CeO2-Supported TiO2−Pt Nanorod Composites as Efficient Catalysts for CO Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Catalytic Performance
3. Materials and Methods
3.1. Material Preparation
3.2. Characterization
3.3. Catalytic Evaluations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, L.N.; Li, X.N.; He, S.G. Recent research progress in the study of catalytic CO oxidation by gas phase atomic clusters. Sci. China Mater. 2019, 63, 892–902. [Google Scholar] [CrossRef]
- Soliman, N.K. Factors affecting CO oxidation reaction over nanosized materials: A review. J. Mater. Res. Technol. 2019, 8, 2395–2407. [Google Scholar] [CrossRef]
- Langmuir, I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2+ O2 = 2H2O. Trans. Faraday Soc. 1922, 17, 621–654. [Google Scholar] [CrossRef]
- Camposeco, R.; Torres, A.E.; Zanella, R. Influence of the Preparation Method of Au, Pd, Pt, and Rh/TiO2 Nanostructures and Their Catalytic Activity on the CO Oxidation at Low Temperature. Top. Catal. 2022, 65, 798–816. [Google Scholar] [CrossRef]
- Lin, J.; Wang, X.; Zhang, T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 2016, 37, 1805–1813. [Google Scholar] [CrossRef]
- Feng, C.; Liu, X.; Zhu, T.; Tian, M. Catalytic oxidation of CO on noble metal-based catalysts. Environ. Sci. Pollut. Res. Int. 2021, 28, 24847–24871. [Google Scholar] [CrossRef]
- Therrien, A.J.; Hensley, A.J.R.; Marcinkowski, M.D.; Zhang, R.; Lucci, F.R.; Coughlin, B.; Schilling, A.C.; McEwen, J.S.; Sykes, E.C.H. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 2018, 1, 192–198. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Wang, X.; Zhang, Z.; Zhao, J.; Yan, J.; Du, Y.; Zhang, H.; Ma, D. Complete CO Oxidation by O2 and H2O over Pt-CeO2-δ/MgO Following Langmuir-Hinshelwood and Mars-van Krevelen Mechanisms, Respectively. ACS Catal. 2021, 11, 11820–11830. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Y.; Li, L.; Liu, J.; Pan, X.; Liu, W.; Wei, F.; Cui, Y.; Qiao, B.; Sun, X.; et al. Identification of Active Sites on High-Performance Pt/Al2O3 Catalyst for Cryogenic CO Oxidation. ACS Catal. 2020, 10, 8815–8824. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Liu, S.; Li, L.; Yu, N.; Fan, Y.; Chen, Z.; Kuai, L.; Geng, B. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res. 2021, 14, 4841–4847. [Google Scholar] [CrossRef]
- Song, H.C.; Han, G.; Reddy, K.P.; Choi, M.; Ryoo, R.; Park, J.Y. Synergistic interactions between water and the metal/oxide interface in CO oxidation on Pt/CeO2 model catalysts. Catal. Today 2022, in press. [Google Scholar] [CrossRef]
- Dey, S.; Dhal, G.C.; Mohan, D.; Prasad, R. Advances in transition metal oxide catalysts for carbon monoxide oxidation: A review. Adv. Compos. Hybrid Mater. 2019, 2, 626–656. [Google Scholar] [CrossRef]
- Bai, Y.; Huang, H.; Wang, C.; Long, R.; Xiong, Y. Engineering the surface charge states of nanostructures for enhanced catalytic performance. Mater. Chem. Front. 2017, 1, 1951–1964. [Google Scholar] [CrossRef]
- Siakavelas, G.I.; Charisiou, N.D.; AlKhoori, A.; AlKhoori, S.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Yentekakis, I.V.; Polychronopoulou, K.; Goula, M.A. Highly selective and stable Ni/La-M (M = Sm, Pr, and Mg)-CeO2 catalysts for CO2 methanation. J. CO2 Util. 2021, 51, 101618. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Xu, X.; Xi, R.; Liu, Y.; Fang, X.; Wang, X. Tailoring La2Ce2O7 catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods. Catal. Today 2020, 355, 518–528. [Google Scholar] [CrossRef]
- Shutilov, A.A.; Zenkovets, G.A.; Kryukova, G.N.; Gavrilov, V.Y.; Paukshtis, E.A.; Boronin, A.I.; Koshcheev, S.V.; Tsybulya, S.V. Effect of the microstructure of Pt/CeO2-TiO2 catalysts on their catalytic properties in CO oxidation. Kinet. Catal. 2011, 49, 271–278. [Google Scholar] [CrossRef]
- Cai, J.; Yu, Z.; Fan, X.; Li, J. Effect of TiO2 Calcination Pretreatment on the Performance of Pt/TiO2 Catalyst for CO Oxidation. Molecules 2022, 27, 3875. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Kim, A.; Kim, Y.K. Observation of temperature-dependent kinetics for catalytic CO oxidation over TiO2-supported Pt catalysts. Chem. Phys. Lett. 2017, 685, 282–287. [Google Scholar] [CrossRef]
- Yang, W.T.; Lin, C.J.; Montini, T.; Fornasiero, P.; Ya, S.; Liou, S.Y.H. High-performance and long-term stability of mesoporous Cu-doped TiO(2) microsphere for catalytic CO oxidation. J. Hazard Mater. 2021, 403, 123630. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Sun, Y.; Zhu, T.; Liu, Z. Pt-Au/MOx-CeO(2) (M = Mn, Fe, Ti) Catalysts for the Co-Oxidation of CO and H(2) at Room Temperature. Molecules 2017, 22, 351. [Google Scholar] [CrossRef] [PubMed]
- Peza-Ledesma, C.L.; Escamilla-Perea, L.; Nava, R.; Pawelec, B.; Fierro, J.L.G. Supported gold catalysts in SBA-15 modified with TiO2 for oxidation of carbon monoxide. Appl. Catal. A Gen. 2010, 375, 37–48. [Google Scholar] [CrossRef]
- Deng, Y.; Tian, P.; Liu, S.; He, H.; Wang, Y.; Ouyang, L.; Yuan, S. Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO2 nanorod in CO oxidation. J Hazard Mater 2022, 426, 127793. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wan, J.; Lin, J.; Zhou, R. Comparative study of three-way catalytic performance over Pd/CeO2-ZrO2-Al2O3 and Pd/La-Al2O3 catalysts: New insights into microstructure and thermal stability. Mol. Catal. 2022, 526, 112361. [Google Scholar] [CrossRef]
- Wang, C.; Ren, D.; Du, J.; Qin, Q.; Zhang, A.; Chen, L.; Cui, H.; Chen, J.; Zhao, Y. In Situ Investigations on the Facile Synthesis and Catalytic Performance of CeO2−Pt/Al2O3 Catalyst. Catalysts 2020, 10, 143. [Google Scholar] [CrossRef]
- Konsolakis, M.; Lykaki, M. Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review. Catalysts 2021, 11, 452. [Google Scholar] [CrossRef]
- Cam, T.S.; Omarov, S.O.; Chebanenko, M.I.; Izotova, S.G.; Popkov, V.I. Recent progress in the synthesis of CeO2-based nanocatalysts towards efficient oxidation of CO. J. Sci. Adv. Mater. Devices 2022, 7, 100399. [Google Scholar] [CrossRef]
- Trovarelli, A. Catalytic Properties of Ceria and CeO2-Containing Materials. Catal. Rev. 1996, 4, 439–520. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, X.; Sun, X.; Peng, Q.; Li, Y. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, D.; Shi, L.; Fang, J. Template-Free Synthesis, Controlled Conversion, and CO Oxidation Properties of CeO2 Nanorods, Nanotubes, Nanowires, and Nanocubes. Eur. J. Inorg. Chem. 2008, 15, 2429–2436. [Google Scholar]
- Li, Z.; Zhang, X.; Shi, Q.; Gong, X.; Xu, H.; Li, G. Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation. Nanoscale Adv 2021, 3, 7002–7006. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Ha, H.; Kim, J.; Nam, E.; Yoo, M.; Jeong, B.; Kim, H.Y.; An, K. Influence of the Pt size and CeO2 morphology at the Pt-CeO2 interface in CO oxidation. J. Mater. Chem. A 2021, 9, 26381–26390. [Google Scholar] [CrossRef]
- McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and Dealloyed Materials. Annu. Rev. Mater. Res. 2016, 46, 263–286. [Google Scholar] [CrossRef]
- Erlebacher, J. An Atomistic Description of Dealloying. J. Electrochem. Soc. 2004, 151, C614. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Shi, W.; Wei, C.; Song, X.; Yang, S.; Sun, Z. Baize-like CeO2 and NiO/CeO2 nanorod catalysts prepared by dealloying for CO oxidation. Nanotechnology 2017, 28, 045602. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, X.; Zhang, X.J.; Zhang, W.S.; Wu, Z.F.; Wang, H.Y.; Han, D.X.; Niu, L. Enhanced photocatalytic CO2 reduction by constructing an In2O3-CuO heterojunction with CuO as a cocatalyst. Catal. Sci. Technol. 2021, 11, 2713–2717. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Feng, W.; Fang, X.; Liu, J. Nanoporous CeO2-Ag catalysts prepared by etching the CeO2/CuO/Ag2O mixed oxides for CO oxidation. Corros. Sci. 2018, 134, 140–148. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Perdjon, M.; Oh, R.; Zhao, W.; Huang, X.; Liu, S. Investigations of supported Au-Pd nanoparticles on synthesized CeO2 with different morphologies and application in solvent-free benzyl alcohol oxidation. Appl. Surf. Sci. 2020, 505, 144473. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, Y.; Tian, C.; Wang, L.; Zhou, W.; Dong, Y.; Han, Q.; Liu, Y.; Yuan, F.; Fu, H. Synergistic effect of Mo2N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt–Mo2N/SBA-15. Catal. Sci. Technol. 2016, 6, 2403–2412. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Zhang, J.; Pan, S.; Bian, C.; Wang, L.; Chen, F.; Meng, X.; Zheng, X.; Gao, X.; et al. Superior Performance in Catalytic Combustion of Toluene over KZSM-5 Zeolite Supported Platinum Catalyst. Catal. Lett. 2014, 144, 1851–1859. [Google Scholar] [CrossRef]
- Xiao, Z.; Xia, F.; Xu, L.; Wang, X.; Meng, J.; Wang, H.; Zhang, X.; Geng, L.; Wu, J.; Mai, L. Suppressing the Jahn–Teller Effect in Mn-Based Layered Oxide Cathode toward Long-Life Potassium-Ion Batteries. Adv. Funct. Mater. 2021, 32, 2108244. [Google Scholar] [CrossRef]
- Zhang, C.; He, H.; Tanaka, K.-i. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl. Catal. B: Environ. 2006, 65, 37–43. [Google Scholar] [CrossRef]
- Sun, B.; Xu, D.; Wang, Z.; Zhan, Y.; Zhang, K. Interfacial structure design for triboelectric nanogenerators. Battery Energy 2022, 1, 20220001. [Google Scholar] [CrossRef]
- Wei, S.; Fu, X.P.; Wang, W.W.; Jin, Z.; Song, Q.S.; Jia, C.J. Au/TiO2 Catalysts for CO Oxidation: Effect of Gold State to Reactivity. J. Phys. Chem. C 2018, 122, 4928–4936. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Christodoulakis, A.; Kondarides, D.I.; Boghosian, S. Particle size effects on the reducibility of titanium dioxide and its relation to the water–gas shift activity of Pt/TiO2 catalysts. J. Catal. 2006, 240, 114–125. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, C.; Zhao, Z.J.; Gong, J. Kinetically rate-determining step modulation by metal—Support interactions for CO oxidation on Pt/CeO2. Sci. China Chem. 2022, 65, 2038–2044. [Google Scholar] [CrossRef]
- Zong, C.; Wang, C.; Hu, L.; Zhang, R.; Jiang, P.; Chen, J.; Wei, L.; Chen, Q. The Enhancement of the Catalytic Oxidation of CO on Ir/CeO(2) Nanojunctions. Inorg. Chem. 2019, 58, 14238–14243. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, C.; Wang, H.; Yan, H.; Lu, J. Revisiting the Au Particle Size Effect on TiO2-Coated Au/TiO2 Catalysts in CO Oxidation Reaction. J. Phys. Chem. C 2016, 120, 9174–9183. [Google Scholar] [CrossRef]
- Zhen, J.; Wang, X.; Liu, D.; Wang, Z.; Li, J.; Wang, F.; Wang, Y.; Zhang, H. Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation. Nano Res. 2015, 8, 1944–1955. [Google Scholar] [CrossRef]
Sample | Preparation Method | Test Condition | T50 (°C) | T99 (°C) | Reference |
---|---|---|---|---|---|
Pd/Pr-CeO2-5% | Hydrothermal synthesis | 1% CO, 99% dry air | / | 160 | [22] |
Pt/CeO2 | Electrostatic Adsorption | 1% CO, 20% O2, He balance | 140 | / | [45] |
Ir/CeO2 | wet chemical reduction | 1% CO | / | 110 | [46] |
Au/TiO2-S | Deposition-precipation method | 2.0% CO, 8% O2, He balance | / | 20 | [47] |
Co3O4@CeO2 | Hydrothermal method | 1% CO, 99% air | / | 160 | [48] |
(0.5TiO2−Pt)/CeO2 | Dealloying and calcination | 1% CO, 10% O2, 89% N2 | 55 | 90 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yao, R.; Zhang, R.; Ma, H.; Gao, J.; Liang, M.; Zhao, Y.; Miao, Z. CeO2-Supported TiO2−Pt Nanorod Composites as Efficient Catalysts for CO Oxidation. Molecules 2023, 28, 1867. https://doi.org/10.3390/molecules28041867
Wang H, Yao R, Zhang R, Ma H, Gao J, Liang M, Zhao Y, Miao Z. CeO2-Supported TiO2−Pt Nanorod Composites as Efficient Catalysts for CO Oxidation. Molecules. 2023; 28(4):1867. https://doi.org/10.3390/molecules28041867
Chicago/Turabian StyleWang, Haiyang, Ruijuan Yao, Ruiyin Zhang, Hao Ma, Jianjing Gao, Miaomiao Liang, Yuzhen Zhao, and Zongcheng Miao. 2023. "CeO2-Supported TiO2−Pt Nanorod Composites as Efficient Catalysts for CO Oxidation" Molecules 28, no. 4: 1867. https://doi.org/10.3390/molecules28041867
APA StyleWang, H., Yao, R., Zhang, R., Ma, H., Gao, J., Liang, M., Zhao, Y., & Miao, Z. (2023). CeO2-Supported TiO2−Pt Nanorod Composites as Efficient Catalysts for CO Oxidation. Molecules, 28(4), 1867. https://doi.org/10.3390/molecules28041867