Efficient Separation of the Methoxyfuranocoumarins Peucedanin, 8-Methoxypeucedanin, and Bergapten by Centrifugal Partition Chromatography (CPC)
Abstract
:1. Introduction
2. Results
2.1. Extraction of Plant Material
2.2. CPC Method Optimisation
2.3. HPLC-DAD Purity Assay and ESI-MS Identification of Isolated 5MOP, P, and 8MP
3. Discussion
4. Materials and Methods
4.1. Plant Material Source and General Extraction Procedures
4.2. Chemicals
4.3. Isolation, Purification, and Identification of Furanocoumarins
4.3.1. Centrifugal Partition Chromatography
CPC Equipment
Optimization of the CPC Conditions
CPC Column Equilibration
4.3.2. HPLC-DAD and ESI-MS Analysis of Furanocoumarins
4.3.3. Efficacy of Isolation and Purification Steps
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Paterson, I.; Anderson, E.A. The renaissance of natural products as drug candidates. Science 2005, 310, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Sticher, O. Natural product isolation. Nat. Prod. Rep. 2008, 25, 517–554. [Google Scholar] [CrossRef] [PubMed]
- Cazes, J. Centrifugal Partition Chromatography. Nat. Biotechnol. 1988, 6, 1398–1400. [Google Scholar] [CrossRef]
- Berthod, A.; Maryutina, T.; Spivakov, B.; Shpigun, O.; Sutherland, I.A. Counter-current chromatography in analytical chemistry (IUPAC Technical Report). Pure Appl. Chem. 2009, 81, 355–387. [Google Scholar] [CrossRef] [Green Version]
- Conway, W.D. Counter-current chromatography: Simple process and confusing terminology. J. Chromatogr. A 2011, 1218, 6015–6023. [Google Scholar] [CrossRef]
- Kostanyan, A.E. General regularities of liquid chromatography and counter-current extraction. Theor. Found. Chem. Eng. 2006, 40, 587–593. [Google Scholar] [CrossRef]
- Marston, A.; Hostettmann, K. Developments in the application of counter-current chromatography to plant analysis. J. Chromatogr. A 2006, 1112, 181–194. [Google Scholar] [CrossRef]
- Yin, L.; Li, Y.; Lu, B.; Jia, Y.; Peng, J. Trends in counter-current chromatography: Applications to natural products purification. Sep. Purif. Rev. 2010, 39, 33–62. [Google Scholar] [CrossRef]
- Hu, R.; Pan, Y. Recent trends in counter-current chromatography. TrAC Trends Anal. Chem. 2012, 40, 15–27. [Google Scholar] [CrossRef]
- Foucault, A.P.; Chevolot, L. Counter-current chromatography: Instrumentation, solvent selection and some recent applications to natural product purification. J. Chromatogr. A 1998, 808, 3–22. [Google Scholar] [CrossRef]
- Kostanyan, A.A.; Voshkin, A.A.; Belova, V.V. Analytical, preparative and industrial-scale Separation of substances by methods of counter-current liquid-liquid chromatography. Molecules 2020, 25, 6020. [Google Scholar] [CrossRef]
- Ito, Y. Golden rules and pitfalls in selecting optimum conditions for high speed counter current chromatography. J. Chromatogr. A 2005, 1065, 145–168. [Google Scholar] [CrossRef]
- Pauli, G.F.; Pro, S.M.; Friesen, J.B. Counter-current separation of natural products. J. Nat. Prod. 2008, 71, 1489–1508. [Google Scholar] [CrossRef] [PubMed]
- Conway, W.D. Counter-Current Chromatography: Apparatus, Theory and Applications; VCH Publishers Inc.: New York, NY, USA, 1990; pp. 1–475. [Google Scholar]
- Mandava, N.B.; Ito, Y. Principles and instrumentation of counter-current chromatography. In Counter-Current Chromatography: Theory and Practice; Mandava, N.B., Ito, Y., Eds.; Chromatographic Science Series; Marcel Dekker: New York, NY, USA, 1988; Volume 44, pp. 79–442. [Google Scholar]
- Hopmann, E.; Frey, A.; Minceva, M. A priori selection of the mobile and stationary phase in centrifugal partition chromatography and counter-current chromatography. J. Chromatogr. A 2012, 1238, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Kukuła-Koch, W.; Grabarska, A.; Łuszczki, J.; Czernicka, L.; Nowosadzka, E.; Gumbarewicz, E.; Jarząb, A.; Audo, G.; Upadhyay, S.; Głowniak, K.; et al. Superiour anticancer activity is demonstrated by total extract of Curcuma longa L. as opposite to individual curcuminoids separated by centrifugal partition chromatography. Phythoter. Res. 2018, 32, 933–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oka, H.; Harada, K.I.; Ito, Y. Separation of antibiotics by counter–current chromatography. J. Chromatogr. A 1998, 812, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Berthod, A.; Hassoun, M.; Ruiz-Angel, M.J. Alkane effect in the Arizona liquid system used in counter-current chromatography. Anal. Bioanal. Chem. 2005, 383, 327–340. [Google Scholar] [CrossRef]
- Sarkhail, P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: A review. J. Ethnopharmacol. 2014, 156, 235–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Khor, T.O.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J.H.; Kong, A.N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem. 2012, 12, 1281–1305. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Bai, X.Y.; Wang, C.H. Traditional Chinese medicine: A treasured natural resource of anticancer drug research and development. Am. J. Chin. Med. 2014, 42, 543–559. [Google Scholar] [CrossRef]
- Murray, R.H.D.; Mendez, J.; Brown, S.A. The Natural Coumarins: Occurrence, Chemistry and Biochemistry; Willey: Hoboken, NJ, USA, 1982; pp. 1–702. [Google Scholar]
- Hadaček, F.; Müller, F.; Werner, C.; Greger, H.; Proksch, H. Analysis, isolation and insecticidal activity of linear furanocoumarins and other coumarin derivatives from Peucedanum (Apiaceae: Apioide). J. Chem. Ecol. 1994, 20, 2035–2054. [Google Scholar] [CrossRef] [PubMed]
- Hadaček, F.; Hämälä, P.; Törnquist, K.; Vuorela, H. Calcium antagonistic activity of five coumarins and one 2-methylchromone from Peucedanum species. Planta Med. 1991, 57, A53–A54. [Google Scholar] [CrossRef]
- Liu, R.; Feng, L.; Sun, A.; Kong, L. Preparative isolation and purification of coumarins from Peucedanum praeruptorum Dunn. by high-speed counter-current chromatography. J. Chromatogr. A 2004, 1057, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Sun, Q.; Shi, Y.; Kong, L. Isolation and purification of coumarin compounds from the root of Peucedanum decursivum (Miq.) Maxim. by high-speed counter-current chromatography. J. Chromatogr. A 2005, 1076, 127–132. [Google Scholar] [CrossRef]
- Bartnik, M.; Głowniak, K.; Jakubowicz-Gil, J.; Pawlikowska-Pawlęga, B.; Gawron, A. Effect of peucedanin and bergapten (5-MOP), furanocoumarins isolated from Peucedanum tauricum Bieb. (Apiaceae) fruits, on apoptosis induction and heat-shock protein expression in HeLa cells. Herba Pol. 2006, 52, 71–78. [Google Scholar]
- Widelski, J.; Kukula-Koch, W.; Baj, T.; Kedzierski, B.; Fokialakis, N.; Magiatis, P.; Pozarowski, P.; Rolinski, J.; Graikou, K.; Chinou, I.; et al. Rare coumarins induce apoptosis, G1 cell block and reduce RNA content in HL60 cells. Open Chem. 2017, 15, 1–6. [Google Scholar] [CrossRef]
- Mann, J. Natural products in cancer chemotherapy: Past, present and future. Nature 2002, 2, 143–148. [Google Scholar] [CrossRef]
- Liang, T.G.; Yue, W.Y.; Li, Q.S. Chemopreventive effects of Peucedanum praeruptorum Dunn. and its major constituents on SGC7901 gastric cancer cells. Molecules 2010, 15, 8060–8071. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Xu, C.; Chewng, B.; Jin, L.; Li, J.; Gong, Y.; Lin, W.; Pan, Z.; Pan, C. Imperatorin acts as a cisplatin sensitizer via downregulating Mcl-1 expression in HCC chemotherapy. Tumour Biol. 2016, 37, 331–339. [Google Scholar] [CrossRef]
- Bartnik, M.; Sławińska-Brych, A.; Żurek, A.; Kandefer-Szerszeń, M.; Zdzisińska, B. 8-methoxypsoralen reduces AKT phosphorylation, induces intrinsic and extrinsic apoptotic pathways, and suppresses cell growth of SK-N-AS neuroblastoma and SW620 metastatic colon cancer cells. J. Ethnopharmacol. 2017, 207, 19–29. [Google Scholar] [CrossRef]
- Sumorek-Wiadro, J.; Zajac, A.; Maciejczyk, A.; Jakubowicz-Gil, J. Coumarins in anticancer therapy-for and against. Fitoterapia 2020, 142, 104492. [Google Scholar] [CrossRef] [PubMed]
- Widelski, J.; Luca, S.V.; Skiba, A.; Maciąg, M.; Budzyńska, B.; Marcourt, L.; Wolfender, J.-L.; Skalicka-Woźniak, K. Coumarins from Seseli devenyense Simonk: Isolation by liquid–liquid chromatography and potential anxiolytic activity using an in vivo Zebrafish Larvae Model. Int. J. Mol. Sci. 2021, 22, 1829. [Google Scholar] [CrossRef] [PubMed]
- Sziszkin, B.K. Flora USSR; Izdatielstwo Akademii Nauk: Moskwa, Russia, 1955; pp. 173–174. [Google Scholar]
- Grosgiejm, A.A. Umbelliferae-Scrophulariaceae. In Flora Kawkaza; Izdatielstwo; Nauka: Leningrad, Russia, 1967; Volume VII, pp. 112–115. [Google Scholar]
- Tutin, T.G.; Heywood, Y.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea. Rosaceae to Umbelliferae; University Press: Cambridge, UK, 1968; Volume 2, pp. 360–361. [Google Scholar]
- Bartnik, M. Phytochemical Investigations of Aerial Parts of Peucedanum tauricum Bieb. Ph.D. Thesis, Medical University of Lublin, Lublin, Poland, 2004; pp. 1–242. [Google Scholar]
- Tesso, H.; König, W.A.; Kubeczka, K.-H.; Bartnik, M.; Głowniak, K. Secondary metabolites of Peucedanum tauricum fruits. Phytochemistry 2005, 66, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Baranauskaite, D.I.; Nikonov, G.K.; Murav’eva, D.A. Peucedanin. Byull. Izobr. Tovarnyh Znakov 1963, 4, 158. [Google Scholar]
- Głowniak, K.; Bartnik, M.; Mroczek, T.; Zabża, A.; Wierzejska, A. Application of column chromatography and preparative TLC for isolation and purification of coumarins from Peucedanum tauricum Bieb. fruits. J. Planar Chromatogr. 2002, 15, 94–100. [Google Scholar] [CrossRef]
- Bartnik, M.; Głowniak, K. Furanocoumarins from Peucedanum tauricum Bieb. and their variability in the aerial parts of the plant during development. Acta Chromatogr. 2007, 18, 5–14. [Google Scholar]
- Bartnik, M.; Głowniak, K.; Maciąg, A.; Hajnos, M. Use of reversed-phase and normal-phase preparative thin-layer chromatography for isolation and purification of coumarins from Peucedanum tauricum Bieb. Leaves. J. Planar Chromatogr. 2005, 18, 244–248. [Google Scholar] [CrossRef]
- Bartnik, M.; Arczewska, M.; Hoser, A.A.; Mroczek, T.; Kamiński, D.M.; Głowniak, K.; Gagoś, M.; Woźniak, K. Single crystal X-ray diffraction, spectroscopic and mass spectrometric studies of furanocoumarin peucedanin. Nat. Prod. Commun. 2014, 9, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Detsi, A.; Kontogiorgis, C.; Hadjipavlou-Litina, D. Coumarin derivatives: An updated patent review (2015–2016). Expert. Opin. Ther. Pat. 2017, 27, 1201–1226. [Google Scholar] [CrossRef]
- Bartnik, M.; Arczewska, M.; Głowniak, K.; Gagoś, M. Peucedanin isolated from fruits of Peucedanum tauricum Bieb. (Apiaceae) and its molecular organization in lipid monolayers. In Proceedings of the 7th International Symposium on Chromatography of Natural Products Joined with 6th International Symposum of the International Society for the Development of Natural Products (7th ISCNP–6th ISDNP), Lublin, Poland, 14–17 June 2010; p. 9. [Google Scholar]
- Colombain, M.; Gold, V.; Muyard, F.; Girard, C.; Bévalot, F.; Richert, L. A Bioassay Using the Human Hepatoblastoma Cell Line HepG2 for Detecting Phototoxicity of Furocoumarins. Planta Med. 2001, 67, 644–646. [Google Scholar] [CrossRef]
- Widelski, J.; Luca, S.V.; Skiba, A.; Chinou, I.; Marcourt, L.; Wolfender, J.-L.; Skalicka-Wozniak, K. Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians Tamamsch. Molecules 2018, 23, 1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.M.; Wu, T.H.; Chen, S.F.; Chung, J.G. Effect of 5-methoxypsoralen (5-MOP) on cell apoptosis and cell cycle in human hepatocellular carcinoma cell line. Toxicol. In Vitro 2003, 17, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, J.A.; Diaz, L.; Garcia-Bernal, D.; Blanquer, M.; Ortuno, E.; Correal, A.; Moraleda, J.M. Furanocoumarins: Biomolecules of Therapeutic Interest. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 5; pp. 145–195. [Google Scholar] [CrossRef]
- McAlpine, J.B.; Friesen, J.B.; Pauli, G.F. Separation of natural products by counter-current chromatography. Methods Mol. Biol. 2012, 864, 221–254. [Google Scholar] [PubMed]
- Michel, T.; Destandau, E.; Elfakir, C. New advances in countercurrent chromatography and centrifugal partition chromatography: Focus on coupling strategy. Anal. Bioanal. Chem. 2014, 406, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Bartnik, M.; Mazurek, A.K. Isolation of methoxyfuranocoumarins from Ammi majus by centrifugal partition chromatography. J. Chromatogr. Sci. 2016, 54, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Hu, Y.; Li, N.; Zhao, D.; Wang, Y.; Liu, X. Isolation of scopoletin from Physochlaina infundibularis Kuang by high- speed counter-current chromatography. Huaxue Yanjiu 2009, 20, 101–103. [Google Scholar]
- Liu, R.; Sun, Q.; Sun, A.; Cui, J. Isolation and purification of coumarin compounds from Cortex fraxinus by high-speed counter-current chromatography. J. Chromatogr. A 2005, 1072, 195–199. [Google Scholar] [CrossRef]
- Liu, R.; Li, A.; Sun, A. Preparative isolation and purification of coumarins from Angelica dahurica (Fisch. ex Hoffm) Benth, et Hook. (Chinese traditional medicinal herb) by high-speed counter-current chromatography. J. Chromatogr. A 2004, 1052, 223–227. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Zagaja, M.; Głowniak, K.; Łuszczki, J.J. Purification and anticonvulsant activity of xanthotoxin (8-methoxypsoralen). Cent. Eur. J. Biol. 2014, 9, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-L.; Wang, X.-Y.; Zhang, L.-L.; Fang, M.-J.; Wu, Y.-L.; Wu, Z.; Qiu, Y.-K. Two-dimensional countercurrent chromatography × high performance liquid chromatography with heart-cutting and stop-to-go techniques for preparative isolation of coumarin derivatives from Peucedanum praeruptorum Dunn. J. Chromatogr. A 2014, 1374, 156–163. [Google Scholar] [CrossRef]
- Wang, D.; Chen, L.-J.; Liu, J.-L.; Wang, X.-Y.; Wu, Y.-L.; Fang, M.-J.; Wu, Z.; Qiu, Y.-K. On-line two-dimensional countercurrent chromatography x high performance liquid chromatography with a novel fragmentary dilution and turbulent mixing interface for preparation of coumarins from Cnidium monnieri. J. Chromatogr. A 2015, 1406, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.-J.-S.; Li, G.-K.; Xiao, X.-H. Microwave-assisted extraction coupled with counter-current chromatography and preparative liquid chromatography for the preparation of six furocoumarins from Angelica Pubescentis Radix. Sep. Purif. Technol. 2015, 141, 143–149. [Google Scholar] [CrossRef]
- Matsuda, K.; Matsuda, S.; Ito, Y. Toroidal coil counter-current chromatography: Achievement of high resolution by optimizing flow rate, rotation speed, sample volume and tube length. J. Chromatogr. A 1998, 808, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.L.; Zhang, Q.W.; Li, Y.P.; Yan, R.; Wang, Y.T. Enantioseparation and absolute configuration determination of angular-type pyranocoumarins from peucedani radix using enzymatic hydrolysis and chiral HPLC-MS/MS analysis. Molecules 2012, 17, 4236–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Feng, C.; Kong, D.; Shi, X.; Cui, Y.; Liu, M.; Wang, Q.; Wang, Y.; Zhang, L. Simultaneous and sensitive determination of xanthotoxin, psoralen, isopimpinellin and bergapten in rat plasma by liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. B 2010, 878, 525–582. [Google Scholar] [CrossRef] [PubMed]
- Strohl, W.R. The role of natural products in a modern drug discovery program. Drug Discov. Today 2000, 5, 39–41. [Google Scholar] [CrossRef]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol. 2015, 4, 27–30. [Google Scholar]
- Ahmed, S.; Khan, H.; Aschner, M.; Mirzae, H.; Akkol, E.K.; Capasso, R. Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. Int. J. Mol. Sci. 2020, 21, 5622. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef] [Green Version]
- Walasek, M.; Grzegorczyk, A.; Malm, A.; Skalicka-Woźniak, K. Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chem. 2015, 186, 133–138. [Google Scholar] [CrossRef]
- Rajtar, B.; Skalicka-Woźniak, K.; Świątek, Ł.; Stec, A.; Boguszewska, A.; Polz-Dacewicz, M. Antiviral effect of compounds derived from Angelica archangelica L. on Herpes simplex virus-1 and Coxsackie virus B3 infections. Food Chem. Toxicol. 2017, 109, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Chunyan, C.; Bo, S.; Ping, L.; Jingmei, L.; Ito, Y. Isolation and purification of psoralen and bergapten from Ficus carica L. leaves by high-speed counter-current chromatography. J. Liquid Chromatogr. Rel. Technol. 2009, 32, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.-B.; Chen, F. Preparative isolation and purification of bergapten and imperatorin from the medical plant Cnidium monnieri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase. J. Chromatogr. A 2004, 1061, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-B.; Chen, F. Simultaneous separation and purification of five bioactive coumarins from the Chinese medicinal plant Cnidium monnieri by high-speed counter-current chromatography. J. Sep. Sci. 2005, 28, 268–272. [Google Scholar] [CrossRef]
No | nHp:E:M:W (v/v/v/v) | Kasc | Kdesc | Kα | ||||||
---|---|---|---|---|---|---|---|---|---|---|
5MOP | 8MP | P | 5MOP | 8MP | P | 5MOP/8MP | 5MOP/P | 8MP/P | ||
I | 5:6:5:6 | 0.5038 | 0.1593 | 0.1166 | 1.9850 | 6.2773 | 8.5730 | 3.1626 | 4.3188 | 1.3662 |
II | 1:1:1:1 | 0.4877 | 0.1564 | 0.1129 | 2.0505 | 6.3951 | 8.8579 | 3.1183 | 4.3198 | 1.3853 |
III | 6:5:6:5 | 2.4952 | 0.8678 | 0.6060 | 0.4008 | 1.1524 | 1.6502 | 2.8753 | 4.1175 | 1.4320 |
IV | 3:2:3:2 | 2.4311 | 0.9086 | 0.6193 | 0.4113 | 1.1006 | 1.6148 | 2.6757 | 3.9256 | 1.4671 |
V | 2:1:2:1 | 3.9906 | 1.5123 | 0.9990 | 0.2506 | 0.6612 | 1.0010 | 2.6388 | 3.9946 | 1.5138 |
VI | 5:2:5:2 | 2.9636 | 1.1363 | 0.7335 | 0.3374 | 0.8800 | 1.3634 | 2.6081 | 4.0404 | 1.5493 |
No | nHx:E:M:W (v/v/v/v) | Kasc | Kdesc | Kα | ||||||
5MOP | 8MP | P | 5MOP | 8MP | P | 5MOP/8MP | 5MOP/P | 8MP/P | ||
1 | 10:6:10:6 | 3.0090 | 0.7702 | 0.5710 | 0.3323 | 1.2983 | 1.7513 | 3.9068 | 5.2697 | 1.3489 |
2 | 10:6:10:7 | 1.9471 | 0.5318 | 0.3981 | 0.5136 | 1.8803 | 2.5118 | 3.6613 | 4.8910 | 1.3359 |
3 | 10:7:10:6 | 2.3341 | 0.6381 | 0.4843 | 0.4284 | 1.5670 | 2.0650 | 3.6579 | 4.8195 | 1.3176 |
4 | 10:7:10:7 | 1.6909 | 0.5205 | 0.3300 | 0.5914 | 1.9210 | 3.0307 | 3.2486 | 5.1239 | 1.5773 |
5 | 10:7:10:8 | 0.7546 | 0.1926 | 0.1285 | 1.3252 | 5.1925 | 7.7810 | 3.9180 | 5.8724 | 1.4988 |
6 | 10:8:10:7 | 1.0017 | 0.9887 | 0.8131 | 0.9983 | 1.0114 | 1.2298 | 1.0132 | 1.2320 | 1.2160 |
7 | 10:8:10:8 | 0.9815 | 0.9642 | 0.9718 | 1.0188 | 1.0371 | 1.0289 | 1.0180 | 1.0100 | 1.0079 |
8 | 10:8:10:9 | 0.8882 | 0.2913 | 0.2401 | 1.1258 | 3.4326 | 4.1641 | 3.0491 | 3.6993 | 1.2131 |
9 | 10:9:10:8 | 1.0064 | 0.3794 | 0.2961 | 0.9936 | 2.6355 | 3.3767 | 2.6526 | 3.3989 | 1.3038 |
10 | 10:9:10:9 | 0.6621 | 0.2204 | 0.2010 | 1.5104 | 4.5365 | 4.9748 | 3.0041 | 3.2940 | 1.0965 |
11 | 10:10:10:10 | 0.5177 | 0.1475 | 0.1719 | 1.9315 | 6.7813 | 5.8196 | 3.5098 | 3.0116 | 1.1654 |
Cmp | tR [min] ± SD n = 6 | DAD/UV in MeOH [nm] | Calibration Equation y = ax + b (n = 3) a ± SD; b ± SD | Range * 6–220 μg/mL | ESI-MS [H+] Fragmentation m/z (Relative Abundance) | |
---|---|---|---|---|---|---|
LOD | LOQ | |||||
5MOP | 8.542 ± 0.02 TIC; 9.082 | 222, 235 sh, 249, 254 sh, 259, 270, 278 sh, 310 | y = 34573x + 49.81 a ± 42.13; b ± 4.06 R2 = 0.9999 | 0.45 | 1.35 | C12H8O4, MW 216.0901 ESI-MS: m/z 217.0974 (100, [M + H]+), 189.0254 (10.4), 173.5794 (4.64) |
8MP | 18.825 ± 0.09 TIC; 20.254 | 223, 237 sh, 258, 285 sh, 303 | y = 61018x + 69.83 a ± 12.08; b ± 1.19 R2 = 0.9998 | 0.84 | 2.52 | C16H16O5, MW 288.0995 ESI-MS: m/z 289.1068 (100, [M + H]+); 259.1153 (61.41), 229.0744 (8.31), 189.0313 (0.19) |
P | 19.469 ± 0.06 TIC; 20.876 | 208 sh, 216, 230 sh, 256, 277 sh, 296, 341 | y = 46644x + 46.93 a ± 0.18; b ± 7.77 R2 = 0.9998 | 0.79 | 2.37 | C15H14O4 MW, 258.0879 ESI-MS: m/z 259.0952 (100, [M + H]+), 229.0747 (14.94), 189.0314 (0.35) |
Analytical Experiment | Semi-Preparative Experiment | ||||||
---|---|---|---|---|---|---|---|
CPC Fraction (vial No) * | Purity [%] | CPC Fraction (Vial No) * | Purity [%] | ||||
P | 8MP | 5MOP | P | 8MP | 5MOP | ||
11 | 95.56 | 10 | 94.85 | ||||
12 | 94.78 | ||||||
14 | 95.90 | 12 | 96.97 | ||||
15 | 97.24 | ||||||
16 | 98.14 | ||||||
32 | 95.19 | 21 | 98.90 | ||||
33 | 100 | 22 | 100 | ||||
34 | 100 | 23 | 100 | ||||
35 | 100 | ||||||
Time [min] | 75–95 | 100–125 | 290–335 | Time [min] | 65–80 | 85–100 | 180–210 |
Cmp | mg/g Dry wt. of Plant Material | mg/g of CPE | mg in 150 mg of CPE | CPC Semi-Prep Single Run Isolation Efficiency [%] | |
---|---|---|---|---|---|
Calculated | Isolated | ||||
5MOP | 1.12 ± 0.09 | 8.94 ± 0.12 | 1.34 ± 0.45 | 1.20 ± 0.25 | 89.55 |
8MP | 8.75 ± 0.37 | 69.83 ± 0.42 | 10.48 ± 0.09 | 8.60 ± 0.43 | 82.06 |
P | 12.44 ± 0.72 | 99.27 ± 0.25 | 14.89 ± 0.76 | 11.80 ± 0.66 | 79.25 |
5MOP + 8MP + P | 22.31 ± 0.40 | 178.04 ± 0.68 | 26.71 ± 0.43 | 21.60 ± 0.32 | 80.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartnik, M. Efficient Separation of the Methoxyfuranocoumarins Peucedanin, 8-Methoxypeucedanin, and Bergapten by Centrifugal Partition Chromatography (CPC). Molecules 2023, 28, 1923. https://doi.org/10.3390/molecules28041923
Bartnik M. Efficient Separation of the Methoxyfuranocoumarins Peucedanin, 8-Methoxypeucedanin, and Bergapten by Centrifugal Partition Chromatography (CPC). Molecules. 2023; 28(4):1923. https://doi.org/10.3390/molecules28041923
Chicago/Turabian StyleBartnik, Magdalena. 2023. "Efficient Separation of the Methoxyfuranocoumarins Peucedanin, 8-Methoxypeucedanin, and Bergapten by Centrifugal Partition Chromatography (CPC)" Molecules 28, no. 4: 1923. https://doi.org/10.3390/molecules28041923
APA StyleBartnik, M. (2023). Efficient Separation of the Methoxyfuranocoumarins Peucedanin, 8-Methoxypeucedanin, and Bergapten by Centrifugal Partition Chromatography (CPC). Molecules, 28(4), 1923. https://doi.org/10.3390/molecules28041923