High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging
Abstract
1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Thewlis, J. Neutron radiography. Br. J. Appl. Phys. 1956, 7, 345–350. [Google Scholar] [CrossRef]
- Tengattini, A.; Kardjilov, N.; Helfen, L.; Douissard, P.-A.; Lenoir, N.; Markötter, H.; Hilger, A.; Arlt, T.; Paulisch, M.; Turek, T.; et al. Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator. Opt. Express 2022, 30, 14461–14477. [Google Scholar] [CrossRef] [PubMed]
- Tötzke, C.; Manke, I.; Hilger, A.; Choinka, G.; Kardjilov, N.; Arlt, T.; Markötter, H.; Schröder, A.; Wippermann, K.; Stolten, D.; et al. Large area high resolution neutron imaging detector for fuel cell research. J. Power Sources 2011, 196, 4631–4637. [Google Scholar] [CrossRef]
- Scatigno, C.; Festa, G. Neutron Imaging and Learning Algorithms: New Perspectives in Cultural Heritage Applications. J. Imaging 2022, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Trtik, P.; Ren, F.; Schmid, T.; Dreimol, C.H.; Angst, U. Dynamic effect of water penetration on steel corrosion in carbonated mortar: A neutron imaging, electrochemical, and modeling study. Cement 2022, 9, 100043. [Google Scholar] [CrossRef]
- Kim, K.H.; Klann, R.T.; Raju, B.B. Fast neutron radiography for composite materials evaluation and testing. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 1999, 422, 929–932. [Google Scholar] [CrossRef]
- Trtik, P.; Hovind, J.; Grünzweig, C.; Bollhalder, A.; Thominet, V.; David, C.; Kaestner, A.; Lehmann, E.H. Improving the Spatial Resolution of Neutron Imaging at Paul Scherrer Institut–The Neutron Microscope Project. Phys. Procedia 2015, 69, 169–176. [Google Scholar] [CrossRef]
- Hussey, D.S.; LaManna, J.M.; Baltic, E.; Jacobson, D.L. Neutron imaging detector with 2 μm spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2017, 866, 9–12. [Google Scholar] [CrossRef]
- Lehmann, E.H.; Mannes, D.; Strobl, M.; Walfort, B.; Losko, A.; Schillinger, B.; Schulz, M.; Vogel, S.C.; Schaper, D.C.; Gautier, D.C.; et al. Improvement in the spatial resolution for imaging with fast neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2021, 988, 164809. [Google Scholar] [CrossRef]
- Li, J.J.; Dong, Y.S.; Yu, B.; Chen, Z.J.; Zheng, J.H.; Yao, L.; Yang, J.M. An estimation method of the spatial resolution for magnifying fast neutron radiography. AIP Adv. 2022, 12, 055117. [Google Scholar] [CrossRef]
- Fujine, S.; Yoneda, K.; Yoshii, K.; Kamata, M.; Tamaki, M.; Ohkubo, K.; Ikeda, Y.; Kobayashi, H. Development of imaging techniques for fast neutron radiography in Japan. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 1999, 424, 190–199. [Google Scholar] [CrossRef]
- Bin, T.; Heyong, H.; Ke, T.; Rogers, J.; Haste, M.; Christodoulou, M. The New Cold Neutron Radiography Facility (CNRF) at the Mianyang Research Reactor of the China Academy of Engineering Physics. Phys. Procedia 2015, 69, 33–39. [Google Scholar] [CrossRef]
- Huo, H.; Li, H.; Wu, Y.; Zhu, S.; Liu, B.; Sun, Y.; Wang, S.; Cao, C.; Yin, W.; Tang, B.; et al. Development of Cold Neutron Radiography Facility (CNRF) based on China Mianyang Research Reactor (CMRR). Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2020, 953, 163063. [Google Scholar] [CrossRef]
- Jiang, X.; Xiu, Q.; Zhou, J.; Yang, J.; Tan, J.; Yang, W.; Zhang, L.; Xia, Y.; Zhou, X.; Zhou, J.; et al. Study on the neutron imaging detector with high spatial resolution at China spallation neutron source. Nucl. Eng. Technol. 2021, 53, 1942–1946. [Google Scholar] [CrossRef]
- Yasuda, R.; Katagiri, M.; Matsubayashi, M. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2012, 680, 139–144. [Google Scholar] [CrossRef]
- Tian, Y.; Cao, W.-H.; Luo, X.-X.; Fu, Y. Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method. J. Alloys Compd. 2007, 433, 313–317. [Google Scholar] [CrossRef]
- Fern, G.; Ireland, T.; Silver, J.; Withnall, R.; Michette, A.; McFaul, C.; Pfauntsch, S. Characterisation of Gd2O2S:Pr phosphor screens for water window X-ray detection. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2009, 600, 434–439. [Google Scholar] [CrossRef]
- Wang, F.; Liu, D.; Yang, B.; Dai, Y. Characteristics and synthesis mechanism of Gd2O2S:Tb phosphors prepared by vacuum firing method. Vacuum 2013, 87, 55–59. [Google Scholar] [CrossRef]
- Xia, T.; Cao, W.; Luo, X.; Tian, Y. Combustion synthesis and spectra characteristic of Gd2O2S:Tb3+ and La2O2S:Eu3+ X-ray phosphors. J. Mater. Res. 2005, 20, 2274–2278. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, S.; Xia, H.; Tian, Y.; Zhang, J.; Xu, S. Controlled synthesis of lanthanide-doped Gd2O2S nanocrystals with novel excitation-dependent multicolor emissions. Nanoscale 2017, 9, 5718–5724. [Google Scholar] [CrossRef]
- Xing, M.; Cao, W.; Pang, T.; Ling, X.; Chen, N. Preparation and characterization of monodisperse spherical particles of X-ray nano-phosphors based on Gd2O2S:Tb. Chin. Sci. Bull. 2009, 54, 2982–2986. [Google Scholar] [CrossRef]
- Trtik, P.; Lehmann, E.H. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2015, 788, 67–70. [Google Scholar] [CrossRef]
- Crha, J.; Vila-Comamala, J.; Lehmann, E.; David, C.; Trtik, P. Light yield enhancement of 157-gadolinium oxysulfide scintillator screens for the high-resolution neutron imaging. MethodsX 2019, 6, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, Y.; Huo, H.; Tang, B.; Ma, X.; Wang, J.; Sun, C.; Sun, J.; Zhou, S. Nanoscale Gd2O2S:Tb Scintillators for High-Resolution Fluorescent Imaging of Cold Neutrons. ACS Appl. Nano Mater. 2022, 5, 8440–8447. [Google Scholar] [CrossRef]
- Nakamura, R.; Yamada, N.; Ishii, M. Effects of Halogen Ions on the X-Ray Characteristics of Gd2O2S:Pr Ceramic Scintillators. Jpn. J. Appl. Phys. 1999, 38, 6923. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, S.; Seto, T.; Wang, Y. A Highly Efficient Eu2+ Excited Phosphor with Luminescence Tunable in Visible Range and Its Applications for Plant Growth. Adv. Opt. Mater. 2021, 9, 2101173. [Google Scholar] [CrossRef]
- Zheng, T.; Luo, L.; Du, P.; Lis, S.; Rodríguez-Mendoza, U.R.; Lavín, V.; Runowski, M. Highly-efficient double perovskite Mn4+-activated Gd2ZnTiO6 phosphors: A bifunctional optical sensing platform for luminescence thermometry and manometry. Chem. Eng. J. 2022, 446, 136839. [Google Scholar] [CrossRef]
- Dolo, J.J.; Swart, H.C.; Terblans, J.J.; Coetsee, E.; Ntwaeaborwa, O.M.; Dejene, B.F. X-ray photoelectron spectroscopy analysis for undegraded and degraded Gd2O2S:Tb3+ phosphor thin films. Phys. B 2012, 407, 1586–1590. [Google Scholar] [CrossRef]
- Du, P.; Ran, W.; Wang, C.; Luo, L.; Li, W. Facile Realization of Boosted Near-Infrared-Visible Light Driven Photocatalytic Activities of BiOF Nanoparticles through Simultaneously Exploiting Doping and Upconversion Strategy. Adv. Mater. Interfaces 2021, 8, 2100749. [Google Scholar] [CrossRef]
- Ohno, Y. Electronic structure of the misfit-layer compounds PbTiS3 and SnNbS3. Phys. Rev. B 1991, 44, 1281–1291. [Google Scholar] [CrossRef]
- Kim, M.R.; Woo, S.I. Poisoning effect of SO2 on the catalytic activity of Au/TiO2 investigated with XPS and in situ FT-IR. Appl. Catal. A 2006, 299, 52–57. [Google Scholar] [CrossRef]
- Gruber, J.B.; Vetter, U.; Hofsäss, H.; Zandi, B.; Reid, M.F. Spectra and energy levels of Gd3+ (4f7) in AlN. Phys. Rev. B 2004, 69, 195202. [Google Scholar] [CrossRef]
- Song, Y.; You, H.; Huang, Y.; Yang, M.; Zheng, Y.; Zhang, L.; Guo, N. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: Solvothermal synthesis and luminescence properties. Inorg. Chem. 2010, 49, 11499–11504. [Google Scholar] [CrossRef]
- Chatterjee, S.; Shanker, V.; Chander, H. Thermoluminescence of Tb doped Gd2O2S phosphor. Mater. Chem. Phys. 2003, 80, 719–724. [Google Scholar] [CrossRef]
- Tian, X.; Lian, S.; Ji, C.; Huang, Z.; Wen, J.; Chen, Z.; Peng, H.; Wang, S.; Li, J.; Hu, J.; et al. Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor. J. Alloys Compd. 2019, 784, 628–640. [Google Scholar] [CrossRef]
- Hui, J.; Zhang, X.; Zhang, Z.; Wang, S.; Tao, L.; Wei, Y.; Wang, X. Fluoridated HAp:Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. Nanoscale 2012, 4, 6967–6970. [Google Scholar] [CrossRef]
- Yamada, H. A scintillator Gd2O2S:Pr, Ce, F for X-ray computed tomography. J. Electrochem. Soc. 1989, 136, 2713–2716. [Google Scholar] [CrossRef]
- Li, G.; Li, G.; Mao, Q.; Pei, L.; Yu, H.; Liu, M.; Chu, L.; Zhong, J. Efficient luminescence lifetime thermometry with enhanced Mn4+-activated BaLaCa1−xMgxSbO6 red phosphors. Chem. Eng. J. 2022, 430, 132923. [Google Scholar] [CrossRef]
- Li, H.; Cao, C.; Huo, H.; Wang, S.; Wu, Y.; Yin, W.; Sun, Y.; Liu, B.; Tang, B. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2017, 851, 10–14. [Google Scholar] [CrossRef]
X | 0 | 0.01 | 0.04 | 0.08 | 0.15 | 0.3 |
---|---|---|---|---|---|---|
Lifetime/μs | 638 | 598 | 590 | 584 | 586 | 592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, B.; Yin, W.; Wang, Q.; Chen, L.; Huo, H.; Wu, Y.; Yang, H.; Sun, C.; Zhou, S. High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging. Molecules 2023, 28, 1815. https://doi.org/10.3390/molecules28041815
Tang B, Yin W, Wang Q, Chen L, Huo H, Wu Y, Yang H, Sun C, Zhou S. High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging. Molecules. 2023; 28(4):1815. https://doi.org/10.3390/molecules28041815
Chicago/Turabian StyleTang, Bin, Wei Yin, Qibiao Wang, Long Chen, Heyong Huo, Yang Wu, Hongchao Yang, Chenghua Sun, and Shuyun Zhou. 2023. "High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging" Molecules 28, no. 4: 1815. https://doi.org/10.3390/molecules28041815
APA StyleTang, B., Yin, W., Wang, Q., Chen, L., Huo, H., Wu, Y., Yang, H., Sun, C., & Zhou, S. (2023). High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging. Molecules, 28(4), 1815. https://doi.org/10.3390/molecules28041815