Stoichiometric Alkane and Aldehyde Hydroxylation Reactions Mediated by In Situ Generated Iron(III)-Iodosylbenzene Adduct
Abstract
:1. Introduction
2. Results and Discussions
3. Experimental
3.1. Materials and Methods
3.2. Synthesis of [FeII(4-MePBI)3](CF3SO3)2 (3)
3.3. Generation of Fe(III)-Iodosylbenzene Adducts
3.4. Reactivity Studies and Product Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Usharani, D.; Janardanan, D.; Li, C.; Shaik, S. A Theory for Bioinorganic Chemical Reactivity of Oxometal Complexes and Analogous Oxidants: The Exchange and Orbital-Selection Rules. Acc. Chem. Res. 2013, 46, 471–482. [Google Scholar] [CrossRef]
- Nam, W.; Lee, Y.-M.; Fukuzumi, S. Tuning Reactivity and Mechanism in Oxidation Reactions by Mononuclear Nonheme Iron(IV)-Oxo Complexes. Acc. Chem. Res. 2014, 47, 1146–1154. [Google Scholar] [CrossRef]
- Oloo, W.N.; Que, L., Jr. Bioinspired Nonheme Iron Catalysts for C–H and C=C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants. Acc. Chem. Res. 2015, 48, 2612–2621. [Google Scholar] [CrossRef]
- Groves, J.T.; Haushalter, R.C.; Nakamura, M.; Nemo, T.E.; Evans, B.J. High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. J. Am. Chem. Soc. 1981, 103, 2884–2886. [Google Scholar] [CrossRef]
- McDonald, A.R.; Que, L., Jr. High-valent nonheme iron-oxo complexes: Synthesis, structure, and spectroscopy. Coord. Chem. Rev. 2013, 257, 414–428. [Google Scholar] [CrossRef]
- Guo, M.; Corona, T.; Ray, K.; Nam, W. Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS Cent. Sci. 2019, 5, 13–28. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Hong, S.; Morimoto, Y.; Shin, W.; Fukuzumi, S.; Nam, W. Dioxygen Activation by a Non-Heme Iron(II) Complex: Formation of an Iron(IV)-Oxo Complex via C-H Activation by a Putative Iron(III)-Superoxo Species. J. Am. Chem. Soc. 2010, 132, 10668–10670. [Google Scholar] [CrossRef]
- Mukherjee, A.; Cranswick, M.A.; Chakrabarti, M.; Paine, T.K.; Fujisawa, K.; Münck, E.; Que, L., Jr. Oxygen Activation at Mononuclear Nonheme Iron Centers: A Superoxo Perspective. Inorg. Chem. 2010, 49, 3618–3628. [Google Scholar] [CrossRef] [Green Version]
- Kaizer, J.; Klinker, E.J.; Oh, N.Y.; Rohde, J.-U.; Song, W.J.; Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que, L., Jr. Nonheme FeIVO complexes that can oxidize the C-H bonds of cyclohexane at room temperature. J. Am. Chem. Soc. 2004, 126, 472–473. [Google Scholar] [CrossRef]
- Lakk-Bogath, D.; Csonka, R.; Speier, G.; Reglier, M.; Simaan, A.J.; Naubron, J.V.; Giorgi, M.; Lazar, K.; Kaizer, J. Formation, Characterization, and Reactivity of a Nonheme Oxoiron(IV) Complex Derived from the Chiral Pentadentate Ligand asN4Py. Inorg. Chem. 2016, 55, 10090–10093. [Google Scholar] [CrossRef]
- Turcas, R.; Lakk-Bogáth, D.; Speier, G.; Kaizer, J. Steric control and the mechanism of benzaldehyde oxidation by polypyridyl oxoiron(iv) complexes: Aromatic versus benzylic hydroxylation of aromatic aldehydes. Dalton Trans. 2018, 47, 3248–3252. [Google Scholar] [CrossRef]
- Turcas, R.; Kripli, B.; Attia, A.A.A.; Lakk-Bogáth, D.; Speier, G.; Giorgi, M.; Silaghi-Dumitrescu, R.; Kaizer, J. Catalytic and stoichiometric flavanone oxidation mediated by nonheme oxoiron(IV) complexes as flavone synthase mimics: Kinetic, mechanistic and computational studies. Dalton Trans. 2018, 47, 14416–14420. [Google Scholar] [CrossRef]
- Hong, S.; Wang, B.; Seo, M.S.; Lee, Y.M.; Kim, M.J.; Kim, H.R.; Ogura, T.; Garcia-Serres, R.; Clémancey, M.; Latour, J.M.; et al. Highly Reactive Nonheme Iron(III) Iodosylarene Complexes in Alkane Hydroxylation and Sulfoxidation Reactions. Angew. Chem. Int. Ed. 2014, 53, 6388–6392. [Google Scholar] [CrossRef]
- Cong, Z.; Yanagisawa, S.; Kurahashi, T.; Ogura, T.; Nakashima, S.; Fujii, H. Synthesis, Characterization, and Reactivity of Hypochloritoiron(III) Porphyrin Complexes. J. Am. Chem. Soc. 2012, 134, 20617–20620. [Google Scholar] [CrossRef]
- Wang, C.; Kurahashi, T.; Inomata, K.; Hada, M.; Fujii, H. Oxygen-Atom Transfer from Iodosylarene Adducts of a Manganese(IV) Salen Complex: Effect of Arenes and Anions on I(III) of the Coordinated Iodosylarene. Inorg. Chem. 2013, 52, 9557–9566. [Google Scholar] [CrossRef]
- Lennartson, A.; McKenzie, C.J. An Iron(III) Iodosylbenzene Complex: A Masked Non-Heme FeVO. Angew. Chem. Int. Ed. 2012, 124, 6871–6874. [Google Scholar] [CrossRef]
- Guo, M.; Dong, H.; Li, J.; Cheng, B.; Huang, Y.-Q.; Feng, Y.-Q.; Lei, A. Spectroscopic Observation of Iodosylarene Metalloporphyrin Adducts and Manganese(V)-Oxo Porphyrin Species in a Cytochrome P450 Analogue. Nat. Commun. 2012, 3, 1190. [Google Scholar] [CrossRef] [Green Version]
- Pap, J.S.; Draksharapu, A.; Giorgi, M.; Browne, W.R.; Kaizer, J.; Speier, G. Stabilisation of μ-peroxido-bridged Fe(iii) intermediates with non-symmetric bidentate N-donor ligands. Chem. Commun. 2014, 50, 1326–1329. [Google Scholar] [CrossRef] [Green Version]
- Lakk-Bogáth, D.; Szávuly, M.; Török, P.; Kaizer, J. Catalytic and Stoichiometric Baeyer-Villiger Oxidation Mediated by Nonheme Peroxi-Diiron(III), Acylperoxo, and Iodosylbenzene Iron(III) Intermediates. Molecules 2022, 27, 2814. [Google Scholar] [CrossRef]
- Kryatov, S.W.; Taktak, S.; Korendovych, I.V.; Rybak-Akimova, E.V.; Kaizer, J.; Torelli, S.; Shan, X.P.; Mandal, S.; Mac-Murdo, V.L.; Mairata i Payeras, A.; et al. Steric Control of Activation Barriers and O2-Adduct Formation. Inorg. Chem. 2005, 44, 85–89. [Google Scholar] [CrossRef]
- Fiedler, A.T.; Shan, X.; Mehn, M.P.; Kaizer, J.; Torelli, S.; Frisch, J.R.; Kodera, M.; Que, L., Jr. Spectroscopic and Computational Studies of (μ-Oxo)(μ-1,2-peroxo)diiron(III) Complexes of Relevance to Nonheme Diiron Oxygenase Intermediate. J. Phys. Chem. A 2008, 112, 13037–13044. [Google Scholar] [CrossRef] [Green Version]
- Cranswick, M.A.; Meier, K.K.; Shan, X.; Stubna, A.; Kaizer, J.; Mehn, M.P.; Münck, E.; Que, L., Jr. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: Implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes. Inorg. Chem. 2012, 51, 10417–10426. [Google Scholar] [CrossRef] [Green Version]
- Pap, J.S.; Cranswick, M.A.; Balogh-Hergovich, É.; Baráth, G.; Giorgi, M.; Rohde, G.T.; Kaizer, J.; Speier, G.; Que, L., Jr. An Iron(II)(1,3-bis(2′-pyridylimino)isoindoline) Complex as a Catalyst for Substrate Oxidation with H2O2. Evidence for a Transient Peroxodiiron(III) Species. Eur. J. Inorg. Chem. 2013, 2013, 3858–3866. [Google Scholar] [CrossRef] [Green Version]
- Oloo, W.N.; Szávuly, M.; Kaizer, J.; Que, L., Jr. Nonheme Diiron Oxygenase Mimic That Generates a Diferric-Peroxo Intermediate Capable of Catalytic Olefin Epoxidation and Alkane Hydroxylation Including Cyclohexane. Inorg. Chem. 2022, 61, 37–41. [Google Scholar] [CrossRef]
- Kripli, B.; Csendes, V.F.; Török, P.; Speier, G.; Kaizer, J. Stoichiometric Aldehyde Deformylation Mediated by nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase. Chem. Eur. J. 2019, 25, 14290–14294. [Google Scholar] [CrossRef]
- Kripli, B.; Szávuly, M.; Csendes, F.V.; Kaizer, J. Functional models of nonheme diiron enzymes: Reactivity of the μ-oxo-m-1,2-peroxo-diiron(III) intermediate in electrophilic and nucleophilic reactions. Dalton Trans. 2020, 49, 1742–1746. [Google Scholar] [CrossRef]
- Török, P.; Unjaroen, D.; Csendes, V.F.; Giorgi, M.; Browne, W.R.; Kaizer, J. A nonheme peroxo-diiron(III) complex exhibiting both nucleophilic and electrophilic oxidation of organic substrates. Dalton Trans. 2021, 50, 7185–7187. [Google Scholar] [CrossRef]
- Szávuly, M.I.; Surducan, M.; Nagy, E.; Surányi, M.; Speier, G.; Silaghi-Dumitrescu, R.; Kaizer, J. Functional models on nonheme diiron enzymes: Kinetic and computational evidence for the formation of oxoiron(IV) species from peroxo-diiron(III) complexes, and their reactivity towards phenols and H2O2. Dalton Trans. 2016, 45, 14709–14718. [Google Scholar] [CrossRef]
- Jensen, M.P.; Payeras, A.M.I.; Fiedler, A.T.; Costas, M.; Kaizer, J.; Stubna, A.; Münck, E.; Que, L., Jr. Kinetic Analysis of the Conversion of Nonheme (Alkylperoxo)iron(III) Species to Iron(IV) Complexes. Inorg. Chem. 2007, 46, 2398–2408. [Google Scholar] [CrossRef] [Green Version]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed.; Pergamon Press: Oxford, UK, 2009. [Google Scholar]
- Saltzman, H.; Sharefkin, J.G. Organic Syntheses, Collective; Wiley: New York, NY, USA, 1973; Volume 5, pp. 658–659. [Google Scholar]
Entry | [1] (mM) | 4R-PhCHO (mM) | T (K) | σp (4R) | kobs’ (10−2 s−1) 1 | kox (10−1 M−1s−1) |
---|---|---|---|---|---|---|
1 | 0.5 | 75 | 293 | 0 (H) | 0.99 ± 0.04 | 1.33 ± 0.05 |
2 | 0.5 | 100 | 293 | 0 (H) | 1.41 ± 0.07 | 1.40 ± 0.07 |
3 | 0.5 | 150 | 293 | 0 (H) | 2.31 ± 0.12 | 1.54 ± 0.08 |
4 | 0.5 | 200 | 293 | 0 (H) | 2.87 ± 0.08 | 1.44 ± 0.04 |
5 | 0.5 | 75(D) | 293 | 0 (H) | 0.09 ± 0.005 | 0.12 ± 0.007 |
6 | 0.5 | 100 | 278 | 0 (H) | 0.30 ± 0.01 | 0.30 ± 0.01 |
7 | 0.5 | 100 | 283 | 0 (H) | 0.48 ± 0.02 | 0.48 ± 0.02 |
8 | 0.5 | 100 | 288 | 0 (H) | 0.73 ± 0.01 | 0.73 ± 0.01 |
9 | 0.5 | 100 | 298 | 0 (H) | 2.18 ± 0.12 | 2.18 ± 0.12 |
10 | 0.5 | 100 | 293 | −0.83 (NMe2) | 5.05 ± 0.28 | 5.05 ± 0.28 |
11 | 0.5 | 100 | 293 | −0.17 (Me) | 3.35 ± 0.11 | 3.35 ± 0.11 |
12 | 0.5 | 100 | 293 | +0.23 (Cl) | 1.40 ± 0.05 | 1.40 ± 0.05 |
13 | 0.5 | 100 | 293 | +0.66 (CN) | 0.03 ± 0.001 | 0.03 ± 0.001 |
Entry | [1] (mM) | Ph3CH (mM) | T (K) | kobs’ (10−2 s−1) 1 | kox (M−1s−1) |
---|---|---|---|---|---|
1 | 0.5 | 10 | 293 | 0.58 ± 0.04 | 0.58 ± 0.040 |
2 | 0.5 | 25 | 293 | 1.75 ± 0.07 | 0.70 ± 0.028 |
3 | 0.5 | 50 | 293 | 3.27 ± 0.12 | 0.65 ± 0.024 |
4 | 0.5 | 75 | 293 | 5.05 ± 0.21 | 0.67 ± 0.055 |
6 | 0.5 | 50 | 278 | 0.76 ± 0.03 | 0.15 ± 0.007 |
7 | 0.5 | 50 | 283 | 1.18 ± 0.07 | 0.24 ± 0.014 |
8 | 0.5 | 50 | 288 | 2.09 ± 0.08 | 0.42 ± 0.016 |
13 | 0.5 | 50 | 298 | 5.73 ± 0.35 | 1.15 ± 0.070 |
Complex | Substrate | T (K) | k2 (M−1s−1) | ρ | Refs. |
---|---|---|---|---|---|
[FeIII2(μ-1,2-O2)(TBI)4(S2)]4+ | PhCHO | 288 | 2.86 | +2.34 | [27] |
[FeIII2(μ-1,2-O2)(MBIP)4(S2)]4+ | PhCHO | 288 | 0.93 | +0.67 | [25] |
[FeIII2(μ-1,2-O2)(μ-O)(Ind)2(S2)]2+ | PhCHO | 288 | 2.92 | +0.48 | [26] |
[FeIII2(μ-1,2-O2)(μ-O)(Ind)2(S2)]2+ | C6H10O 1 | 288 | 0.60 | - | [24] |
[FeIII2(μ-1,2-O2)(PBI)4(S2)]4+ | PhCHO | 288 | 2.39 | - | [27] |
[FeIII2(μ-1,2-O2)(PBI)4(S2)]4+ | C6H10O 1 | 288 | 0.40 | - | [19] |
FeII(PBI)3/PhIO (2) | PhCHO | 288 | 0.073 | −0.76 | This work |
FeII(PBI)3/PhIO (2) | Ph3CH | 288 | 0.42 | - | This work |
FeII(4Me-PBI)3/PhIO (4) | PhCHO | 288 | 0.041 | −0.76 | This work |
FeII(4Me-PBI)3/PhIO (4) | Ph3CH | 288 | 0.18 | - | This work |
FeII(PBI)3/PhIO (2) | C6H10O 1 | 288 | 0.072 | - | [19] |
[FeIV(N4Py)(O)]2+ | PhCHO | 288 | 0.065 | −1.21 | [11] |
Entry | [1] (mM) | 4R-PhCHO (mM) | T (K) | σp (4R) | kobs’ (10−3 s−1)1 | kox (10−2 M−1s−1) |
---|---|---|---|---|---|---|
1 | 1.0 | 50 | 293 | 0 (H) | 1.98 ± 0.10 | 3.96 ± 0.20 |
2 | 1.0 | 100 | 293 | 0 (H) | 4.83 ± 0.29 | 4.83 ± 0.29 |
3 | 1.0 | 150 | 293 | 0 (H) | 6.16 ± 0.28 | 4.12 ± 0.19 |
4 | 1.0 | 200 | 293 | 0 (H) | 8.56 ± 0.30 | 4.28 ± 0.15 |
5 | 1.0 | 50(D) | 293 | 0 (H) | 0.14 ± 0.005 | 0.28 ± 0.010 |
6 | 1.0 | 100 | 278 | 0 (H) | 2.30 ± 0.14 | 2.30 ± 0.14 |
7 | 1.0 | 100 | 283 | 0 (H) | 3.20 ± 0.10 | 3.20 ± 0.10 |
8 | 1.0 | 100 | 288 | 0 (H) | 4.09 ± 0.13 | 4.09 ± 0.13 |
9 | 1.0 | 100 | 298 | 0 (H) | 6.30 ± 0.34 | 6.30 ± 0.34 |
10 | 1.0 | 50 | 293 | −0.83 (NMe2) | 3.02 ± 0.15 | 6.05 ± 0.30 |
11 | 1.0 | 50 | 293 | −0.27 (OMe) | 2.22 ± 0.10 | 4.45 ± 0.20 |
12 | 1.0 | 50 | 293 | −0.17 (Me) | 1.47 ± 0.06 | 2.94 ± 0.12 |
13 | 1.0 | 50 | 293 | +0.06 (F) | 1.21 ± 0.07 | 2.42 ± 0.14 |
14 | 1.0 | 50 | 293 | +0.23 (Cl) | 1.25 ± 0.05 | 2.50 ± 0.10 |
13 | 1.0 | 50 | 293 | +0.66 (CN) | 0.49 ± 0.015 | 0.98 ± 0.030 |
13 | 1.0 | 50 | 293 | +0.78 (NO2) | 0.39 ± 0.013 | 0.79 ± 0.026 |
Entry | [1] (mM) | Ph3CH (mM) | T (K) | kobs’ (10−2 s−1) 1 | kox (M−1s−1) |
---|---|---|---|---|---|
1 | 1.0 | 50 | 293 | 1.77 ± 0.08 | 0.35 ± 0.015 |
2 | 1.0 | 100 | 293 | 2.84 ± 0.12 | 0.28 ± 0.012 |
3 | 1.0 | 150 | 293 | 4.12 ± 0.25 | 0.27 ± 0.016 |
4 | 1.0 | 200 | 293 | 5.71 ± 0.31 | 0.28 ± 0.015 |
6 | 1.0 | 50 | 278 | 0.36 ± 0.02 | 0.07 ± 0.004 |
7 | 1.0 | 50 | 283 | 0.64 ± 0.03 | 0.13 ± 0.006 |
8 | 1.0 | 50 | 288 | 0.88 ± 0.05 | 0.18 ± 0.010 |
13 | 1.0 | 50 | 298 | 3.03 ± 0.17 | 0.61 ± 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Török, P.; Lakk-Bogáth, D.; Kaizer, J. Stoichiometric Alkane and Aldehyde Hydroxylation Reactions Mediated by In Situ Generated Iron(III)-Iodosylbenzene Adduct. Molecules 2023, 28, 1855. https://doi.org/10.3390/molecules28041855
Török P, Lakk-Bogáth D, Kaizer J. Stoichiometric Alkane and Aldehyde Hydroxylation Reactions Mediated by In Situ Generated Iron(III)-Iodosylbenzene Adduct. Molecules. 2023; 28(4):1855. https://doi.org/10.3390/molecules28041855
Chicago/Turabian StyleTörök, Patrik, Dóra Lakk-Bogáth, and József Kaizer. 2023. "Stoichiometric Alkane and Aldehyde Hydroxylation Reactions Mediated by In Situ Generated Iron(III)-Iodosylbenzene Adduct" Molecules 28, no. 4: 1855. https://doi.org/10.3390/molecules28041855
APA StyleTörök, P., Lakk-Bogáth, D., & Kaizer, J. (2023). Stoichiometric Alkane and Aldehyde Hydroxylation Reactions Mediated by In Situ Generated Iron(III)-Iodosylbenzene Adduct. Molecules, 28(4), 1855. https://doi.org/10.3390/molecules28041855