Determination of 3′-Sialyllactose in Edible Bird’s Nests and the Effect of Stewing Conditions on the 3′-Sialyllactose Content of Edible Bird’s Nest Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Condition Optimization
2.1.1. Selection of Ions for Mass Spectrometry
2.1.2. Chromatographic Condition Optimization
2.2. Method Verification
2.2.1. Detection Limit, Quantitative Limit, and Linear Range of the Method
2.2.2. Precision and Accuracy of the Method
2.3. Effect of Heat Treatment Intensity on 3′-Sialyllactose Content of Edible Bird’s Nest Products
2.3.1. Effect of Heat Treatment Temperature on 3′-Sialyllactose of Edible Bird’s Nest Product
2.3.2. Effect of Heat Treatment Time on 3′-Sialyllactose of Edible bird’s Nest Products
2.4. Effect of Sugar on 3′-Sialyllactose of Edible Bird’s Nest Producst
2.5. Application Examples of the Detection Method
3. Materials and Methods
3.1. Materials
3.2. Optimization of Determination Methods and Conditions
3.2.1. Pretreatment Condition
3.2.2. Liquid Chromatographic Conditions
3.2.3. Mass Spectrometry Condition
3.2.4. Condition Optimization
3.3. Effect of Heat Treatment Intensity on 3′-Sialyllactose Content in Edible Bird’s Nest
3.3.1. Preparation of Samples with Different Heat Treatment Temperatures
3.3.2. Preparation of Samples with Different Heat Treatment Times
3.4. Preparation of Samples with Different Sugar Contents
3.5. Method Validation
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lee, T.H.; Lee, C.H.; Azmi, N.A.; Kavita, S.; Wong, S.; Znati, M.; Jannet, H.B. Characterization of polar and non-polar compounds of house edible bird’s nest (EBN) from Johor, Malaysia. Chem. Biodivers. 2020, 17, e1900419. [Google Scholar]
- Marcone, M.F. Characterization of the edible bird’s nest the “Caviar of the East’. Food Res. Int. 2005, 10, 1125–1134. [Google Scholar] [CrossRef]
- Quek, M.C.; Chin, N.L.; Tan, S.W.; Yusof, Y.A.; Law, C.L. Molecular identification of species and production origins of edible bird’s nest using FINS and SYBR green I based real-time PCR. Food Control. 2018, 84, 118–127. [Google Scholar] [CrossRef]
- Wang, B.; Brand-Mller, J. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 2003, 57, 1351–1369. [Google Scholar] [CrossRef] [PubMed]
- Bruggencate, S.J.T.; Bovee-Oudenhoven, I.M.J.; Feitsma, A.L.; Schoterman, M.H.C. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 2014, 6, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Fuhrer, A.; Sprenger, N.; Kurakevich, E.; Borsig, L.; Chassard, C.; Hennet, T. Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization. J. Exp. Med. 2010, 207, 2843. [Google Scholar] [CrossRef]
- Koliwer-Brandl, H.; Siegert, N.; Umnus, K.; Kelm, A.; Tolkach, A.; Kulozik, U.; Kuballa, J.; Cartellieri, S.; Kelm, S. Lectin inhibition assays for the analysis of bioactive milk sialoglycoconjugates. Int. Dairy J. 2011, 21, 413–420. [Google Scholar] [CrossRef]
- Wang, B. Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 2009, 29, 177–222. [Google Scholar] [CrossRef]
- Austin, S.; Cuany, D.; Michaud, J.; Casado, B. Determination of 2′-fucosyllactose and lacto-N-neotetraose in infant formula. Molecules 2018, 23, 2650. [Google Scholar] [CrossRef]
- Fiame, L.; Sadaki, A.; Tadashi, N.; Tadasu, U. Improved determination of milk oligosaccharides using a single derivatization with anthranilic acid and separation by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2009, 9, 1520–1523. [Google Scholar]
- Gabrielli, O.; Zampini, L.; Galeazzi, T.; Coppa, G.V. Preterm milk oligosaccharides during the first month of lactation. Pediatrics 2011, 6, 1520–1531. [Google Scholar] [CrossRef]
- Nijman, R.; Liu, Y.; Bunyatratchata, A.; Barile, D. Characterization and quantification of oligosaccharides in human milk and infant formula. J. Agric. Food Chem. 2018, 26, 1–36. [Google Scholar] [CrossRef]
- Milady, R.N.; Robert, E.W.; Riccardo, G.L.; Carlito, B.L. Methods for the quantitation of human milk oligosaccharides in bacterial fermentation by mass spectrometry. Anal. Biochem. 2006, 1, 15–23. [Google Scholar]
- Zhang, W.Y.; Wang, T.; Chen, X.X.; Lv, J.P. Absolute quantification of twelve oligosaccharides in human milk using a targeted mass spectrometry-based approach. Carbohydr. Polym. 2019, 219, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, F.; Coppa, G.V.; Zampini, L.; Volpi, N. Capillary electrophoresis separation of human milk neutral and acidic oligosaccharides derivatized with 2-aminoacridone. Electrophoresis 2014, 6, 811–818. [Google Scholar] [CrossRef]
- Bao, Y.W.; Zhu, L.B.; David, S.N. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis. Anal. Biochem. 2007, 2, 206–214. [Google Scholar] [CrossRef]
- Austin, S.; De Castro, C.A.; Bénet, T.; Hou, Y.; Sun, H.; Thakkar, S.K.; Vinyes-Pares, G.; Zhang, Y.; Wang, P. Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers. Nutrients 2016, 8, 346. [Google Scholar] [CrossRef]
- Eom, H.Y.; Jang, S.; Lee, J. Development and validation of a bioanalytical method for 3′- and 6′-sialyllactose in minipig liver and kidney using liquid chromatography-tandem mass spectrometry and its application to analysis of tissue distribution. Molecules 2020, 23, 5721. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Eom, H.Y.; Hwang, J.H.; Kim, L.; Lee, J. Simultaneous quantification of 3′- and 6′-sialyllactose in rat plasma using liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic Study. Molecules 2021, 4, 1177. [Google Scholar] [CrossRef] [PubMed]
- Mank, M.; Welsch, P.; Heck Albert, J.R.; Stahl, B. Label-free targeted LC-ESI-MS2 analysis of human milk oligosaccharides (HMOS) and related human milk groups with enhanced structural selectivity. Anal. Bioanal. Chem. 2019, 411, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Ruhaak, L.R.; Totten, S.M. Label-free absolute quantitation of oligosaccharides using multiple reaction monitoring. Anal. Chem. 2014, 86, 2640–2647. [Google Scholar] [CrossRef] [PubMed]
- Orsolya, C.; Barbara, R.; Ágnes, A.; Szabolcs, B. Quantitative analysis of 3′- and 6′-sialyllactose in human milk samples by HPLC-MS/MS: A validated method for the comparison of two consecutive lactation periods in the same woman. J. Pharm. Biomed. Anal. 2020, 184, 113184. [Google Scholar]
- Liu, Z.; Moate, P.; Cocks, B.; Rochfort, S. Simple liquid chromatographymass spectrometry method for quantification of major free oligosacch arides in bovine milk. J. Agric. Food Chem. 2014, 62, 11568–11574. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Masuko, S.; Green, D.E.; Xu, Y.M.; Li, L.Y.; Zhang, F.M.; Xue, C.H.; Liu, J.; DeAngelis, P.L.; Linhardt, R.J. N-sulfotestosteronan, a novel substrate for heparan sulfate 6-O-sulfotransferases and its analysis by oxidative degradation. Biopolymers 2013, 99, 675–685. [Google Scholar] [CrossRef] [Green Version]
- Steven, R.W.; Mikolai, J.; Milaim, P.; Albena, M.; Fernando, B.; Gabriel, V.T.; Elsa, L.; Tyge, G. 2D LC separation and determination of bradykinin in rat muscle tissue dialysate with on-Line SPE-HILIC-SPE-RP-MS. Chromatographia 2007, 66, 469–474. [Google Scholar]
- GB/T 27417-2017; Comformity Assessment-Guidance on Validation and Verification of Chemical Analytical Methods. China National Standards: Shenzhen, China, 2017.
- Yagi, H.; Yasukawa, N.; Yu, S.Y.; Guo, C.T.; Takahashi, N.; Takahashi, T.; Suzuki, Y. The expression of sialylated high-antennary N-glyeans in edible bird’s nest. Carbohydr. Res. 2008, 8, 1373–1377. [Google Scholar] [CrossRef]
- Li, Z.K.; Ni, Z.J.; Chen, X.S.; Wang, G.; Wu, J.Y.; Yao, J.M. Multi-enzymatic cascade one-pot biosynthesis of 3′-Sialyllactose using engineered escherichia coli. Molecules 2020, 25, 3567. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Quoc, B.; Foyer, C.H. A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J. Exp. Bot. 2001, 52, 881–889. [Google Scholar] [CrossRef]
- Schelch, S.; Koszagova, R.; Kuballa, J.; Nidetzky, B. Immobilization of CMP-sialic acid synthetase and α2,3-sialyltransferase for cascade synthesis of 3′-sialyl β-D-galactoside with enzyme reuse. ChemCatChem 2022, 14, e202101860. [Google Scholar] [CrossRef]
- Yang, R.; Gong, M.; Jiao, S.M.; Han, J.T.; Feng, C.; Pei, M.; Zhou, Z.K.; Du, Y.G.; Li, J.J. Protein engineering of pasteurella multocida α2,3-Sialyltransferase with reduced α2,3-sialidase activity and application in synthesis of 3′-sialyllactose. Catalysts 2022, 12, 579. [Google Scholar] [CrossRef]
NO. | Sample Type | Pretreatment Method | LOD (μg/kg) | RSD (%) | Rate of Recovery (%) | Reference |
---|---|---|---|---|---|---|
1 | Breast milk | After centrifugation and alcohol precipitation, human milk was reduced with NaBH4, washed by graphite carbon column, and then dried in vacuum for detection. | 8.3 | / | 60~100 | [21] |
2 | Breast milk | The sample was refrigerated to remove the lipid layer, reduced with NaBH4, incubated in 65 ℃ water bath for 90 min, and then purified and extracted by non-porous graphized carbon solid-phase extraction. | / | <10 | 91.2~101.8 | [22] |
3 | Milk | Cow milk was degreased by centrifugation and tested after deproteinization by methanol, acetonitrile, and ultrafiltration membrane. | 5.0 | <5 | 90~100 | [23] |
4 | Rat plasma | Methanol was selected for protein precipitation in rat plasma samples. The methanol extract was totally evaporated with a vacuum concentrator and reconstituted with the solution comprising 10 mM ammonium acetate (pH 4.5) and acetonitrile (40:60, v/v). | / | <5 | 88.6~94.7 | [19] |
5 | Edible bird’s nest | Bird’s nest samples were precipitated with 0.1% formic acid and methanol, and then dissolved in ultrapure water after vacuum concentration. | 0.3 | <5 | 91.6~98.4 | This experiment |
Analyte | Precursor Ion | Product Ion | Dwell Time, ms | Collision Energy | Interface Voltage, kV |
---|---|---|---|---|---|
3′-sialyllactose | 632.15 | 290.15 * | 197 | 28 | −1.5 |
142.10 | 197 | 40 | −1.5 |
Analyte | Add Scalar Quantity, μg/kg | Recovery Rate, % | RSD, % |
---|---|---|---|
3′-sialyllactose | 50 | 91.6 | 2.0 |
100 | 96.8 | 1.5 | |
200 | 98.4 | 2.2 |
NO. | Type | Batch Number | Net Content, g | 3′-Sialyllactose Content, μg/kg |
---|---|---|---|---|
1 | Sample-1 | 202,209,189 | 70 | 6.60 ± 0.46 f |
2 | Sample-2 | 20,221,207 | 45 | 73.84 ± 6.60 e |
3 | Sample-3 | UL16090 | 70 | 175.94 ± 6.26 d |
4 | Sample-4 | 20,221,205 | 110 | 226.19 ± 4.36 c |
5 | Sample-5 | UK26041 | 138 | 261.34 ± 5.34 b |
6 | Sample-6 | UK04143 | 180 | 331.29 ± 6.91 a |
7 | Sample-7 | 20,221,208 | 50 | 113.02 ± 5.31 d |
8 | Sample-8 | VK08154 | 70 | 166.14 ± 4.21 d |
9 | Sample-9 | XPVJ1608 | 100 | 305.22 ± 4.71 a |
Parameters | Gas Flow (L·min−1) | Heating Gas Flow Rate (L·min−1) | Drying Gas Flow Rate (L·min−1) | Interface Temperature (°C) | DL Temperature (°C) | Heating Block Temperature (°C) | CID Gas (kPa) |
---|---|---|---|---|---|---|---|
Numerical value | 3 | 10 | 10 | 300 | 250 | 400 | 270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liang, R.; Bai, W.; Xiao, Y.; Liu, X.; Fan, Q.; Guo, B. Determination of 3′-Sialyllactose in Edible Bird’s Nests and the Effect of Stewing Conditions on the 3′-Sialyllactose Content of Edible Bird’s Nest Products. Molecules 2023, 28, 1703. https://doi.org/10.3390/molecules28041703
Zhang X, Liang R, Bai W, Xiao Y, Liu X, Fan Q, Guo B. Determination of 3′-Sialyllactose in Edible Bird’s Nests and the Effect of Stewing Conditions on the 3′-Sialyllactose Content of Edible Bird’s Nest Products. Molecules. 2023; 28(4):1703. https://doi.org/10.3390/molecules28041703
Chicago/Turabian StyleZhang, Xiaojiang, Ruifang Liang, Weijuan Bai, Yue’e Xiao, Xuncai Liu, Qunyan Fan, and Baozhong Guo. 2023. "Determination of 3′-Sialyllactose in Edible Bird’s Nests and the Effect of Stewing Conditions on the 3′-Sialyllactose Content of Edible Bird’s Nest Products" Molecules 28, no. 4: 1703. https://doi.org/10.3390/molecules28041703
APA StyleZhang, X., Liang, R., Bai, W., Xiao, Y., Liu, X., Fan, Q., & Guo, B. (2023). Determination of 3′-Sialyllactose in Edible Bird’s Nests and the Effect of Stewing Conditions on the 3′-Sialyllactose Content of Edible Bird’s Nest Products. Molecules, 28(4), 1703. https://doi.org/10.3390/molecules28041703