Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies
Abstract
:1. Introduction
2. Carbon-11 Methodologies
2.1. [11C]Carbon Dioxide
2.2. [11C]Carbon Monoxide
2.3. [11C]Methyl Iodide and Other 11C-Alkylation Agents
2.4. [11C]Hydrogen Cyanide
2.5. [11C]Fluoroform
2.6. [11C]Carbonyl Difluoride
2.7. [11C]Carbon Disulfide
2.8. [11C]Thiocyanate
2.9. [11C]Formaldehyde
3. First-in-Human Translation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
4CzBnBN | (2,3,4,6)-3-Benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile |
5-HT2A receptor | 5-Hydroxy-tryptamine 2A receptor |
AD | Alzheimer’s disease |
ALS | Amyotrophic lateral sclerosis |
Am | Molar activity |
AMPA receptor | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor |
BEMP | 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine |
CB2 receptor | Cannabinoid receptor type 2 |
CNS | Central nervous system |
COX-1, -2 | Cyclooxygenase-1, -2 |
CSF1 | colony stimulating factor 1 |
CuTC | Copper(I) thiophene-2-carboxylate |
DBAD | Di-tert-butyl azodicarboxylate |
DBN | 1,5-Diazabicyclo [4.3.0]non-5-ene |
DBU | 1,8-diazabicyclo [5.4.0]undec-7-ene |
dc | Decay-corrected |
DCC | N,N′-Dicyclohexylcarbodiimide |
de | Diastereomeric excess |
DMA | Dimethylacetamide |
DMF | Dimethylformamide |
DMSO | Dimethyl sulfoxide |
DPSO | Diphenyl sulfoxide |
d.r. | Diastereomeric ratio |
dtbbpy | 4,4’-Di-tert-butyl-2,2’-bipyridine |
FIH | First-in-human |
FMDS | Fluoride-mediated desilylation |
HOSA | Hydroxylamine-O-sulfonic acid |
HPLC | High-performance liquid chromatography |
IPr | 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) |
K222 | 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo [8.8.8]hexacosane |
MAO-B | Monoamine oxidase B |
mGluR5 | Metabotropic glutamate receptor 5 |
mHTT | Mutant huntingtin protein |
NMDA | N-methyl-D-aspartate |
NMP | N-Methyl-2-pyrrolidone |
PD | Parkinson’s disease |
PDE7 | Phosphodiesterase 7 |
PET | Positron emission tomography |
ppy | 2-Phenylpyridine |
prec | precursor |
quant. | quantitative |
RCC | Radiochemical conversion |
RCP | Radiochemical purity |
RCY | Radiochemical yield |
Ref. | Reference |
rt | Room temperature |
t1/2 | Half-life |
TBAT | Tetrabutylammonium difluorotriphenylsilicate |
TBAI | Tetra-n-butylammonium iodide |
TE | Trapping efficiency |
THF | Tetrahydrofuran |
TMEDA | Tetramethylethylenediamine |
TMS | Trimetylsilyl |
TrkB/C | Tropomyosin receptor kinase B/C |
TSPO | Translocator protein |
References
- Liang, S.H.; Vasdev, N. Total Radiosynthesis: Thinking Outside ‘the Box’. Aust. J. Chem. 2015, 68, 1319–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.; Rong, J.; Wang, L.; Vasdev, N.; Zhang, L.; Josephson, L.; Liang, S.H. Chemistry for Positron Emission Tomography: Recent Advances in 11C-, 18F-, 13N-, and 15O-Labeling Reactions. Angew. Chem. Int. Ed. 2019, 58, 2580–2605. [Google Scholar] [CrossRef]
- Ajenjo, J.; Destro, G.; Cornelissen, B.; Gouverneur, V. Closing the Gap between 19F and 18F Chemistry. EJNMMI Radiopharm. Chem. 2021, 6, 33. [Google Scholar] [CrossRef]
- Van der Born, D.; Pees, A.; Poot, A.J.; Orru, R.V.A.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 Labelled Building Blocks for PET Tracer Synthesis. Chem. Soc. Rev. 2017, 46, 4709–4773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard-Gauthier, V.; Lepage, M.L.; Waengler, B.; Bailey, J.J.; Liang, S.H.; Perrin, D.M.; Vasdev, N.; Schirrmacher, R. Recent Advances in 18F Radiochemistry: A Focus on B-18F, Si-18F, Al-18F, and C-18F Radiofluorination via Spirocyclic Iodonium Ylides. J. Nucl. Med. 2018, 59, 568–572. [Google Scholar] [CrossRef] [Green Version]
- Goud, N.S.; Joshi, R.K.; Bharath, R.D.; Kumar, P. Fluorine-18: A Radionuclide with Diverse Range of Radiochemistry and Synthesis Strategies for Target Based PET Diagnosis. Eur. J. Med. Chem. 2020, 187, 111979. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, Q.; Shi, H.; Cheng, D. Fluorine-18: Radiochemistry and Target-Specific PET Molecular Probes Design. Front. Chem. 2022, 10, 884517. [Google Scholar] [CrossRef]
- Bratteby, K.; Shalgunov, V.; Herth, M.M. Aliphatic 18F-Radiofluorination: Recent Advances in the Labeling of Base-Sensitive Substrates. ChemMedChem 2021, 16, 2612–2622. [Google Scholar] [CrossRef]
- Francis, F.; Wuest, F. Advances in [18F]Trifluoromethylation Chemistry for PET Imaging. Molecules 2021, 26, 6478. [Google Scholar] [CrossRef]
- Wright, J.S.; Kaur, T.; Preshlock, S.; Tanzey, S.S.; Winton, W.P.; Sharninghausen, L.S.; Wiesner, N.; Brooks, A.F.; Sanford, M.S.; Scott, P.J.H. Copper-Mediated Late-Stage Radiofluorination: Five Years of Impact on Preclinical and Clinical PET Imaging. Clin. Transl. Imaging 2020, 8, 167–206. [Google Scholar] [CrossRef]
- Bui, T.T.; Kim, H. Recent Advances in Photo-mediated Radiofluorination. Chem. Asian J. 2021, 16, 2155–2167. [Google Scholar] [CrossRef]
- Goud, N.S.; Bhattacharya, A.; Joshi, R.K.; Nagaraj, C.; Bharath, R.D.; Kumar, P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J. Med. Chem. 2021, 64, 1223–1259. [Google Scholar] [CrossRef] [PubMed]
- Boscutti, G.; Huiban, M.; Passchier, J. Use of Carbon-11 Labelled Tool Compounds in Support of Drug Development. Drug Discov. Today Technol. 2017, 25, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Dahl, K.; Halldin, C.; Schou, M. New Methodologies for the Preparation of Carbon-11 Labeled Radiopharmaceuticals. Clin. Transl. Imaging 2017, 5, 275–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotstein, B.H.; Liang, S.H.; Placzek, M.S.; Hooker, J.M.; Gee, A.D.; Dollé, F.; Wilson, A.A.; Vasdev, N. 11C=O Bonds Made Easily for Positron Emission Tomography Radiopharmaceuticals. Chem. Soc. Rev. 2016, 45, 4708–4726. [Google Scholar] [CrossRef] [Green Version]
- Pike, V.W. PET Radiotracers: Crossing the Blood–Brain Barrier and Surviving Metabolism. Trends Pharmacol. Sci. 2009, 30, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Coenen, H.H.; Gee, A.D.; Adam, M.; Antoni, G.; Cutler, C.S.; Fujibayashi, Y.; Jeong, J.M.; Mach, R.H.; Mindt, T.L.; Pike, V.W.; et al. Consensus Nomenclature Rules for Radiopharmaceutical Chemistry—Setting the Record Straight. Nucl. Med. Biol. 2017, 55, v–xi. [Google Scholar] [CrossRef] [Green Version]
- Herth, M.M.; Ametamey, S.; Antuganov, D.; Bauman, A.; Berndt, M.; Brooks, A.F.; Bormans, G.; Choe, Y.S.; Gillings, N.; Häfeli, U.O.; et al. On the Consensus Nomenclature Rules for Radiopharmaceutical Chemistry—Reconsideration of Radiochemical Conversion. Nucl. Med. Biol. 2021, 93, 19–21. [Google Scholar] [CrossRef]
- Hooker, J.M.; Reibel, A.T.; Hill, S.M.; Schueller, M.J.; Fowler, J.S. One-Pot, Direct Incorporation of [11C]CO2 into Carbamates. Angew. Chem. Int. Ed. 2009, 48, 3482–3485. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.A.; Garcia, A.; Houle, S.; Sadovski, O.; Vasdev, N. Synthesis and Application of Isocyanates Radiolabeled with Carbon-11. Chem. Eur. J. 2011, 17, 259–264. [Google Scholar] [CrossRef]
- Wilson, A.A.; Garcia, A.; Houle, S.; Vasdev, N. Direct Fixation of [11C]CO2 by Amines: Formation of [11C-Carbonyl]-Methylcarbamates. Org. Biomol. Chem. 2010, 8, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Rotstein, B.H.; Liang, S.H.; Holland, J.P.; Collier, T.L.; Hooker, J.M.; Wilson, A.A.; Vasdev, N. 11CO2 Fixation: A Renaissance in PET Radiochemistry. Chem. Commun. 2013, 49, 5621–5629. [Google Scholar] [CrossRef] [Green Version]
- Chassé, M.; Sen, R.; Goeppert, A.; Prakash, G.K.S.; Vasdev, N. Polyamine Based Solid CO2 Adsorbents for [11C]CO2 Purification and Radiosynthesis. J. CO2 Util. 2022, 64, 102137. [Google Scholar] [CrossRef]
- Duffy, I.R.; Vasdev, N.; Dahl, K. Copper(I)-Mediated 11C-Carboxylation of (Hetero)Arylstannanes. ACS Omega 2020, 5, 8242–8250. [Google Scholar] [CrossRef] [Green Version]
- Riss, P.J.; Lu, S.; Telu, S.; Aigbirhio, F.I.; Pike, V.W. CuI-Catalyzed 11C Carboxylation of Boronic Acid Esters: A Rapid and Convenient Entry to 11C-Labeled Carboxylic Acids, Esters, and Amides. Angew. Chem. Int. Ed. 2012, 51, 2698–2702. [Google Scholar] [CrossRef] [Green Version]
- Rotstein, B.H.; Hooker, J.M.; Woo, J.; Collier, T.L.; Brady, T.J.; Liang, S.H.; Vasdev, N. Synthesis of [11C]Bexarotene by Cu-Mediated [11C]Carbon Dioxide Fixation and Preliminary PET Imaging. ACS Med. Chem. Lett. 2014, 5, 668–672. [Google Scholar] [CrossRef] [Green Version]
- García-Vázquez, R.; Battisti, U.M.; Shalgunov, V.; Schäfer, G.; Barz, M.; Herth, M.M. [11C]Carboxylated Tetrazines for Facile Labeling of Trans-Cyclooctene-Functionalized PeptoBrushes. Macromol. Rapid Commun. 2022, 43, 2100655. [Google Scholar] [CrossRef]
- Goudou, F.; Gee, A.D.; Bongarzone, S. Carbon-11 Carboxylation of Terminal Alkynes with [11C]CO2. J. Label. Compd. Radiopharm. 2021, 64, 237–242. [Google Scholar] [CrossRef]
- Bongarzone, S.; Raucci, N.; Fontana, I.C.; Luzi, F.; Gee, A.D. Carbon-11 Carboxylation of Trialkoxysilane and Trimethylsilane Derivatives Using [11C]CO2. Chem. Commun. 2020, 56, 4668–4671. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; Hu, B.; Babich, J.W.; Waterhouse, N.; Dooley, M.; Ponnala, S.; Urgiles, J. A General 11C-Labeling Approach Enabled by Fluoride-Mediated Desilylation of Organosilanes. Nat. Commun. 2020, 11, 1736. [Google Scholar] [CrossRef]
- Destro, G.; Horkka, K.; Loreau, O.; Buisson, D.; Kingston, L.; Del Vecchio, A.; Schou, M.; Elmore, C.S.; Taran, F.; Cantat, T.; et al. Transition-Metal-Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angew. Chem. 2020, 132, 13592–13597. [Google Scholar] [CrossRef]
- Kong, D.; Munch, M.; Qiqige, Q.; Cooze, C.J.C.; Rotstein, B.H.; Lundgren, R.J. Fast Carbon Isotope Exchange of Carboxylic Acids Enabled by Organic Photoredox Catalysis. J. Am. Chem. Soc. 2021, 143, 2200–2206. [Google Scholar] [CrossRef] [PubMed]
- Bsharat, O.; Doyle, M.G.J.; Munch, M.; Mair, B.A.; Cooze, C.J.C.; Derdau, V.; Bauer, A.; Kong, D.; Rotstein, B.H.; Lundgren, R.J. Aldehyde-Catalysed Carboxylate Exchange in α-Amino Acids with Isotopically Labelled CO2. Nat. Chem. 2022, 14, 1367–1374. [Google Scholar] [CrossRef]
- Bongarzone, S.; Runser, A.; Taddei, C.; Dheere, A.K.H.; Gee, A.D. From [11C]CO2 to [11C]Amides: A Rapid One-Pot Synthesis via the Mitsunobu Reaction. Chem. Commun. 2017, 53, 5334–5337. [Google Scholar] [CrossRef] [Green Version]
- Mair, B.A.; Fouad, M.H.; Ismailani, U.S.; Munch, M.; Rotstein, B.H. Rhodium-Catalyzed Addition of Organozinc Iodides to Carbon-11 Isocyanates. Org. Lett. 2020, 22, 2746–2750. [Google Scholar] [CrossRef]
- Horkka, K.; Dahl, K.; Bergare, J.; Elmore, C.S.; Halldin, C.; Schou, M. Rapid and Efficient Synthesis of 11C-Labeled Benzimidazolones Using [11C]Carbon Dioxide. ChemistrySelect 2019, 4, 1846–1849. [Google Scholar] [CrossRef] [Green Version]
- Luzi, F.; Gee, A.D.; Bongarzone, S. Rapid One-Pot Radiosynthesis of [Carbonyl-11C]Formamides from Primary Amines and [11C]CO2. EJNMMI Radiopharm. Chem. 2020, 5, 20. [Google Scholar] [CrossRef]
- Dahl, K.; Collier, T.L.; Cheng, R.; Zhang, X.; Sadovski, O.; Liang, S.H.; Vasdev, N. “In-Loop” [11C]CO2 Fixation: Prototype and Proof of Concept. J. Label. Compd. Radiopharm. 2018, 61, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Downey, J.; Bongarzone, S.; Hader, S.; Gee, A.D. In-Loop Flow [11C]CO2 Fixation and Radiosynthesis of N,N′-[11C]Dibenzylurea. J. Label. Compd. Radiopharm. 2018, 61, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Del Vecchio, A.; Caillé, F.; Chevalier, A.; Loreau, O.; Horkka, K.; Halldin, C.; Schou, M.; Camus, N.; Kessler, P.; Kuhnast, B.; et al. Late-Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO2. Angew. Chem. 2018, 130, 9892–9896. [Google Scholar] [CrossRef]
- Del Vecchio, A.; Talbot, A.; Caillé, F.; Chevalier, A.; Sallustrau, A.; Loreau, O.; Destro, G.; Taran, F.; Audisio, D. Carbon Isotope Labeling of Carbamates by Late-Stage [11C], [13C] and [14C]Carbon Dioxide Incorporation. Chem. Commun. 2020, 56, 11677–11680. [Google Scholar] [CrossRef]
- Babin, V.; Sallustrau, A.; Loreau, O.; Caillé, F.; Goudet, A.; Cahuzac, H.; Del Vecchio, A.; Taran, F.; Audisio, D. A General Procedure for Carbon Isotope Labeling of Linear Urea Derivatives with Carbon Dioxide. Chem. Commun. 2021, 57, 6680–6683. [Google Scholar] [CrossRef] [PubMed]
- Liger, F.; Cadarossanesaib, F.; Iecker, T.; Tourvieille, C.; Le Bars, D.; Billard, T. 11C-Labeling: Intracyclic Incorporation of Carbon-11 into Heterocycles: 11C-Labeling: Intracyclic Incorporation of Carbon-11 into Heterocycles. Eur. J. Org. Chem. 2019, 2019, 6968–6972. [Google Scholar] [CrossRef]
- Haji Dheere, A.K.; Bongarzone, S.; Shakir, D.; Gee, A. Direct Incorporation of [11C]CO2 into Asymmetric [11C]Carbonates. J. Chem. 2018, 2018, 7641304. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, A.; Vasdev, N. Ring-Opening of Non-Activated Aziridines with [11C]CO2 via Novel Ionic Liquids. RSC Adv. 2022, 12, 21417–21421. [Google Scholar] [CrossRef] [PubMed]
- Taddei, C.; Pike, V.W. [11C]Carbon Monoxide: Advances in Production and Application to PET Radiotracer Development over the Past 15 Years. EJNMMI Radiopharm. Chem. 2019, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Antoni, G.; Långström, B.; Itsenko, O. The Development of 11C-Carbonylation Chemistry: A Systematic View. Nucl. Med. Biol. 2021, 92, 115–137. [Google Scholar] [CrossRef]
- Nielsen, D.U.; Neumann, K.T.; Lindhardt, A.T.; Skrydstrup, T. Recent Developments in Carbonylation Chemistry Using [13C]CO, [11C]CO, and [14C]CO. J. Label. Compd. Radiopharm. 2018, 61, 949–987. [Google Scholar] [CrossRef]
- Taddei, C.; Gee, A.D. Recent Progress in [11C]Carbon Dioxide ([11C]CO2) and [11C]Carbon Monoxide ([11C]CO) Chemistry. J. Label. Compd. Radiopharm. 2018, 61, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Shegani, A.; Kealey, S.; Luzi, F.; Basagni, F.; Machado, J.D.M.; Ekici, S.D.; Ferocino, A.; Gee, A.D.; Bongarzone, S. Radiosynthesis, Preclinical, and Clinical Positron Emission Tomography Studies of Carbon-11 Labeled Endogenous and Natural Exogenous Compounds. Chem. Rev. 2023, 123, 105–229. [Google Scholar] [CrossRef] [PubMed]
- Dahl, K.; Turner, T.; Vasdev, N. Radiosynthesis of a Bruton’s Tyrosine Kinase Inhibitor, [11C]Tolebrutinib, via Palladium-NiXantphos-mediated Carbonylation. J. Label. Compd. Radiopharm. 2020, 63, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, A.; Boyle, A.J.; Tong, J.; Harkness, M.B.; Garcia, A.; Tran, T.; Zhai, D.; Liu, F.; Donnelly, D.J.; Vasdev, N. Radiosynthesis of [11C]Ibrutinib via Pd-Mediated [11C]CO Carbonylation: Preliminary PET Imaging in Experimental Autoimmune Encephalomyelitis Mice. Front. Nucl. Med. 2021, 1, 772289. [Google Scholar] [CrossRef]
- Donnelly, D.J.; Preshlock, S.; Kaur, T.; Tran, T.; Wilson, T.C.; Mhanna, K.; Henderson, B.D.; Batalla, D.; Scott, P.J.H.; Shao, X. Synthesis of Radiopharmaceuticals via “In-Loop” 11C-Carbonylation as Exemplified by the Radiolabeling of Inhibitors of Bruton’s Tyrosine Kinase. Front. Nucl. Med. 2022, 1, 820235. [Google Scholar] [CrossRef]
- Langstrom, B.; Lundqvist, H. The Preparation of 11C-Methyl Iodide and Its Use in the Synthesis of 11C-Methyl-Methionine. Int. J. Appl. Radiat. Isot. 1976, 27, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Comar, D.; Cartron, J.-C.; Maziere, M.; Marazano, C. Labelling and Metabolism of Methionine-Methyl-11C. Eur. J. Nucl. Med. 1976, 1, 11–14. [Google Scholar] [CrossRef]
- Marazano, C.; Maziere, M.; Berger, G.; Comar, D. Synthesis of Methyl Iodide-11C and Formaldehyde-11C. Int. J. Appl. Radiat. Isot. 1977, 28, 49–52. [Google Scholar] [CrossRef]
- Jewett, D.M. A Simple Synthesis of [11C]Methyl Triflate. Appl. Radiat. Isot. 1992, 43, 1383–1385. [Google Scholar] [CrossRef] [Green Version]
- Mock, B. Automated C-11 Methyl Iodide/Triflate Production: Current State of the Art. Curr. Org. Chem. 2013, 17, 2119–2126. [Google Scholar] [CrossRef]
- Doi, H. Pd-Mediated Rapid Cross-Couplings Using [11C]Methyl Iodide: Groundbreaking Labeling Methods in 11C Radiochemistry: Development of Pd-Mediated Rapid C-[11C]Methylations. J. Label. Compd. Radiopharm. 2015, 58, 73–85. [Google Scholar] [CrossRef]
- Rokka, J.; Nordeman, P.; Roslin, S.; Eriksson, J. A Comparative Study on Suzuki-type 11C-methylation of Aromatic Organoboranes Performed in Two Reaction Media. J. Label. Compd. Radiopharm. 2021, 64, 447–455. [Google Scholar] [CrossRef]
- Pipal, R.W.; Stout, K.T.; Musacchio, P.Z.; Ren, S.; Graham, T.J.A.; Verhoog, S.; Gantert, L.; Lohith, T.G.; Schmitz, A.; Lee, H.S.; et al. Metallaphotoredox Aryl and Alkyl Radiomethylation for PET Ligand Discovery. Nature 2021, 589, 542–547. [Google Scholar] [CrossRef]
- Dahl, K.; Nordeman, P. 11C-Acetylation of Amines with [11C]Methyl Iodide with Bis(Cyclopentadienyldicarbonyliron) as the CO Source: 11C-Acetylation of Amines with [11C]Methyl Iodide with Bis(Cyclopentadienyldicarbonyliron) as the CO Source. Eur. J. Org. Chem. 2017, 2017, 5785–5788. [Google Scholar] [CrossRef]
- Doi, H.; Goto, M.; Sato, Y. Pd0 -Mediated Cross-Coupling of [11C]Methyl Iodide with Carboxysilane for Synthesis of [11C]Acetic Acid and Its Active Esters: 11C-Acetylation of Small, Medium, and Large Molecules. Eur. J. Org. Chem. 2021, 2021, 3970–3979. [Google Scholar] [CrossRef]
- Filp, U.; Pekošak, A.; Poot, A.J.; Windhorst, A.D. Stereocontrolled [11C]Alkylation of N-Terminal Glycine Schiff Bases To Obtain Dipeptides: Stereocontrolled [11C]Alkylation of N-Terminal Glycine Schiff Bases To Obtain Dipeptides. Eur. J. Org. Chem. 2017, 2017, 5592–5596. [Google Scholar] [CrossRef]
- Pekošak, A.; Rotstein, B.H.; Collier, T.L.; Windhorst, A.D.; Vasdev, N.; Poot, A.J. Stereoselective 11C Labeling of a “Native” Tetrapeptide by Using Asymmetric Phase-Transfer Catalyzed Alkylation Reactions. Eur. J. Org. Chem. 2017, 2017, 1019–1024. [Google Scholar] [CrossRef]
- Reiffers, S.; Vaalburg, W.; Wiegman, T.; Wynberg, H.; Woldring, M.G. Carbon-11 Labelled Methyllithium as Methyl Donating Agent: The Addition to 17-Keto Steroids. Int. J. Appl. Radiat. Isot. 1980, 31, 535–539. [Google Scholar] [CrossRef]
- Berger, G.; Maziere, M.; Prenant, C.; Sastre, J.; Comar, D. Synthesis of High Specific Activity 11C 17alpha Methyltestosterone. Int. J. Appl. Radiat. Isot. 1981, 32, 811–815. [Google Scholar] [CrossRef]
- Helbert, H.; Antunes, I.F.; Luurtsema, G.; Szymanski, W.; Feringa, B.L.; Elsinga, P.H. Cross-Coupling of [11C]Methyllithium for 11C-Labelled PET Tracer Synthesis. Chem. Commun. 2021, 57, 203–206. [Google Scholar] [CrossRef]
- Dubrin, J.; MacKay, C.; Pandow, M.L.; Wolfgang, R. Reactions of Atomic Carbon with Pi-Bonded Inorganic Molecules. J. lnorg. Nucl. Chem. 1964, 26, 2113–2122. [Google Scholar] [CrossRef]
- Xu, Y.; Qu, W. [11C]HCN Radiochemistry: Recent Progress and Future Perspectives. Eur. J. Org. Chem. 2021, 2021, 4653–4682. [Google Scholar] [CrossRef]
- Zhou, Y.-P.; Makaravage, K.J.; Brugarolas, P. Radiolabeling with [11C]HCN for Positron Emission Tomography. Nucl. Med. Biol. 2021, 102–103, 56–86. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Ogawa, M.; Okamura, T.; Gee, A.D.; Zhang, M.-R. Rapid ‘on-Column’ Preparation of Hydrogen [11C]Cyanide from [11C]Methyl Iodide via [11C]Formaldehyde. Chem. Sci. 2022, 13, 3556–3562. [Google Scholar] [CrossRef] [PubMed]
- Haskali, M.B.; Pike, V.W. [11C]Fluoroform, a Breakthrough for Versatile Labeling of PET Radiotracer Trifluoromethyl Groups in High Molar Activity. Chem. Eur. J. 2017, 23, 8156–8160. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Telu, S.; Yang, B.Y.; Haskali, M.B.; Jakobsson, J.E.; Pike, V.W. Rapid Syntheses of [11C]Arylvinyltrifluoromethanes through Treatment of (E)-Arylvinyl(Phenyl)Iodonium Tosylates with [11C]Trifluoromethylcopper(I). Org. Lett. 2020, 22, 4574–4578. [Google Scholar] [CrossRef] [PubMed]
- Young, N.J.; Pike, V.W.; Taddei, C. Rapid and Efficient Synthesis of [11C]Trifluoromethylarenes from Primary Aromatic Amines and [11C]CuCF3. ACS Omega 2020, 5, 19557–19564. [Google Scholar] [CrossRef]
- Jakobsson, J.E.; Lu, S.; Telu, S.; Pike, V.W. [11C]Carbonyl Difluoride—A New and Highly Efficient [11C]Carbonyl Group Transfer Agent. Angew. Chem. Int. Ed. 2020, 59, 7256–7260. [Google Scholar] [CrossRef]
- Jakobsson, J.E.; Telu, S.; Lu, S.; Jana, S.; Pike, V.W. Broad Scope and High-Yield Access to Unsymmetrical Acyclic [11C]Ureas for Biomedical Imaging from [11C]Carbonyl Difluoride. Chem. Eur. J. 2021, 27, 10369–10376. [Google Scholar] [CrossRef]
- Niisawa, K.; Ogawa, K.; Saito, J.; Taki, K.; Karasawa, T.; Nozaki, T. Production of No-Carrier-Added 11C-Carbon Disulfide and 11C-Hydrogen Cyanide by Microwave Discharge. Int. J. Appl. Radiat. Isot. 1984, 35, 29–33. [Google Scholar] [CrossRef]
- Miller, P.W.; Bender, D. [11C]Carbon Disulfide: A Versatile Reagent for PET Radiolabelling. Chem. Eur. J. 2012, 18, 433–436. [Google Scholar] [CrossRef]
- Haywood, T.; Kealey, S.; Sánchez-Cabezas, S.; Hall, J.J.; Allott, L.; Smith, G.; Plisson, C.; Miller, P.W. Carbon-11 Radiolabelling of Organosulfur Compounds: 11C Synthesis of the Progesterone Receptor Agonist Tanaproget. Chem. Eur. J. 2015, 21, 9034–9038. [Google Scholar] [CrossRef]
- Cesarec, S.; Edgar, F.; Lai, T.; Plisson, C.; White, A.J.P.; Miller, P.W. Synthesis of Carbon-11 Radiolabelled Transition Metal Complexes Using 11 C-Dithiocarbamates. Dalton Trans. 2022, 51, 5004–5008. [Google Scholar] [CrossRef]
- Stone-Elander, S.; Roland, P.; Halldin, C.; Hassan, M.; Seitz, R. Synthesis of [11C]Sodium Thiocyanate for In Vivo Studies of Anion Kinetics Using Positron Emission Tomography (PET). Nucl. Med. Biol. 1989, 16, 741–746. [Google Scholar] [CrossRef]
- Haywood, T.; Cesarec, S.; Kealey, S.; Plisson, C.; Miller, P.W. Ammonium [11C]Thiocyanate: Revised Preparation and Reactivity Studies of a Versatile Nucleophile for Carbon-11 Radiolabelling. Med. Chem. Commun. 2018, 9, 1311–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooker, J.M.; Schönberger, M.; Schieferstein, H.; Fowler, J.S. A Simple, Rapid Method for the Preparation of [11C]Formaldehyde. Angew. Chem. Int. Ed. 2008, 47, 5989–5992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nader, M.; Oberdorfer, F.; Herrmann, K. Production of [11C]Formaldehyde by the XeF2 Mediated Oxidation of [11C]Methanol and Its Application in the Labeling of α-(N-[11C]Methylamino)Isobutyric Acid. Appl. Radiat. Isot. 2019, 148, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Rischka, L.; Vraka, C.; Pichler, V.; Rasul, S.; Nics, L.; Gryglewski, G.; Handschuh, P.; Murgaš, M.; Godbersen, G.M.; Silberbauer, L.R.; et al. First-in-Humans Brain PET Imaging of the GluN2B-Containing N-Methyl-d-Aspartate Receptor with (R)-11C-Me-NB1. J. Nucl. Med. 2022, 63, 936–941. [Google Scholar] [CrossRef]
- Bernard-Gauthier, V.; Bailey, J.J.; Mossine, A.V.; Lindner, S.; Vomacka, L.; Aliaga, A.; Shao, X.; Quesada, C.A.; Sherman, P.; Mahringer, A.; et al. A Kinome-Wide Selective Radiolabeled TrkB/C Inhibitor for in Vitro and in Vivo Neuroimaging: Synthesis, Preclinical Evaluation, and First-in-Human. J. Med. Chem. 2017, 60, 6897–6910. [Google Scholar] [CrossRef]
- Gallezot, J.-D.; Nabulsi, N.; Henry, S.; Pracitto, R.; Planeta, B.; Ropchan, J.; Lin, S.-F.; Labaree, D.; Kapinos, M.; Shirali, A.; et al. Imaging the Enzyme 11β-Hydroxysteroid Dehydrogenase Type 1 with PET: Evaluation of the Novel Radiotracer 11C-AS2471907 in Human Brain. J. Nucl. Med. 2019, 60, 1140–1146. [Google Scholar] [CrossRef] [Green Version]
- Delva, A.; Koole, M.; Serdons, K.; Bormans, G.; Liu, L.; Bard, J.; Khetarpal, V.; Dominguez, C.; Munoz-Sanjuan, I.; Wood, A.; et al. Biodistribution and Dosimetry in Human Healthy Volunteers of the PET Radioligands [11C]CHDI-00485180-R and [11C]CHDI-00485626, Designed for Quantification of Cerebral Aggregated Mutant Huntingtin. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 48–60. [Google Scholar] [CrossRef]
- Johansen, A.; Holm, S.; Dall, B.; Keller, S.; Kristensen, J.L.; Knudsen, G.M.; Hansen, H.D. Human Biodistribution and Radiation Dosimetry of the 5-HT2A Receptor Agonist Cimbi-36 Labeled with Carbon-11 in Two Positions. EJNMMI Res. 2019, 9, 71. [Google Scholar] [CrossRef]
- Coughlin, J.M.; Du, Y.; Lesniak, W.G.; Harrington, C.K.; Brosnan, M.K.; O’Toole, R.; Zandi, A.; Sweeney, S.E.; Abdallah, R.; Wu, Y.; et al. First-in-Human Use of 11C-CPPC with Positron Emission Tomography for Imaging the Macrophage Colony-Stimulating Factor 1 Receptor. EJNMMI Res. 2022, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, M.; Lohith, T.G.; Shrestha, S.; Telu, S.; Zoghbi, S.S.; Castellano, S.; Taliani, S.; Da Settimo, F.; Fujita, M.; Pike, V.W.; et al. 11C-ER176, a Radioligand for 18-KDa Translocator Protein, Has Adequate Sensitivity to Robustly Image All Three Affinity Genotypes in Human Brain. J. Nucl. Med. 2017, 58, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brier, M. Phase 1 Evaluation of 11C-CS1P1 to Assess Safety and Dosimetry in Human Participants. J. Nucl. Med. 2022, 64, 1775–1782. [Google Scholar] [CrossRef]
- Antoni, G.; Lubberink, M.; Sörensen, J.; Lindström, E.; Elgland, M.; Eriksson, O.; Hultström, M.; Frithiof, R.; Wanhainen, A.; Sigfridsson, J.; et al. In Vivo Visualization and Quantification of Neutrophil Elastase in Lungs of COVID-19 Patients—A First-In-Human Positron Emission Tomography Study with 11C-GW457427. J. Nucl. Med. 2022, 64, 263974. [Google Scholar] [CrossRef]
- Van Weehaeghe, D.; Koole, M.; Schmidt, M.E.; Deman, S.; Jacobs, A.H.; Souche, E.; Serdons, K.; Sunaert, S.; Bormans, G.; Vandenberghe, W.; et al. [11C]JNJ54173717, a Novel P2X7 Receptor Radioligand as Marker for Neuroinflammation: Human Biodistribution, Dosimetry, Brain Kinetic Modelling and Quantification of Brain P2X7 Receptors in Patients with Parkinson’s Disease and Healthy Volunteers. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Nakajima, W.; Hatano, M.; Shibata, Y.; Kuroki, Y.; Arisawa, T.; Serizawa, A.; Sano, A.; Kogami, S.; Yamanoue, T.; et al. Visualization of AMPA Receptors in Living Human Brain with Positron Emission Tomography. Nat. Med. 2020, 26, 281–288. [Google Scholar] [CrossRef]
- Naganawa, M.; Nabulsi, N.; Henry, S.; Matuskey, D.; Lin, S.-F.; Slieker, L.; Schwarz, A.J.; Kant, N.; Jesudason, C.; Ruley, K.; et al. First-in-Human Assessment of 11C-LSN3172176, an M1 Muscarinic Acetylcholine Receptor PET Radiotracer. J. Nucl. Med. 2021, 62, 553–560. [Google Scholar] [CrossRef]
- Shrestha, S.; Kim, M.-J.; Eldridge, M.; Lehmann, M.L.; Frankland, M.; Liow, J.-S.; Yu, Z.-X.; Cortes-Salva, M.; Telu, S.; Henter, I.D.; et al. PET Measurement of Cyclooxygenase-2 Using a Novel Radioligand: Upregulation in Primate Neuroinflammation and First-in-Human Study. J. Neuroinflammation 2020, 17, 140. [Google Scholar] [CrossRef]
- Du, Y.; Coughlin, J.M.; Brosnan, M.K.; Chen, A.; Shinehouse, L.K.; Abdallah, R.; Lodge, M.A.; Mathews, W.B.; Liu, C.; Wu, Y.; et al. PET Imaging of the Cannabinoid Receptor Type 2 in Humans Using [11C]MDTC. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Van der Weijden, C.W.J.; Meilof, J.F.; van der Hoorn, A.; Zhu, J.; Wu, C.; Wang, Y.; Willemsen, A.T.M.; Dierckx, R.A.J.O.; Lammertsma, A.A.; de Vries, E.F.J. Quantitative Assessment of Myelin Density Using [11C]MeDAS PET in Patients with Multiple Sclerosis: A First-in-Human Study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3492–3507. [Google Scholar] [CrossRef]
- Kubota, M.; Seki, C.; Kimura, Y.; Takahata, K.; Shimada, H.; Takado, Y.; Matsuoka, K.; Tagai, K.; Sano, Y.; Yamamoto, Y.; et al. A First-in-Human Study of 11C-MTP38, a Novel PET Ligand for Phosphodiesterase 7. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2846–2855. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bedoya, C.A.; Ordonez, A.A.; Werner, R.A.; Plyku, D.; Klunk, M.H.; Leal, J.; Lesniak, W.G.; Holt, D.P.; Dannals, R.F.; Higuchi, T.; et al. 11C-PABA as a PET Radiotracer for Functional Renal Imaging: Preclinical and First-in-Human Study. J. Nucl. Med. 2020, 61, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Sakata, M.; Ishibashi, K.; Imai, M.; Wagatsuma, K.; Ishii, K.; Zhou, X.; de Vries, E.F.J.; Elsinga, P.H.; Ishiwata, K.; Toyohara, J. Initial Evaluation of an Adenosine A2A Receptor Ligand, 11C-Preladenant, in Healthy Human Subjects. J. Nucl. Med. 2017, 58, 1464–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-J.; Lee, J.-H.; Juarez Anaya, F.; Hong, J.; Miller, W.; Telu, S.; Singh, P.; Cortes, M.Y.; Henry, K.; Tye, G.L.; et al. First-in-Human Evaluation of [11C]PS13, a Novel PET Radioligand, to Quantify Cyclooxygenase-1 in the Brain. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3143–3151. [Google Scholar] [CrossRef] [PubMed]
- Tucker, E.W.; Guglieri-Lopez, B.; Ordonez, A.A.; Ritchie, B.; Klunk, M.H.; Sharma, R.; Chang, Y.S.; Sanchez-Bautista, J.; Frey, S.; Lodge, M.A.; et al. Noninvasive 11C-Rifampin Positron Emission Tomography Reveals Drug Biodistribution in Tuberculous Meningitis. Sci. Transl. Med. 2018, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Lohith, T.G.; Tsujikawa, T.; Siméon, F.G.; Veronese, M.; Zoghbi, S.S.; Lyoo, C.H.; Kimura, Y.; Morse, C.L.; Pike, V.W.; Fujita, M.; et al. Comparison of Two PET Radioligands, [11C]FPEB and [11C]SP203, for Quantification of Metabotropic Glutamate Receptor 5 in Human Brain. J. Cereb. Blood Flow Metab. 2017, 37, 2458–2470. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.K.; Jacome, D.A.; Cho, J.K.; Tu, V.; Young, A.; Dominguez, T.; Northrup, J.D.; Etersque, J.M.; Lee, H.S.; Ruff, A.; et al. Imaging Sensitive and Drug-Resistant Bacterial Infection with [11C]-Trimethoprim. J. Clin. Investig. 2022, 132, e156679. [Google Scholar] [CrossRef]
- Watanabe, Y.; Mawatari, A.; Aita, K.; Sato, Y.; Wada, Y.; Nakaoka, T.; Onoe, K.; Yamano, E.; Akamatsu, G.; Ohnishi, A.; et al. PET Imaging of 11C-Labeled Thiamine Tetrahydrofurfuryl Disulfide, Vitamin B1 Derivative: First-in-Human Study. Biochem. Biophys. Res. Commun. 2021, 555, 7–12. [Google Scholar] [CrossRef]
- Wong, D.F.; Comley, R.A.; Kuwabara, H.; Rosenberg, P.B.; Resnick, S.M.; Ostrowitzki, S.; Vozzi, C.; Boess, F.; Oh, E.; Lyketsos, C.G.; et al. Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects. J. Nucl. Med. 2018, 59, 1869–1876. [Google Scholar] [CrossRef] [Green Version]
- Masdeu, J.C.; Pascual, B.; Fujita, M. Imaging Neuroinflammation in Neurodegenerative Disorders. J. Nucl. Med. 2022, 63, 45S–52S. [Google Scholar] [CrossRef]
- Chen, Z.; Haider, A.; Chen, J.; Xiao, Z.; Gobbi, L.; Honer, M.; Grether, U.; Arnold, S.E.; Josephson, L.; Liang, S.H. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J. Med. Chem. 2021, 64, 17656–17689. [Google Scholar] [CrossRef] [PubMed]
- Janssen, B.; Vugts, D.; Windhorst, A.; Mach, R. PET Imaging of Microglial Activation—Beyond Targeting TSPO. Molecules 2018, 23, 607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, P.; Chaney, A.M.; Carlson, M.L.; Jackson, I.M.; Rao, A.; James, M.L. Neuroinflammation PET Imaging: Current Opinion and Future Directions. J. Nucl. Med. 2020, 61, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswami, V.; Dahl, K.; Bernard-Gauthier, V.; Josephson, L.; Cumming, P.; Vasdev, N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol. Imaging 2018, 17, 1536012118792317. [Google Scholar] [CrossRef]
Tracer | Target | 11C-Building Block | Year | Ref. |
---|---|---|---|---|
[11C]ER176 | TSPO | [11C]CH3I | 2017 | [92] |
[11C]K-2 | AMPA receptors | [11C]CH3I | 2020 | [96] |
[11C]rifampin | Tuberculosis meningitis | [11C]CH3I | 2018 | [105] |
[11C]MC1 | COX-2 | [11C]CH3I | 2020 | [98] |
(R)-[11C]IPMICF16 | TrkB/C receptors | [11C]CH3I | 2017 | [87] |
[11C]RO6924963 | Tau | [11C]CH3I | 2018 | [109] |
[11C]RO6931643 | Tau | [11C]CH3I | 2018 | [109] |
(R)-[11C]Me-NB1 | GluN2B-containing NMDA receptors | [11C]CH3I | 2022 | [86] |
[11C]Preladenant | Adenosine A2A receptors | [11C]CH3I | 2017 | [103] |
[11C]TMP | Bacterial infection | [11C]CH3I | 2021 | [107] |
[11C]PS13 | COX-1 | [11C]CH3I | 2020 | [104] |
[11C]TTFD | Drug pharmacokinetics | [11C]CH3I | 2021 | [108] |
[11C]LSN3172176 | M1 muscarinic acetylcholine receptors | [11C]CH3I | 2020 | [97] |
[11C]MeDAS | Myelin | [11C]MeOTf | 2022 | [100] |
[11C]AS2471907 | 11ß-hydroxysteroid dehydrogenase type 1 | [11C]MeOTf | 2019 | [88] |
[11C]CPPC | CSF1 receptor | [11C]MeOTf | 2022 | [91] |
[11C]CS1P1 | Sphingosine-1-phoshate receptor 1 | [11C]MeOTf | 2022 | [93] |
[11C]CHDI-00485180-R | mHTT | [11C]MeOTf | 2022 | [89] |
[11C]GW457427 | Neutrophil elastase | [11C]MeOTf | 2022 | [94] |
[11C]MDTC | CB2 receptor | [11C]MeOTf | 2022 | [99] |
[11C]Cimbi-36 | 5-HT2A receptor | [11C]MeOTf | 2019 | [90] |
[11C]CHDI-00485626 | mHTT | [11C]MeOTf | 2022 | [89] |
[11C]JNJ54173717 | P2X7 receptor | [11C]MeOTf | 2019 | [95] |
[11C]FPEB | mGluR5 | [11C]HCN | 2017 | [106] |
[11C]SP203 | mGluR5 | [11C]HCN | 2017 | [106] |
[11C]MTP38 | PDE7 | [11C]HCN | 2021 | [101] |
[11C]PABA | Renal imaging | [11C]CO2 | 2020 | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pees, A.; Chassé, M.; Lindberg, A.; Vasdev, N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023, 28, 931. https://doi.org/10.3390/molecules28030931
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules. 2023; 28(3):931. https://doi.org/10.3390/molecules28030931
Chicago/Turabian StylePees, Anna, Melissa Chassé, Anton Lindberg, and Neil Vasdev. 2023. "Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies" Molecules 28, no. 3: 931. https://doi.org/10.3390/molecules28030931
APA StylePees, A., Chassé, M., Lindberg, A., & Vasdev, N. (2023). Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules, 28(3), 931. https://doi.org/10.3390/molecules28030931