Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers’ Interfaces
Abstract
:1. Introduction
2. Results and Discussion
2.1. SP-DCA Accurately Predicts GPCRs Heterodimers’ Binding Interfaces
Complex | cMSA Length | Reported Evidence | Predicted Interactions (SP-DCA) | Peptides Selected for MD |
---|---|---|---|---|
A2aR/ D2R | 193 | C-Ter/ICL3 [21] C-Ter/N-Ter [21] TM4/TM4 [21] N- Ter/TM5 [21] | C-Ter/N-Ter ECL2/N-Ter ECL2/ICL3 | A2aR: 61 AA, CYS245-SER305 D2R: 66 AA, ASN35-TRP100 |
CB1R/ D2R | 404 | C-Ter/ICL3 [24] TM4/TM4 [24] | N-Ter/N-Ter C-Ter/ICL3 N-Ter/ICL3 | CB1R: 107 AA, ALA19-LEU125 D2R: 223 AA, ARG150-THR372 |
A2aR/ CB1R | 303 | C-Ter/C-Ter [24] TM4/TM4 [24] TM4/TM4 [24] | C-Ter/N-Ter ECL2/N-Ter C-Ter/C-Ter | A2aR: 101 AA, ILE100-ILE200 CB1R: 107 AA, ALA19-LEU125 |
5-HT2AR/ D2R | 518 | C-Ter/ICL3 [25,26,27] | N-ter/N-ter C-ter/N-ter C-Ter/ICL3 N-Ter/ICL3 | D2R: 79 AA, THR144-ARG222 5-HT2AR: 89 AA, GLN313-GLU401 |
5-HT2AR/ mGluR2 | 626 | TM5/TM4 [28] TM5/TM4 [28] TM4/TM5 [28] TM4/TM5 [28] | N-Ter/N-Ter C-Ter/N-Ter C-Ter/C-Ter N-Ter/C-Ter | 5-HT2A: 117 AA, TRP200-SER316 mGluR2: 77 AA, LYS24-GLU100 |
5-HT2AR/ 5-HTR4R | 515 | N-ter/ICL3 C-ter/ICL3 N-ter/C-ter C-ter/C-ter | 5-HT2AR: 33 AA, THR69-LEU101 5-HTR4R: 154 AA, ARG150-303ASP |
2.2. SP-DCA Highlights Details of the Differential Heterodimerization of 5-HT2AR
2.3. Molecular Dynamics Simulations Reveal Details of Interacting Peptides
3. Methods
3.1. Multiple Sequence Alignment
3.2. Structure Prior-Assisted Direct Coupling Analysis (SP-DCA)
3.3. Molecular Dynamic Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ali, A.; Bagchi, A. An overview of protein-protein interaction. Curr. Chem. Biol. 2015, 9, 53–65. [Google Scholar] [CrossRef]
- Böhm, S.K.; Grady, E.F.; Bunnett, N.W. Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. Biochem. J. 1997, 322, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, M. Oligomerization of G-protein-coupled transmitter receptors. Nat. Rev. Neurosci. 2001, 2, 274–286. [Google Scholar] [CrossRef]
- Fongang, B.; Cunningham, K.A.; Rowicka, M.; Kudlicki, A. Coevolution of residues provides evidence of a functional heterodimer of 5-HT2AR and 5-HT2CR involving both intracellular and extracellular domains. Neuroscience 2019, 412, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Fuxe, K.; Borroto-Escuela, D.O. Heteroreceptor complexes and their allosteric receptor–receptor interactions as a novel biological principle for integration of communication in the CNS: Targets for drug development. Neuropsychopharmacology 2016, 41, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucadyil, T.J.; Chattopadhyay, A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 2006, 45, 295–333. [Google Scholar] [CrossRef]
- Ritter, S.L.; Hall, R.A. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat. Rev. Mol. Cell Biol. 2009, 10, 819–830. [Google Scholar] [CrossRef] [Green Version]
- Pellissier, L.P.; Barthet, G.; Gaven, F.; Cassier, E.; Trinquet, E.; Pin, J.P.; Marin, P.; Dumuis, A.; Bockaert, J.; Banères, J.-L.; et al. G protein activation by serotonin type 4 receptor dimers: Evidence that turning on two protomers is more efficient. J. Biol. Chem. 2011, 286, 9985–9997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekeberg, M.; Hartonen, T.; Aurell, E. Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences. J. Comput. Phys. 2014, 276, 341–356. [Google Scholar] [CrossRef] [Green Version]
- Hopf, T.A.; Schärfe, C.P.I.; Rodrigues, J.P.; Green, A.G.; Kohlbacher, O.; Sander, C.; Bonvin, A.M.J.J.; Marks, D.S. Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 2014, 3, e03430. [Google Scholar] [CrossRef]
- Marks, D.S.; Hopf, T.A.; Sander, C. Protein structure prediction from sequence variation. Nat. Biotechnol. 2012, 30, 1072–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morcos, F.; Pagnani, A.; Lunt, B.; Bertolino, A.; Marks, D.S.; Sander, C.; Zecchina, R.; Onuchic, J.N.; Hwa, T.; Weigt, M. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. USA 2011, 108, E1293–E1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sułkowska, J.I.; Morcos, F.; Weigt, M.; Hwa, T.; Onuchic, J.N. Genomics-aided structure prediction. Proc. Natl. Acad. Sci. USA 2012, 109, 10340–10345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 2000, 21, 90–113. [Google Scholar] [CrossRef] [PubMed]
- Katritch, V.; Rueda, M.; Lam, P.C.H.; Yeager, M.; Abagyan, R. GPCR 3D homology models for ligand screening: Lessons learned from blind predictions of adenosine A2a receptor complex. Proteins Struct. Funct. Bioinform. 2010, 78, 197–211. [Google Scholar] [CrossRef] [Green Version]
- Michino, M.; Abola, E.; GPCR Dock 2008 Participants; Brooks, C.L., III; Dixon, J.S.; Moult, J.; Stevens, R.C. Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat. Rev. Drug Discov. 2009, 8, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Rognan, D. Structure-based approaches to target fishing and ligand profiling. Mol. Inform. 2010, 29, 176–187. [Google Scholar] [CrossRef]
- Bianchi-Smiraglia, A.; Wolff, D.W.; Marston, D.J.; Deng, Z.; Han, Z.; Moparthy, S.; Wombacher, R.M.; Mussell, A.L.; Shen, S.; Chen, J.; et al. Regulation of local GTP availability controls RAC1 activity and cell invasion. Nat. Commun. 2021, 12, 6091. [Google Scholar] [CrossRef]
- Ferré, S.; Ciruela, F.; Quiroz, C.; Luján, R.; Popoli, P.; Cunha, R.A.; Agnati, L.F.; Fuxe, K.; Woods, A.S.; Lluis, C.; et al. Adenosine receptor heteromers and their integrative role in striatal function. Sci. World J. 2007, 7, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Torvinen, M.; Kozell, L.B.; Neve, K.A.; Agnati, L.F.; Fuxe, K. Biochemical identification of the dopamine D2 receptor domains interacting with the adenosine A2A receptor. J. Mol. Neurosci. 2004, 24, 173–180. [Google Scholar] [CrossRef]
- Borroto-Escuela, D.O.; Romero-Fernandez, W.; Tarakanov, A.O.; Gómez-Soler, M.; Corrales, F.; Marcellino, D.; Narvaez, M.; Frankowska, M.; Flajolet, M.; Heintz, N.; et al. Characterization of the A2AR–D2R interface: Focus on the role of the C-terminal tail and the transmembrane helices. Biochem. Biophys. Res. Commun. 2010, 402, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Lee, F.J. Delineation of domains within the cannabinoid CB1 and dopamine D2 receptors that mediate the formation of the heterodimer complex. J. Mol. Neurosci. 2014, 53, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Marcellino, D.; Carriba, P.; Filip, M.; Borgkvist, A.; Frankowska, M.; Bellido, I.; Tanganelli, S.; Müller, C.E.; Fisone, F.G.; Lluis, C.; et al. Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology 2008, 54, 815–823. [Google Scholar] [CrossRef]
- Agnati, L.F.; Fuxe, K.; Woods, A.S.; Genedani, S.; Guidolin, D. Theoretical considerations on the topological organization of receptor mosaics. Curr. Protein Pept. Sci. 2009, 10, 559–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Stackman, R.W., Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front. Pharmacol. 2015, 6, 225. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Gimenez, J.F.; Vilaro, M.T.; Milligan, G. Morphine desensitization, internalization, and down-regulation of the μ opioid receptor is facilitated by serotonin 5-hydroxytryptamine2A receptor coactivation. Mol. Pharmacol. 2008, 74, 1278–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milligan, G.; Kostenis, E. Heterotrimeric G-proteins: A short history. Br. J. Pharmacol. 2006, 147, S46–S55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, J.L.; Muguruza, C.; Umali, A.; Mortillo, S.; Holloway, T.; Pilar-Cuéllar, F.; Mocci, G.; Seto, J.; Callado, L.F.; Neve, R.L.; et al. Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A· mGlu2) receptor heteromerization and its psychoactive behavioral function. J. Biol. Chem. 2012, 287, 44301–44319. [Google Scholar] [CrossRef] [Green Version]
- Bruno, A.; Guadix, A.E.; Costantino, G. Molecular dynamics simulation of the heterodimeric mGluR2/5HT2A complex. An atomistic resolution study of a potential new target in psychiatric conditions. J. Chem. Inf. Model. 2009, 49, 1602–1616. [Google Scholar] [CrossRef]
- Hegde, S.S.; Eglen, R.M. Peripheral 5-HT4 receptors. FASEB J. 1996, 10, 1398–1407. [Google Scholar] [CrossRef]
- Blondel, O.; Vandecasteele, G.; Gastineau, M.; Leclerc, S.; Dahmoune, Y.; Langlois, M.; Fischmeister, R. Molecular and functional characterization of a 5-HT4 receptor cloned from human atrium. FEBS Lett. 1997, 412, 465–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altwaijry, N.A.; Baron, M.; Wright, D.W.; Coveney, P.V.; Townsend-Nicholson, A. An Ensemble-Based Protocol for the Computational Prediction of Helix-Helix Interactions in G Protein-Coupled Receptors using Coarse-Grained Molecular Dynamics. J. Chem. Theory Comput. 2017, 13, 2254–2270. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Hou, T.; Li, Y. Docking and MD study of histamine H4R based on the crystal structure of H1R. J. Mol. Graph. Model. 2013, 39, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nde, J.; Zhang, P.; Ezerski, J.C.; Lu, W.; Knapp, K.; Wolynes, P.G.; Cheung, M.S. Coarse-grained modeling and molecular dynamics simulations of Ca2+-calmodulin. Front. Mol. Biosci. 2021, 8, 661322. [Google Scholar] [CrossRef]
- Suenaga, A.; Hatakeyama, M.; Kiyatkin, A.B.; Radhakrishnan, R.; Taiji, M.; Kholodenko, B.N. Molecular dynamics simulations reveal that Tyr-317 phosphorylation reduces Shc binding affinity for phosphotyrosyl residues of epidermal growth factor receptor. Biophys. J. 2009, 96, 2278–2288. [Google Scholar] [CrossRef] [Green Version]
- Tarakanov, A.O.; Fuxe, K.G. Triplet puzzle: Homologies of receptor heteromers. J. Mol. Neurosci. 2010, 41, 294–303. [Google Scholar] [CrossRef]
- Lensink, M.F.; Méndez, R.; Wodak, S.J. Docking and scoring protein complexes: CAPRI 3rd Edition. Proteins Struct. Funct. Bioinform. 2007, 69, 704–718. [Google Scholar] [CrossRef]
- UniProt. UniProt Consortium. 2021. Available online: http://www.uniprot.org/ (accessed on 10 March 2021).
- NCBI. National Center for Biotechnology Information. 2017. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 10 March 2021).
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Magnus Ekeberg, C.L.; Lan, Y.; Weigt, M.; Aurell, E. Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models. Phys. Rev. E 2013, 87, 012707. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 Dopamine Receptor Bound to the Atypical Antipsychotic Drug Risperidone. 2018. Available online: https://www.rcsb.org/structure/6cm4 (accessed on 7 October 2022).
- Cheng, R.; Segala, E.; Robertson, N.; Deflorian, F.; Dore, A.S.; Errey, J.C.; Fiez-Vandal, C.; Marshall, F.H.; Cooke, R.M. Crystal Structure of Stabilized A2A Adenosine Receptor A2AR-StaR2-bRIL in Complex with PSB36 at 2.8A Resolution. 2017. Available online: https://www.rcsb.org/structure/5n2r (accessed on 7 October 2022).
- Kimura, T.; Asada, H.; Inoue, A.; Kadji, F.M.N.; Im, D.; Mori, C.; Arakawa, T.; Hirata, K.; Nomura, Y.; Nomura, N.; et al. Crystal Structure of 5-HT2AR in Complex with Zotepine. 2019. Available online: https://www.rcsb.org/structure/6a94 (accessed on 7 October 2022).
- Davtyan, A.; Schafer, N.P.; Zheng, W.; Clementi, C.; Wolynes, P.G.; Papoian, G.A. AWSEM-MD: Protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. J. Phys. Chem. B 2012, 116, 8494–8503. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Zheng, W.; Balamurugan, D.; Schafer, N.P.; Kim, B.L.; Cheung, M.S.; Wolynes, P.G. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding. Protein Sci. 2016, 25, 255–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LAMMPS. LAMMPS Molecular Dynamics Simulator. 2022. Available online: https://www.lammps.org/ (accessed on 7 October 2022).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
Complex | MD Output | Main Observation |
---|---|---|
A2aR: T85, A84, L81, and A77 | ||
A2aR/D2R | D2R: T299, F300, and I303 | Helical conformation |
CB1R: V87, L89 | ||
CB1R/D2R | D2R: S115, M113 | Helical conformation |
A2aR: L89, K91 | ||
A2aR/CB1R | CB1R: L174, L176 | Helical conformation |
5-HT2AR: I34, and V334 | ||
5-HT2AR/D2R | D2R: T66, L163, and I159 | Helical conformation |
5-HT2AR: E6, D45 | ||
5-HT2AR/mGluR2 | mGluR2: I125, N106 | Helical conformation |
5-HT2AR: T13, L11 | ||
5-HT2AR/5-HTR4R | 5-HTR4R: I116, N114 | Helical conformation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nchourupouo, K.W.T.; Nde, J.; Ngouongo, Y.J.W.; Zekeng, S.S.; Fongang, B. Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers’ Interfaces. Molecules 2023, 28, 1838. https://doi.org/10.3390/molecules28041838
Nchourupouo KWT, Nde J, Ngouongo YJW, Zekeng SS, Fongang B. Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers’ Interfaces. Molecules. 2023; 28(4):1838. https://doi.org/10.3390/molecules28041838
Chicago/Turabian StyleNchourupouo, Karim Widad Temgbet, Jules Nde, Yannick Joel Wadop Ngouongo, Serge Sylvain Zekeng, and Bernard Fongang. 2023. "Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers’ Interfaces" Molecules 28, no. 4: 1838. https://doi.org/10.3390/molecules28041838
APA StyleNchourupouo, K. W. T., Nde, J., Ngouongo, Y. J. W., Zekeng, S. S., & Fongang, B. (2023). Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers’ Interfaces. Molecules, 28(4), 1838. https://doi.org/10.3390/molecules28041838