study on the mobility and speciation of heavy metals in ashes from co-combustion of sewage sludge/dredged sludge and rice husk. Chemosphere 2017, 169, 162–170. [Google Scholar] [CrossRef]
- Meng, J.; Tao, M.; Wang, L.; Liu, X.; Xu, J. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci. Total Environ. 2018, 633, 300–307. [Google Scholar] [CrossRef]
- Meng, J.; Liang, S.; Tao, M.; Liu, X.; Brookes, P.C.; Xu, J. Chemical speciation and risk assessment of Cu and Zn in biochars derived from co-pyrolysis of pig manure with rice straw. Chemosphere 2018, 200, 344–350. [Google Scholar] [CrossRef]
- Miller, W.P.; Miller, D.M. Communications in Soil Science and Plant Analysis A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 2008, 2013, 37–41. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analyt. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Munir, M.A.M.; Liu, G.; Yousaf, B.; Mian, M.M.; Ali, M.U.; Ahmed, R. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings. Ecotoxicol. Environ. Saf. 2020, 191, 110244. [Google Scholar] [CrossRef]
- Munir, M.A.M.; Irshad, S.; Yousaf, B.; Ali, M.U.; Dan, C.; Abba, S.Q. Interactive assessment of lignite and bamboo-biochar for geochemical speciation, modulation and uptake of Cu and other heavy metals in the copper mine tailing. Sci. Total Environ. 2021, 779, 146536. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Ahmad, M.; Sallam, A.; Al-Wabel, M.I. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 2018, 194, 327–339. [Google Scholar] [CrossRef]
Properties | Unit | Soil | Amendment | ||
---|---|---|---|---|---|
CB400 | CB600 | AP | |||
Sand | % | 69.78 ± 0.72 | - | - | - |
Silt | % | 5.48 ± 0.32 | - | - | - |
Clay | % | 24.74 ± 0.43 | - | - | - |
pH | 6.69 ± 0.02 | 8.11 ± 0.01 | 9.71 ± 0.01 | 9.16 ± 0.01 | |
OC | % | 2.19 ± 0.40 | 76.86 ± 1.43 | 84.79 ± 0.95 | 3.34 ± 0.21 |
EC | µS cm−1 | 136.51 ± 0.50 | 2910.01 ± 2.50 | 3280.02 ± 3.50 | 1104.50 ± 1.51 |
Pb | mg kg−1 | 3023.70 ± 98.60 | <LOD | <LOD | <LOD |
Zn | mg kg−1 | 2034.33 ± 35.41 | 0.20 ± 0.03 | 0.50 ± 0.02 | 9.43 ± 0.03 |
Cd | mg kg−1 | 14.11 ± 0.93 | <LOD | <LOD | <LOD |
S(BET) | m2 g−1 | - | 0.89 | 79.63 | 0.49 |
Sample | F1-Pb | F1-Zn | pH | OC | EC |
---|---|---|---|---|---|
mg kg−1 | mg kg−1 | g kg−1 | µS cm−1 | ||
CS | 344.90 ± 11.46 a | 361.61 ± 7.98 a | 6.69 ± 0.01 h | 19.46 ± 2.14 k | 120.10 ± 2.50 k |
CB4:3 | 319.08 ± 2.96 b | 330.40 ± 13.81 b | 6.93 ± 0.01 g | 33.57 ± 1.71 h | 194.41 ± 1.50 i |
CB4:5 | 283.64 ± 7.62 c | 300.57 ± 18.70 d | 6.95 ± 0.01 f,g | 39.88 ± 0.96 f | 259.50 ± 1.61 f |
CB4:10 | 245.00 ± 8.10 d | 291.01 ± 10.58 d | 7.01 ± 0.01e | 83.51 ± 0.80 b | 390.10 ± 4.30 b |
CB4A3 | 332.41 ± 10.19 a | 311.87 ± 18.15 c,d | 7.04 ± 0.01 c,d | 34.14 ± 0.96 h | 217.80 ± 2.11 g |
CB4A5 | 245.37 ± 9.06 d | 248.69 ± 18.21 e | 7.06 ± 0.01 c | 53.01 ± 1.30 c | 308.51 ± 1.51 c |
CB6:3 | 330.72 ± 7.85 a | 361.04 ± 17.16 a | 6.97 ± 0.01 e,f | 34.56 ± 1.45 h | 200.30 ± 4.51 h |
CB6:5 | 294.29 ± 8.37 c | 298.06 ± 16.39 d | 7.03 ± 0.01 d,e | 47.46 ± 1.02 e | 278.12 ± 2.33 e |
CB6:10 | 245.48 ± 6.58 d | 300.58 ± 11.71 d | 7.17 ± 0.01 a | 90.51 ± 1.09 a | 416.51 ± 6.13 a |
CB6A3 | 313.14 ± 6.43 b | 340.98 ± 17.73 a,b | 7.06 ± 0.01 c | 35.59 ± 0.81 g | 214.23 ± 3.11 g |
CB6A5 | 275.62 ± 9.18 c | 329.03 ± 14.07 b,c | 7.11 ± 0.01 b | 50.01 ± 1.10 d | 297.03 ± 1.54 d |
Metal | Sample | F1 | F2 | F3 | F4 | F5 |
---|---|---|---|---|---|---|
(mg kg−1) | ||||||
Pb | CS | 344.90 ± 11.46 a | 2063.70 ± 36.31 a | 260.51 ± 5.40 d | 18.41 ± 0.70 f | 404.11 ± 11.07 g,h |
CB4:3 | 319.08 ± 2.96 b | 1994.30 ± 75.90 a | 282.60 ± 8.51 b,c | 20.12 ± 0.91 e | 442.62 ± 5.44 e | |
CB4:5 | 283.64 ± 7.62 c | 1985.31 ± 92.30 a | 277.43 ± 8.82 c | 30.01 ± 1.44 b | 428.71 ± 3.65 f | |
CB4:10 | 245.00 ± 8.10 d | 2020.50 ± 67.20 a | 273.72 ± 9.13 c | 49.92 ± 0.53 a | 477.42 ± 4.30 d | |
CB4A3 | 332.41 ± 10.19 a | 2011.70 ± 56.50 a | 272.24 ± 11.94 c | 19.91 ± 0.34 e | 411.41 ± 5.67 g | |
CB4A5 | 245.37 ± 9.06 d | 1975.01 ± 83.20 a | 244.72 ± 1.41 e | 19.62 ± 0.63 e,f | 576.34 ± 8.52 a | |
CB6:3 | 330.72 ± 7.85 a | 2023.31 ± 61.50 a | 273.71 ± 11.60 b,c | 27.61 ± 1.11 c | 402.43 ± 2.11 h | |
CB6:5 | 294.29 ± 8.37 c | 1924.30 ± 81.50 a | 298.80 ± 5.11 b | 22.40 ± 0.82 d | 455.82 ± 6.42 e | |
CB6:10 | 245.48 ± 6.58 d | 1986.02 ± 47.20 a | 312.84 ± 9.22 a | 21.83 ± 1.04 e | 522.03 ± 3.20 b | |
CB6A3 | 313.14 ± 6.43 b | 1967.03 ± 27.90 a | 306.04 ± 24.01 a,b | 26.04 ± 1.22 c | 459.72 ± 2.70 e | |
CB6A5 | 275.62 ± 9.18 c | 1814.01 ± 70.11 b | 304.63 ± 12.51 a,b | 26.92 ± 1.41 c | 490.71 ± 4.58 c | |
Zn | CS | 361.61 ± 7.98 a | 615.30 ± 32.60 c,d | 622.71 ± 14.70 b | 9.31 ± 0.62 h | 591.30 ± 1.65 g |
CB4:3 | 330.40 ± 13.81 b | 630.01± 23.60 c | 546.30 ± 23.91 c | 20.12 ± 0.51 d | 620.01 ± 8.57 f | |
CB4:5 | 300.57 ± 18.70 d | 730.70 ± 82.40 a,b,c | 521.02 ± 29.91 c | 19.14 ± 0.82 de | 682.92 ± 1.57 d | |
CB4:10 | 291.01 ± 10.58 d | 746.50 ± 6.40 a | 529.42 ± 20.64 c | 58.12 ± 0.71 a | 789.63 ± 7.20 a | |
CB4A3 | 311.87 ± 18.15 cd | 719.30 ± 24.10 a,b | 531.03 ± 27.03 c | 48.73 ± 0.92 c | 730.31 ± 5.89 b | |
CB4A5 | 248.69 ± 18.21 e | 664.01 ± 36.30 b,c | 480.71 ± 12.45 d | 51.50 ± 0.41 b | 735.52 ± 8.20 b | |
CB6:3 | 361.04 ± 17.16 a | 705.70 ± 17.60 b | 539.32 ± 16.93 c | 21.14 ± 0.93 d | 697.74 ± 5.04 c | |
CB6:5 | 298.06 ± 16.39 d | 731.71 ± 27.01 a | 579.44 ± 23.92 c | 19.53 ± 0.44 d,e | 580.44 ± 8.76 g | |
CB6:10 | 300.58 ± 11.71 d | 689.70 ± 15.52 b | 628.53 ± 27.14 b | 17.82 ± 0.54 f | 663.73 ± 4.75 e | |
CB6A3 | 340.98 ± 17.73 a,b | 743.32 ± 54.80 a,b | 660.23 ± 11.12 a | 15.61 ± 0.33 g | 511.82 ± 9.32 h | |
CB6A5 | 329.03 ± 14.07 b,c | 664.03 ± 5.32 c | 613.52 ± 15.51 b | 18.42± 0.80 e,f | 677.63 ± 5.58 d,e |
Metal | Element | Component 1 | Component 2 |
---|---|---|---|
Pb | pH | 0.42 | −0.27 |
OC | 0.43 | 0.19 | |
EC | 0.45 | 0.14 | |
F1 | −0.42 | −0.26 | |
F2 | −0.24 | 0.52 | |
F3 | 0.23 | −0.55 | |
F4 | 0.18 | 0.47 | |
F5 | 0.35 | 0.08 | |
Eigenvalue | 4.67 | 1.51 | |
Cumulative variances (%) | 58.41 | 77.33 | |
Zn | pH | 0.28 | 0.50 |
OC | 0.42 | 0.32 | |
EC | 0.44 | 0.30 | |
F1 | −0.41 | 0.12 | |
F2 | 0.23 | 0.10 | |
F3 | −0.23 | 0.54 | |
F4 | 0.37 | −0.37 | |
F5 | 0.37 | −0.32 | |
Eigenvalue | 3.93 | 2.31 | |
Cumulative variances (%) | 49.18 | 78.08 |
Sample Plot | Sample Code | Biochar Weight (g) | Apatite Weight (g) | Soil Weight (g) | Ratio (%) |
---|---|---|---|---|---|
Control soil | CS | 0.0 | 0.0 | 100 | 0 |
Control soil + 3% CB400 | CB4:3 | 3.0 | 0.0 | 97 | 3 |
Control soil + 5% CB400 | CB4:5 | 5.0 | 0.0 | 95 | 5 |
Control soil + 10% CB400 | CB4:10 | 10.0 | 0.0 | 90 | 10 |
Control soil + 3% CB400 + 3% AP | CB4A3 | 3.0 | 3.0 | 94 | 3:3 |
Control soil + 5% CB400 + 5% AP | CB4A5 | 5.0 | 5.0 | 90 | 5:5 |
Control soil + 3% CB600 | CB6:3 | 3.0 | 0.0 | 97 | 3 |
Control soil + 5% CB600 | CB6:5 | 5.0 | 0.0 | 95 | 5 |
Control soil + 10% CB600 | CB6:10 | 10.0 | 0.0 | 90 | 10 |
Control soil + 3% CB600 + 3% AP | CB6A3 | 3.0 | 3.0 | 94 | 3:3 |
Control soil + 5% CB600 + 5% AP | CB6A5 | 5.0 | 5.0 | 90 | 5:5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuong, T.X.; Stephen, J.; Nguyen, T.T.T.; Cao, V.; Pham, D.T.N. Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite. Molecules 2023, 28, 2225. https://doi.org/10.3390/molecules28052225
Vuong TX, Stephen J, Nguyen TTT, Cao V, Pham DTN. Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite. Molecules. 2023; 28(5):2225. https://doi.org/10.3390/molecules28052225
Chicago/Turabian StyleVuong, Truong Xuan, Joseph Stephen, Thi Thu Thuy Nguyen, Viet Cao, and Dung Thuy Nguyen Pham. 2023. "Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite" Molecules 28, no. 5: 2225. https://doi.org/10.3390/molecules28052225
APA StyleVuong, T. X., Stephen, J., Nguyen, T. T. T., Cao, V., & Pham, D. T. N. (2023). Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite. Molecules, 28(5), 2225. https://doi.org/10.3390/molecules28052225