Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant
Abstract
:1. Introduction
2. Presence of Ibuprofen in the Environment (Emerging Pollutant)
3. Ibuprofen Toxicity in Organisms
4. Ibuprofen Biotransformation/Biodegradation (Biodegradation Pathways)
5. Ibuprofen-Degrading Bacteria
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Parolini, M.; Binelli, A.; Provini, A. Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicol. Environ. Saf. 2011, 74, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Marchlewicz, A.; Guzik, U.; Wojcieszyńska, D. Over-the-counter monocyclic non-steroidal anti-inflammatory drugs in the environment-sources, risks, biodegradation. Water Air Soil Pollut. 2015, 226, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudec, R.; Božeková, L.; Tisoňová, J. Consumption of three most widely used analgesics in six European countries. J. Clin. Pharm. Ther. 2012, 38, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Arpin-Pont, L.; Martinez-Bueno, M.J.; Gomez, E.; Fenez, H. Occurrence of PPCPs in the marine environment: A review. Environ. Sci. Pollut. Res. 2016, 23, 4978–4991. [Google Scholar] [CrossRef]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Wiest, L.; Chonova, T.; Bergél, A.; Baudot, R.; Bessueille-Barbier, F.; AyouniDerouiche, L.; Vulliet, E. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environ. Sci. Pollut. Res. 2018, 25, 9207–9218. [Google Scholar] [CrossRef]
- Murdoch, R.W.; Hay, A.G. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation 2015, 26, 105–113. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, M.; Yuan, S.; Feng, J.; Wang, Q.; Wang, W.; Hu, Z. Transformation of acetaminophen during water chlorination treatment: Kinetics and transformation products identification. Environ. Sci. Pollut. Res. 2016, 23, 12303–12311. [Google Scholar] [CrossRef]
- Rácz, G.; Csenki, Z.; Kovács, R.; Hegyi, Á.; Baska, F.; Sujbert, L.; Zsákovics, I.; Kis, R.; Gustafson, R.; Urbányi, B.; et al. Subacute toxicity assessment of water disinfection byproducts on zebrafish. Pathol. Oncol. Res. 2011, 18, 579–584. [Google Scholar] [CrossRef]
- Zheng, B.G.; Zheng, Z.; Zhang, J.B.; Luo, X.Z.; Wang, J.Q.; Liu, Q.; Wang, L.H. Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination 2011, 276, 379–385. [Google Scholar] [CrossRef]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J. Hazard Mater. 2010, 179, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Chinnaiyan, P.; Thampi, S.G.; Kumar, M.; Min, K.M. Pharmaceutical products as emerging contaminant in water: Relevance for developing nations and identification of critical compounds for Indian environment. Environ. Monit. Assess. 2018, 190, 288. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, M.; Khan, K.N.; Saif-Ur-Rehman, M.; Mustafa, G.; Nazar, M.F.; Sun, Q.; Iqbal, J.; Mulla, S.J.; Yu, C.P. Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol. Environ. Saf. 2017, 136, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, J.; Wang, X. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Guerra, P.; Kim, M.; Shah, A.; Alaee, M.; Smyth, S.A. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci. Total Environ. 2014, 473, 235–243. [Google Scholar] [CrossRef]
- Vergeynst, L.; Haeck, A.; De Wispelaere, P.; Van Langenhove, H.; Demeestere, K. Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry: Method quality assessment and application in a Belgian case study. Chemosphere 2015, 119, S2–S8. [Google Scholar] [CrossRef]
- Almeida, B.; Kjeldal, H.; Lolas, I.; Knudsen, A.D.; Carvalho, G.; Nielsen, K.L.; Barreto-Crespo, M.T.; Stensballe, A.; Nielsen, J.L. Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11. Biodegradation 2013, 24, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Pharmaceutical residues in water and sediment of Msunduzi River, KwaZuluNatal, South Africa. Chemosphere 2015, 134, 133–140. [Google Scholar] [CrossRef]
- Vazquez-Roig, P.; Andreu, V.; Blasco, C.; Picó, Y. Risk assessment on the presence of pharmaceuticals in sediments, soils and waters of the Pego-Oliva Marshlands (Valencia, eastern Spain). Sci. Total Environ. 2012, 440, 24–32. [Google Scholar] [CrossRef]
- Aymerich, I.; Acuña, V.; Barceló, D.; García, M.J.; Petrovic, M.; Poch, M.; Rodriquez-Mozaz, S.; Rodriguez-Roda, I.; Sabater, D.; von Schiller, D.; et al. Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem. Water Res. 2016, 100, 126–136. [Google Scholar] [CrossRef]
- Ferrando-Climent, L.; Collado, N.; Buttiglieri, G.; Gros, M.; Rodriguez-Roda, I.; Rodriguez-Mozaz, S.; Barceló, D. Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Sci. Total Environ. 2012, 438, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Saucier, C.; Karthickeyan, P.; Ranjithkumar, V.; Lima, E.C.; dos Reis, G.S.; de Brum, I.A.S. Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ. Sci. Pollut. Res. 2017, 24, 5918–5932. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Köster, S.; Veltmann, K.; Schröder, H.; Pinnekamp, J. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Sci. Technol. 2010, 61, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Hanen, G.; Reinert, L.; Soneda, Y.; Bellakhal, N.; Duclaux, L. Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arab. J. Chem. 2014, 10, 3584–3594. [Google Scholar] [CrossRef] [Green Version]
- Nica, A.V.; Olaru, E.A.; Bradu, C.; Dumitru, A.; Avramescu, S.M. Catalytic ozonation of ibuprofen in aqueous media over polyaniline-derived nitrogen containing carbon nanostructures. Nanomaterials 2022, 12, 3468. [Google Scholar] [CrossRef] [PubMed]
- Zhihan, Z.; Bofeng, Z.; Dong, W.; Qi, Z.; Cong, T.; Nanwen, Z.; Guobiao, L. A Yb3+/Er3+ co-doped Bi1.95Yb0.04Er0.01V2O8 efficient upconversion glass–ceramic photocatalyst for antibiotic degradation driven by UV–Vis-NIR broad spectrum light. Appl. Surf. Sci. 2022, 583, 152565. [Google Scholar] [CrossRef]
- Rozas, O.; Vidal, C.; Baeza, C.; Jardim, W.F.; Rossner, A.; Mansilla, H.D. Organic micropollutants (OMPs) in natural waters: Oxidation by UV/H2O2 treatment and toxicity assessment. Water Res. 2016, 98, 109–118. [Google Scholar] [CrossRef]
- Grujić, S.; Vasiljević, T.; Lausević, M. Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion-trap-tandem-mass spectrometry. J. Chromatogr. A 2009, 1216, 4989–5000. [Google Scholar] [CrossRef]
- Candido, J.P.; Andrade, S.J.; Fonseca, A.L.; Silva, F.S.; Silva, M.R.A.; Kondo, M.M. Ibuprofen removal of heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Environ. Sci. Pollut. Res. 2017, 23, 19911–19920. [Google Scholar] [CrossRef]
- Parolini, M.; Binelli, A. Sub-lethal effects induced by a mixture of three non-steroidal anti-inflammatory drugs (NSAIDs) on the freshwater bivalve Dreissena polymorpha. Ecotoxicology 2012, 21, 379–392. [Google Scholar] [CrossRef]
- Oliveira, L.L.D.; Antunes, S.C.; Gonçalves, F.; Rocha, O.; Nunes, B. Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol. Environ. Saf. 2015, 119, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Elersek, T.; Milavec, S.; Korošec, M.; Brezovsek, K.; Negreira, N.; Zonja, B.; López de Alda, M.; Barceló, D.; Heath, E.; Ščančar, J.; et al. Toxicity of the mixture of selected antineoplastic drugs againstaquatic primary producers. Environ. Sci. Pollut. Res. 2016, 23, 14780–14790. [Google Scholar] [CrossRef] [PubMed]
- Kayani, M.A.; Parry, J.M.; Vickery, S.; Dodds, P.F. In vitro genotoxic assessment of xenobiotic diacylglycerols in an in vitro micronucleus assay. Environ. Mol. Mutagen. 2009, 50, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Rey, M.; Bebianno, M.J. Does non-steroidal anti-inflammatory (NSAID) ibuprofen induce antioxidant stress and endocrine disruption in mussel Mytilus galloprovincialis? Environ. Toxicol. Pharmacol. 2012, 33, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.; Poznanskyi, D.; Kasianchuk, N.; Horyn, O.; Bodnar, O. Multimarker responses of Zebrafish to the effect of ibuprofen and gemfibrozil in environmentally relevant concentrations. Bull. Environ. Contam. Toxicol. 2022, 109, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Aceves, L.; Pérez-Alvarez, I.; Gómez-Oliván, L.M.; Islas-Flores, H.; Barceló, D. Long-term exposure to environmentally relevant concentrations of ibuprofen and aluminum alters oxidative stress status on Danio rerio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 248, 109071. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Aceves, L.M.; Pérez-Alvarez, I.; Gómez-Oliván, L.M.; Islas-Flores, H.; Barceló, D. Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio. Environ. Pollut. 2021, 291, 118078. [Google Scholar] [CrossRef]
- Henry, J.; Bai, Y.; Kreuder, F.; Saaristo, M.; Kaslin, J.; Wlodkowic, D. Sensory-Motor perturbations in arval zebrafish (Danio rerio) induced by exposure to low levels of neuroactive micropollutants during development. Int. J. Mol. Sci. 2022, 23, 8990. [Google Scholar] [CrossRef]
- Hodkovicova, N.; Hollerova, A.; Blahova, J.; Mikula, P.; Crhanova, M.; Karasova, D.; Franc, A.; Pavlokova, S.; Mares, J.; Postulkova, E.; et al. Non-steroidal anti-inflammatory drugs caused an outbreak of inflammation and oxidative stress with changes in the gut microbiota in rainbow trout (Oncorhynchus mykiss). Sci. Total Environ. 2022, 849, 157921. [Google Scholar] [CrossRef]
- Martyniuk, V.; Gylyté, B.; Matskiv, T.; Khoma, V.; Tulaidan, H.; Gnatyshyna, L.; Orlova-Hudim, K.; Manusadžianas, L.; Stoliar, O. Stress responses of bivalve mollusc Unio tumidus from two areas to ibuprofen, microplastic and their mixture. Ecotoxicology 2022, 31, 1369–1381. [Google Scholar] [CrossRef]
- Han, S.; Choi, K.; Kim, J.; Ji, K.; Kim, S.; Aho, B.; Yun, J.; Choi, K.; Khim, J.S.; Zhang, X.; et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka Oryzias latipes and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquat. Toxicol. 2010, 98, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Peng, Y.; Nie, X.; Pan, B.; Ku, P.; Bao, S. Gene response of CYP360A, CYP314, and GST and whole-organism changes in Daphnia magna exposed to ibuprofen. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016, 179, 45–56. [Google Scholar] [CrossRef] [PubMed]
- De Lange, H.J.; Noordoven, W.; Murk, A.J.; Lurling, M.; Peeters, E.T.H.M. Behavioural responses of Gammarus pules (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquat. Toxicol. 2006, 78, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Adamczuk, M. Environmentally realistic concentrations of ibuprofen influence life histories but not population dynamics of Daphnia magna. Sci. Total Environ. 2022, 848, 157783. [Google Scholar] [CrossRef]
- Saravanan, M.; Devi, K.U.; Malarvizhi, A.; Ramesh, M. Effects of ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environ. Toxicol. Pharmacol. 2012, 34, 14–22. [Google Scholar] [CrossRef]
- Aguirre-Martínez, G.V.; Buratti, S.; Fabbri, E.; Del Valls, A.T.; Martín-Díaz, M.L. Using lysosomal membrane stability of haemocytes in Ruditapes philippinarum as a biomarker of cellular stress to assess contamination by caffeine, ibuprofen, carbamazepine and novobiocin. J. Environ. Sci. 2013, 25, 1408–1418. [Google Scholar] [CrossRef]
- Zanuri, N.B.M.; Bentley, M.G.; Caldwell, G.S. Assessing the impact of diclofenac, ibuprofen and sildenafil citrate on the fertilization biology of broadcast spawing marine invertebrates. Mar. Environ. Res. 2017, 127, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Ogunwole, G.A.; Saliu, J.K.; Osuala, F.I.; Odunjo, F.O. Chronic levels of ibuprofen induces haematoxic and histopathology damage in the gills, liver, and kidney of the African sharptooth catfish (Clarias gariepinus). Environ. Sci. Pollut. Res. Int. 2021, 28, 25603–25613. [Google Scholar] [CrossRef]
- Cikcikoglu-Yildirim, N.; Serdar, O.; Basaran, S. The use of Gammarus pulex as a model organism for ecotoxicological assessment of ibuprofen and propranolol at environmental relevant concentrations. Int. J. Environ. Health Res. 2022, 32, 2385–2395. [Google Scholar] [CrossRef]
- Trombini, C.; Kazakova, J.; Villar-Navarro, M.; Hampel, M.; Fernández-Torres, R.; Bello-López, M.Á.; Blasco, J. Bioaccumulation and biochemical responses in the peppery furrow shell Scrobicularia plana exposed to a pharmaceutical cocktail at sub-lethal concentrations. Ecotoxicol. Environ. Saf. 2022, 242, 113845. [Google Scholar] [CrossRef]
- Lofrano, J.; Mirarchi, F.; Rico, C.; Medesani, D.A.; Rodríguez, E.M. Inhibition of oocyte maturation in the estuarine crab Neohelice granulata, by the effect of anti-inflammatory drugs. Bull. Environ. Contam. Toxicol. 2022, 109, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Feijão, E.; da Cruz de Carvalho, R.; Duarte, I.A.; Matos, A.R.; Cabrita, M.T.; Barreiro, A.; Lemos, M.F.L.; Novais, S.C.; Marques, J.C.; et al. Comfortably numb: Ecotoxicity of the non-steroidal anti-inflammatory drug ibuprofen on Phaeodactylum tricornutum. Mar. Environ. Res. 2020, 161, 105109. [Google Scholar] [CrossRef] [PubMed]
- Aliko, V.; Korriku, R.S.; Pagano, M.; Faggio, C. Double-edged sword: Fluoxetine and ibuprofen as development jeopardizers and apoptosis’ inducers in common toad, Bufo bufo, tadpoles. Sci. Total Environ. 2021, 776, 145945. [Google Scholar] [CrossRef]
- Wijaya, L.; Alyemeni, M.; Ahmad, P.; Alfarhan, A.; Barcelo, D.; El-Sheikh, M.A.; Pico, Y. Ecotoxicological effects of ibuprofen on plant growth of Vigna unguiculata L. Plants 2020, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Muñiz-González, A.B. Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: Effects on Chironomus riparius. Environ. Toxicol. Pharmacol. 2021, 81, 103537. [Google Scholar] [CrossRef]
- Di Nica, V.; Villa, S.; Finizio, A. Toxicity of individual pharmaceuticals and their mixtures to Aliivibrio fischeri: Experimental results for single compounds and considerations of their mechanisms of action and potential acute effects on aquatic organisms. Environ. Toxicol. Chem. 2017, 36, 807–814. [Google Scholar] [CrossRef]
- Liu, S.; Chen, D.; Wang, Z.; Zhang, M.; Zhu, M.; Yin, M.; Zhang, T.; Wang, X. Shifts of bacterial community and molecular ecological network in activated sludge system under ibuprofen stress. Chemosphere 2022, 295, 133888. [Google Scholar] [CrossRef]
- Browne, G.S.; Nelson, C.; Nguyen, T.; Ellis, B.A.; Day, R.O.; Williams, K.M. Stereoselective and substrate-dependent inhibition of hepatic mitochondria beta-oxidation and oxidative phosphorylation by the non-steroidal anti-inflammatory drugs ibuprofen, flurbiprofen, and ketorolac. Biochem. Pharmacol. 1999, 57, 837–844. [Google Scholar] [CrossRef]
- Bédouet, L.; Pascale, F.; Bonneau, M.; Wassef, M.; Laurent, A. In vitro evaluation of (S)-ibuprofen toxicity on joint cells and explants of cartilage and synovial membrane. Toxicol. In Vitro 2011, 25, 1944–1952. [Google Scholar] [CrossRef]
- Gliszczyńska, A.; Sánchez-López, E. Dexibuprofen therapeutic advances: Prodrugs and nanotechnological formulations. Pharmaceutics 2021, 13, 414. [Google Scholar] [CrossRef]
- López-Serna, R.; Kasprzyk-Hordern, B.; Petrović, M.; Barceló, D. Multi-residue enantiomeric analysis of pharmaceuticals and their active metabolites in the Guadalquivir River basin (South Spain) by chiral liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 5859–5873. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Barrett, H.; Wang, B.; Han, J.; Wang, F.; Gong, W.; Wu, J.; Wang, W.; Yu, G. Co-occurrence of antiseptic triclocarban and chiral anti-inflammatory ibuprofen in environment: Association between biological effect in sediment and risk to human health. J. Hazard Mater. 2021, 407, 124871. [Google Scholar] [CrossRef] [PubMed]
- Connors, K.A.; Du, B.; Fitzsimmons, P.N.; Chambliss, C.K.; Nichols, J.W.; Brooks, B.W. Enantiomer-specific in vitro biotransformation of select pharmaceuticals in rainbow trout (Oncorhynchus mykiss). Chirality 2013, 25, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chai, T.; Yin, Z.; Zhang, X.; Zhang, W.; Qian, Y.; Qiu, J. Stereoselective effects of ibuprofen in adult zebrafish (Danio rerio) using UPLC-TOF/MS-based metabolomics. Environ. Pollut. 2018, 241, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, B.; Qu, H.; Zhao, W.; Duan, L.; Zhang, Y.; Zhou, Y.; Yu, G. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa. Environ. Pollut. 2020, 263 Pt B, 114593. [Google Scholar] [CrossRef]
- Wang, H.; Jin, M.; Mao, W.; Chen, C.; Fu, L.; Li, Z.; Du, S.; Liu, H. Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. Sci. Total Environ. 2020, 707, 136176. [Google Scholar] [CrossRef]
- Neale, P.A.; Branch, A.; Khan, S.J.; Leusch, F.D.L. Evaluating the enantiospecific differences of non-steroidal anti-inflammatory drugs (NSAIDs) using an ecotoxicity bioassay test battery. Sci. Total Environ. 2019, 694, 133659. [Google Scholar] [CrossRef]
- Marchlewicz, A.; Smułek, W.; Guzik, U.; Wojcieszyńska, D. Exploring the degradation of ibuprofen by Bacillus thuringiensis B1(2015b): The new pathway and factors affecting degradation. Molecules 2017, 22, 1676. [Google Scholar] [CrossRef]
- Kumar, T.; Bisht, B.S.; Dhewa, T. Review on bioremediation of polluted environment: A management tool. Int. J. Environ. Sci. 2011, 1, 1079–1093. [Google Scholar]
- Singh, S.; Kumar, G.V. Biodegradation and bioremediation of pollutants: Perspectives strategies and applications. Int. J. Pharmacol. Bio. Sci. 2016, 10, 53–65. [Google Scholar]
- Murdoch, R.W.; Hay, A.G. Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Appl. Environ. Microbiol. 2005, 71, 6121–6125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, R.W.; Hay, A.G. Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology 2013, 159, 621–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwiener, C.; Seeger, S.; Glauner, T.; Frimmel, F.H. Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments. Anal. Bioanal. Chem. 2002, 372, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Quintana, J.B.; Weiss, S.; Reemtsma, T. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by membrane bioreactor. Water Res. 2005, 39, 2654–2664. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Rosazza, J.P.N. Microbial transformation of ibuprofen by a Nocardia species. Appl. Environ. Microbiol. 1994, 60, 1292–1296. [Google Scholar] [CrossRef] [Green Version]
- Kagle, J.; Porter, A.W.; Murdoch, R.W.; Rivera-Cancel, G.; Hay, A.G. Biodegradation of pharmaceutical and personal care products. Adv. Appl. Microbiol. 2009, 67, 94–96. [Google Scholar] [CrossRef]
- Aguilar-Romero, I.; De la Torre-Zúñiga, J.; Quesada, J.M.; Haïdour, A.; O’Connell, G.; McAmmond, B.M.; Van Hamme, J.D.; Romero, E.; Wittich, R.M.; van Dillewijn, P. Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: Metabolic processes. Environ. Pollut. 2021, 274, 116536. [Google Scholar] [CrossRef]
- Aulestia, M.; Flores, A.; Mangas, E.L.; Pérez-Pulido, A.J.; Santero, E.; Camacho, E.M. Isolation and genomic characterization of the ibuprofen-degrading bacterium Sphingomonas strain MPO218. Environ. Microbiol. 2021, 23, 267–280. [Google Scholar] [CrossRef]
- Aulestia, M.; Flores, A.; Acosta-Jurado, S.; Santero, E.; Camacho, E.M. Genetic characterization of the ibuprofen-degradative pathway of Rhizorhabdus wittichii MPO218. Appl. Environ. Microbiol. 2022, 88, e0038822. [Google Scholar] [CrossRef]
- Nešvera, J.; Rucká, L.; Pátek, M. Catabolism of phenol and its derivatives in bacteria: Genes, their regulation, and use in the biodegradation of toxic pollutants. Adv. Appl. Microbiol. 2015, 93, 107–160. [Google Scholar] [CrossRef]
- Wang, B.; Lai, Q.; Cui, Z.; Tan, T.; Shao, Z. A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ. Microbiol. 2008, 10, 1948–1963. [Google Scholar] [CrossRef] [PubMed]
- Messina, E.; Denaro, R.; Crisafi, F.; Smedile, F.; Cappello, S.; Genovese, M.; Genovese, L.; Giuliano, L.; Russo, D.; Ferrer, M.; et al. Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea. Mar. Genomics 2016, 25, 11–13. [Google Scholar] [CrossRef]
- Choi, E.J.; Jin, H.M.; Lee, S.H.; Math, R.K.; Madsen, E.L.; Jeon, C.O. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 2013, 79, 663–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; Gerdes, S.; et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2017, 4, D535–D542. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Xu, G.; Li, Q.; Gao, W.; Zheng, L. Genome sequence of the pyrene- and fluoranthene-degrading bacterium Cycloclasticus sp. strain PY97M. Genome Announc. 2013, 1, e00536-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, D.R.; Dickey, A.N.; Scholl, E.H.; Wright, F.A.; Aitken, D. Complete genome sequence of a bacterium representing a deep uncultivated lineage within the Gammaproteobacteria associated with the degradation of polycyclic aromatic hydrocarbons. Genome Announc. 2016, 4, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Toyama, T. Isolation and characterization of 4-tert-buthylphenolutilizng Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment. Appl. Environ. Microbiol. 2010, 76, 6733–6740. [Google Scholar] [CrossRef] [Green Version]
- Marchlewicz, A.; Guzik, U.; Hupert-Kocurek, K.; Nowak, A.; Wilczyńska, S.; Wojcieszyńska, D. Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b). Environ. Sci. Pollut. Res. 2017, 24, 7572–7584. [Google Scholar] [CrossRef] [Green Version]
- Chopra, S.; Kumar, D. Characteristics and growth kinetics of biomass of Citrobacter freundii strains PYI-2 and Citrobacter portucalensis strain YPI-2 during the biodegradation of Ibuprofen. Int. Microbiol. 2022, 25, 615–628. [Google Scholar] [CrossRef]
- Benedek, T.; Pápai, M.; Gharieb, K.; Bedics, A.; Táncsics, A.; Tóth, E.; Daood, H.; Maróti, G.; Wirth, R.; Menashe, O.; et al. Nocardioides carbamazepini sp. nov., an ibuprofen degrader isolated from a biofilm bacterial community enriched on carbamazepine. Syst. Appl. Microbiol. 2022, 45, 126339. [Google Scholar] [CrossRef]
- Lvshina, I.B.; Tyumina, E.A.; Bazhutin, G.A.; Vikhareva, E.V. Response of Rhodococcus cerastii IEGM 1278 to toxic effects of ibuprofen. PLoS ONE 2021, 16, e0260032. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Gu, C.; Guo, Y.; Wu, S. Marine bacteria-mediated abiotic-biotic coupling degradation mechanism of ibuprofen. J. Hazard Mater. 2022, 435, 128960. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan-Roblero, J.; Cruz-Maya, J.A. Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023, 28, 2097. https://doi.org/10.3390/molecules28052097
Jan-Roblero J, Cruz-Maya JA. Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules. 2023; 28(5):2097. https://doi.org/10.3390/molecules28052097
Chicago/Turabian StyleJan-Roblero, Janet, and Juan A. Cruz-Maya. 2023. "Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant" Molecules 28, no. 5: 2097. https://doi.org/10.3390/molecules28052097
APA StyleJan-Roblero, J., & Cruz-Maya, J. A. (2023). Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules, 28(5), 2097. https://doi.org/10.3390/molecules28052097