Synthesis and Optical Properties of a Series of Push-Pull Dyes Based on Pyrene as the Electron Donor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Dye 1–Dye 15
2.2. Optical Properties
2.3. Solvatochromism
2.4. Photoluminescence Properties
2.5. Thermal Properties
3. Materials and Methods
3.1. General Information
3.2. Synthesis of the Dyes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bureš, F. Fundamental Aspects of Property Tuning in Push–Pull Molecules. RSC Adv. 2014, 4, 58826–58851. [Google Scholar] [CrossRef]
- Kulhánek, J.; Bureš, F.; Pytela, O.; Mikysek, T.; Ludvík, J.; Růžička, A. Push-Pull Molecules with a Systematically Extended π-Conjugated System Featuring 4,5-Dicyanoimidazole. Dye. Pigment. 2010, 85, 57–65. [Google Scholar] [CrossRef]
- Kundu, R.; Kulshreshtha, C. Design, Synthesis and Electronic Properties of Push–Pull–Push Type Dye. RSC Adv. 2015, 5, 77460–77468. [Google Scholar] [CrossRef]
- Huo, F.; Zhang, H.; Chen, Z.; Qiu, L.; Liu, J.; Bo, S.; Kityk, I.V. Novel Nonlinear Optical Push–Pull Fluorene Dyes Chromophore as Promising Materials for Telecommunications. J. Mater. Sci. Mater. Electron. 2019, 30, 12180–12185. [Google Scholar] [CrossRef]
- Raimundo, J.-M.; Blanchard, P.; Gallego-Planas, N.; Mercier, N.; Ledoux-Rak, I.; Hierle, R.; Roncali, J. Design and Synthesis of Push−Pull Chromophores for Second-Order Nonlinear Optics Derived from Rigidified Thiophene-Based π-Conjugating Spacers. J. Org. Chem. 2002, 67, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Parsa, Z.; Naghavi, S.S.; Safari, N. Designing Push–Pull Porphyrins for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. A 2018, 122, 5870–5877. [Google Scholar] [CrossRef]
- Jeux, V.; Segut, O.; Demeter, D.; Alévêque, O.; Leriche, P.; Roncali, J. Push–Pull Triphenylamine Chromophore Syntheses and Optoelectronic Characterizations. ChemPlusChem 2015, 80, 697–703. [Google Scholar] [CrossRef]
- Dumur, F.; Mayer, C.R.; Dumas, E.; Miomandre, F.; Frigoli, M.; Sécheresse, F. New Chelating Stilbazonium-Like Dyes from Michler’s Ketone. Org. Lett. 2008, 10, 321–324. [Google Scholar] [CrossRef]
- Inoue, K.; Kawakami, R.; Murakami, M.; Nakayama, T.; Yamamoto, S.; Inoue, K.; Tsuda, T.; Sayama, K.; Imamura, T.; Kaneno, D.; et al. Synthesis and Photophysical Properties of a New Push–Pull Pyrene Dye with Green-to-Far-Red Emission and Its Application to Human Cellular and Skin Tissue Imaging. J. Mater. Chem. B 2022, 10, 1641–1649. [Google Scholar] [CrossRef]
- Hosseinnejad, T.; Omrani-Pachin, M. New Designed Push-Pull Organic Dyes Based on the Conjugated π-Spacers for Application in Dye-Sensitized Solar Cells: A Computational Chemistry Study. Bull. Mater. Sci. 2022, 45, 156. [Google Scholar] [CrossRef]
- Niko, Y.; Klymchenko, A.S. Emerging Solvatochromic Push–Pull Dyes for Monitoring the Lipid Order of Biomembranes in Live Cells. J. Biochem. 2021, 170, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Coe, B.J.; Rusanova, D.; Joshi, V.D.; Sánchez, S.; Vávra, J.; Khobragade, D.; Severa, L.; Císařová, I.; Šaman, D.; Pohl, R.; et al. Helquat Dyes: Helicene-like Push–Pull Systems with Large Second-Order Nonlinear Optical Responses. J. Org. Chem. 2016, 81, 1912–1920. [Google Scholar] [CrossRef]
- Gautam, P.; Yu, C.P.; Zhang, G.; Hillier, V.E.; Chan, J.M.W. Pulling with the Pentafluorosulfanyl Acceptor in Push–Pull Dyes. J. Org. Chem. 2017, 82, 11008–11020. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kim, J.O.; Medina, S.; Ramírez, F.J.; Mayorga Burrezo, P.; Wu, S.; Lim, Z.L.; Lambert, C.; Casado, J.; Kim, D.; et al. Push–Pull-Type Polychlorotriphenylmethyl Radicals: New Two-Photon Absorbers and Dyes for Generation of Photo-Charges. Chem. Eur. J. 2017, 23, 7698–7702. [Google Scholar] [CrossRef] [PubMed]
- Hadsadee, S.; Rattanawan, R.; Tarsang, R.; Kungwan, N.; Jungsuttiwong, S. Push-Pull N-Annulated Perylene-Based Sensitizers for Dye-Sensitized Solar Cells: Theoretical Property Tuning by DFT/TDDFT. ChemistrySelect 2017, 2, 9829–9837. [Google Scholar] [CrossRef]
- Pigot, C.; Brunel, D.; Dumur, F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022, 27, 5976. [Google Scholar] [CrossRef]
- Shaya, J.; Fontaine-Vive, F.; Michel, B.Y.; Burger, A. Rational Design of Push–Pull Fluorene Dyes: Synthesis and Structure–Photophysics Relationship. Chem. Eur. J. 2016, 22, 10627–10637. [Google Scholar] [CrossRef]
- Cesaretti, A.; Foggi, P.; Fortuna, C.G.; Elisei, F.; Spalletti, A.; Carlotti, B. Uncovering Structure–Property Relationships in Push–Pull Chromophores: A Promising Route to Large Hyperpolarizability and Two-Photon Absorption. J. Phys. Chem. C 2020, 124, 15739–15748. [Google Scholar] [CrossRef]
- Keerthi, A.; Sriramulu, D.; Liu, Y.; Yuan Timothy, C.T.; Wang, Q.; Valiyaveettil, S. Architectural Influence of Carbazole Push–Pull–Pull Dyes on Dye Sensitized Solar Cells. Dye. Pigment. 2013, 99, 787–797. [Google Scholar] [CrossRef]
- Frigoli, M.; Marrot, J.; Gentili, P.L.; Jacquemin, D.; Vagnini, M.; Pannacci, D.; Ortica, F. P-Type Photochromism of New Helical Naphthopyrans: Synthesis and Photochemical, Photophysical and Theoretical Study. ChemPhysChem 2015, 16, 2447–2458. [Google Scholar] [CrossRef]
- Broman, S.L.; Andersen, C.L.; Jousselin-Oba, T.; Mansø, M.; Hammerich, O.; Frigoli, M.; Nielsen, M.B. Tetraceno[2,1,12,11-Opqra]Tetracene-Extended Tetrathiafulvalene—Redox-Controlled Generation of a Large PAH Core. Org. Biomol. Chem. 2017, 15, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Frigoli, M.; Maurel, F.; Berthet, J.; Delbaere, S.; Marrot, J.; Oliveira, M.M. The Control of Photochromism of [3H]-Naphthopyran Derivatives with Intramolecular CH−π Bonds. Org. Lett. 2012, 14, 4150–4153. [Google Scholar] [CrossRef]
- Jousselin-Oba, T.; Mamada, M.; Wright, K.; Marrot, J.; Adachi, C.; Yassar, A.; Frigoli, M. Synthesis, Aromaticity, and Application of Peri-Pentacenopentacene: Localized Representation of Benzenoid Aromatic Compounds. Angew. Chem. Int. Ed. 2022, 61, e202112794. [Google Scholar] [CrossRef]
- Sbargoud, K.; Mamada, M.; Marrot, J.; Tokito, S.; Yassar, A.; Frigoli, M. Diindeno[1,2-b:2′,1′-n]Perylene: A Closed Shell Related Chichibabin’s Hydrocarbon, the Synthesis, Molecular Packing, Electronic and Charge Transport Properties. Chem. Sci. 2015, 6, 3402–3409. [Google Scholar] [CrossRef] [PubMed]
- Delbaere, S.; Micheau, J.-C.; Frigoli, M.; Mehl, G.H.; Vermeersch, G. Mechanistic Understanding of the Photochromism of a Hybrid Dithienylethene–Naphthopyran System by NMR Spectroscopy. J. Phys. Org. Chem. 2007, 20, 929–935. [Google Scholar] [CrossRef]
- Sbargoud, K.; Mamada, M.; Jousselin-Oba, T.; Takeda, Y.; Tokito, S.; Yassar, A.; Marrot, J.; Frigoli, M. Low Bandgap Bistetracene-Based Organic Semiconductors Exhibiting Air Stability, High Aromaticity and Mobility. Chem. Eur. J. 2017, 23, 5076–5080. [Google Scholar] [CrossRef]
- Noirbent, G.; Pigot, C.; Bui, T.-T.; Péralta, S.; Nechab, M.; Gigmes, D.; Dumur, F. Synthesis, Optical and Electrochemical Properties of a Series of Push-Pull Dyes Based on the 2-(3-Cyano-4,5,5-Trimethylfuran-2(5H)-Ylidene)Malononitrile (TCF) Acceptor. Dye. Pigment. 2021, 184, 108807. [Google Scholar] [CrossRef]
- Birajdar, S.S.; Bhardwaj, K.; Kumar, R.; Kobaisi, M.A.; Bhosale, S.V.; Bhosale, S.V. An Efficient Electron Transport Properties of Fullerene Functionalized with Tricyanovinyldihydrofuran (TCF). Mater. Res. Bull. 2022, 147, 111644. [Google Scholar] [CrossRef]
- Li, S.; Li, M.; Qin, J.; Tong, M.; Chen, X.; Liu, T.; Fu, Y.; Wu, S.; Su, Z. Synthesis, Crystal Structures and Nonlinear Optical Properties of Three TCF-Based Chromophores. CrystEngComm 2009, 11, 589–596. [Google Scholar] [CrossRef]
- Noirbent, G.; Pigot, C.; Bui, T.-T.; Péralta, S.; Nechab, M.; Gigmes, D.; Dumur, F. Dyes with Tunable Absorption Properties from the Visible to the near Infrared Range: 2,4,5,7-Tetranitrofluorene (TNF) as a Unique Electron Acceptor. Dye. Pigment. 2021, 189, 109250. [Google Scholar] [CrossRef]
- Noirbent, G.; Dumur, F. Recent Advances on Nitrofluorene Derivatives: Versatile Electron Acceptors to Create Dyes Absorbing from the Visible to the Near and Far Infrared Region. Materials 2018, 11, 2425. [Google Scholar] [CrossRef] [PubMed]
- Pigot, C.; Noirbent, G.; Bui, T.-T.; Péralta, S.; Gigmes, D.; Nechab, M.; Dumur, F. Push-Pull Chromophores Based on the Naphthalene Scaffold: Potential Candidates for Optoelectronic Applications. Materials 2019, 12, 1342. [Google Scholar] [CrossRef] [PubMed]
- Pigot, C.; Péralta, S.; Bui, T.-T.; Nechab, M.; Dumur, F. Push-Pull Dyes Based on Michler’s Aldehyde: Design and Characterization of the Optical and Electrochemical Properties. Dye. Pigment. 2022, 202, 110278. [Google Scholar] [CrossRef]
- Noirbent, G.; Brunel, D.; Bui, T.-T.; Péralta, S.; Aubert, P.-H.; Gigmes, D.; Dumur, F. D–A Dyads and A–D–A Triads Based on Ferrocene: Push–Pull Dyes with Unusual Behaviours in Solution. New J. Chem. 2021, 45, 13475–13498. [Google Scholar] [CrossRef]
- Pigot, C.; Noirbent, G.; Bui, T.-T.; Péralta, S.; Duval, S.; Nechab, M.; Gigmes, D.; Dumur, F. Synthesis, Optical and Electrochemical Properties of a Series of Push-Pull Dyes Based on the 4,4-Bis(4-Methoxy Phenyl)Butadienyl Donor. Dye. Pigment. 2021, 194, 109552. [Google Scholar] [CrossRef]
- Pigot, C.; Noirbent, G.; Bui, T.-T.; Péralta, S.; Duval, S.; Gigmes, D.; Nechab, M.; Dumur, F. Synthesis, and the Optical and Electrochemical Properties of a Series of Push–Pull Dyes Based on the 4-(9-Ethyl-9H-Carbazol-3-Yl)-4-Phenylbuta-1,3-Dienyl Donor. New J. Chem. 2021, 45, 5808–5821. [Google Scholar] [CrossRef]
- Xiao, P.; Dumur, F.; Bui, T.T.; Goubard, F.; Graff, B.; Morlet-Savary, F.; Fouassier, J.P.; Gigmes, D.; Lalevée, J. Panchromatic Photopolymerizable Cationic Films Using Indoline and Squaraine Dye Based Photoinitiating Systems. ACS Macro Lett. 2013, 2, 736–740. [Google Scholar] [CrossRef]
- Zhang, J.; Zivic, N.; Dumur, F.; Xiao, P.; Graff, B.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. A Benzophenone-Naphthalimide Derivative as Versatile Photoinitiator of Polymerization under near UV and Visible Lights. J. Polym. Sci. Part Polym. Chem. 2015, 53, 445–451. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Dumur, F.; Vilà, N.; Graff, B.; Mayer, C.R.; Fouassier, J.P.; Gigmes, D.; Lalevée, J. A Multicolor Photoinitiator for Cationic Polymerization and Interpenetrated Polymer Network Synthesis: 2,7-Di-Tert-Butyldimethyldihydropyrene. Macromol. Rapid Commun. 2013, 34, 1104–1109. [Google Scholar] [CrossRef]
- Xiao, P.; Dumur, F.; Thirion, D.; Fagour, S.; Vacher, A.; Sallenave, X.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P.; Gigmes, D.; et al. Multicolor Photoinitiators for Radical and Cationic Polymerization: Monofunctional vs Polyfunctional Thiophene Derivatives. Macromolecules 2013, 46, 6786–6793. [Google Scholar] [CrossRef]
- Xiao, P.; Frigoli, M.; Dumur, F.; Graff, B.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Julolidine or Fluorenone Based Push–Pull Dyes for Polymerization upon Soft Polychromatic Visible Light or Green Light. Macromolecules 2014, 47, 106–112. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Dumur, F.; Graff, B.; Morlet-Savary, F.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Push–Pull (Thio)Barbituric Acid Derivatives in Dye Photosensitized Radical and Cationic Polymerization Reactions under 457/473 Nm Laser Beams or Blue LEDs. Polym. Chem. 2013, 4, 3866–3875. [Google Scholar] [CrossRef]
- Dumur, F. Recent Advances on Visible Light Photoinitiators of Polymerization Based on Indane-1,3-Dione and Related Derivatives. Eur. Polym. J. 2021, 143, 110178. [Google Scholar] [CrossRef]
- Mohammed, N.; Wiles, A.A.; Belsley, M.; Fernandes, S.S.M.; Cariello, M.; Rotello, V.M.; Raposo, M.M.M.; Cooke, G. Synthesis and Characterisation of Push–Pull Flavin Dyes with Efficient Second Harmonic Generation (SHG) Properties. RSC Adv. 2017, 7, 24462–24469. [Google Scholar] [CrossRef]
- Yahya, M.; Nural, Y.; Seferoğlu, Z. Recent Advances in the Nonlinear Optical (NLO) Properties of Phthalocyanines: A Review. Dye. Pigment. 2022, 198, 109960. [Google Scholar] [CrossRef]
- Han, W.; Shi, Y.; Xue, T.; Wang, T. Synthesis and Electrochemical, Linear and Third-Order Nonlinear Optical Properties of Ferrocene-Based D-π-A Dyes as Novel Photoredox Catalysts in Photopolymerization under Visible LED Irradiations. Dye. Pigment. 2019, 166, 140–148. [Google Scholar] [CrossRef]
- Han, P.; Wang, D.; Gao, H.; Zhang, J.; Xing, Y.; Yang, Z.; Cao, H.; He, W. Third-Order Nonlinear Optical Properties of Cyanine Dyes with Click Chemistry Modification. Dye. Pigment. 2018, 149, 8–15. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Liu, C.; Shi, Y.; Zhao, M. Synthesis of Four Pyrene-Containing Chalcone Derivatives: Achieving Excellent Third-Order Nonlinear Optical Properties by Optimizing Halopyridines. Opt. Laser Technol. 2019, 109, 600–607. [Google Scholar] [CrossRef]
- Centore, R.; Fusco, S.; Peluso, A.; Capobianco, A.; Stolte, M.; Archetti, G.; Kuball, H.-G. Push–Pull Azo-Chromophores Containing Two Fused Pentatomic Heterocycles and Their Nonlinear Optical Properties. Eur. J. Org. Chem. 2009, 2009, 3535–3543. [Google Scholar] [CrossRef]
- Farré, Y.; Raissi, M.; Fihey, A.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Odobel, F. Synthesis and Properties of New Benzothiadiazole-Based Push-Pull Dyes for p-Type Dye Sensitized Solar Cells. Dye. Pigment. 2018, 148, 154–166. [Google Scholar] [CrossRef]
- Yella, A.; Mai, C.-L.; Zakeeruddin, S.M.; Chang, S.-N.; Hsieh, C.-H.; Yeh, C.-Y.; Grätzel, M. Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye-Sensitized Solar Cells: The Role of Benzene Spacers. Angew. Chem. Int. Ed. 2014, 53, 2973–2977. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Alsaleh, A.; Trinh, O.; D’Souza, F.; Wang, H. β-Functionalized Push–Pull Opp-Dibenzoporphyrins as Sensitizers for Dye-Sensitized Solar Cells: The Push Group Effect. J. Mater. Chem. A 2021, 9, 27692–27700. [Google Scholar] [CrossRef]
- Qian, X.; Yan, R.; Shao, L.; Li, H.; Wang, X.; Hou, L. Triindole-Modified Push–Pull Type Porphyrin Dyes for Dye-Sensitized Solar Cells. Dye. Pigment. 2016, 134, 434–441. [Google Scholar] [CrossRef]
- Lu, J.; Liu, S.; Wang, M. Push-Pull Zinc Porphyrins as Light-Harvesters for Efficient Dye-Sensitized Solar Cells. Front. Chem. 2018, 6, 541. [Google Scholar] [CrossRef] [PubMed]
- Boschloo, G. Improving the Performance of Dye-Sensitized Solar Cells. Front. Chem. 2019, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Nalzala Thomas, M.R.; Kanniyambatti Lourdusamy, V.J.; Dhandayuthapani, A.A.; Jayakumar, V. Non-Metallic Organic Dyes as Photosensitizers for Dye-Sensitized Solar Cells: A Review. Environ. Sci. Pollut. Res. 2021, 28, 28911–28925. [Google Scholar] [CrossRef]
- Zdyb, A.; Krawczak, E. Organic Dyes in Dye-Sensitized Solar Cells Featuring Back Reflector. Energies 2021, 14, 5529. [Google Scholar] [CrossRef]
- Thooft, A.M.; Cassaidy, K.; VanVeller, B. A Small Push–Pull Fluorophore for Turn-on Fluorescence. J. Org. Chem. 2017, 82, 8842–8847. [Google Scholar] [CrossRef]
- Karpenko, I.A.; Niko, Y.; Yakubovskyi, V.P.; Gerasov, A.O.; Bonnet, D.; Kovtun, Y.P.; Klymchenko, A.S. Push–Pull Dioxaborine as Fluorescent Molecular Rotor: Far-Red Fluorogenic Probe for Ligand–Receptor Interactions. J. Mater. Chem. C 2016, 4, 3002–3009. [Google Scholar] [CrossRef]
- Ayyavoo, K.; Velusamy, P. Pyrene Based Materials as Fluorescent Probes in Chemical and Biological Fields. New J. Chem. 2021, 45, 10997–11017. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Li, M.; Yang, Y.; Wang, Y.; Yin, H.; Liu, J.; Jia, B.; Wu, X. A Simple Pyrene-Based Fluorescent Probe for Highly Selective Detection of Formaldehyde and Its Application in Live-Cell Imaging. Anal. Chim. Acta 2018, 1033, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Z.; Huang, Z.; Lei, X.; Wang, Y.; Li, L.; Yang, L.; Liu, H.; Sun, F.; Ma, L.-J. A Pyrene-Based PH Fluorescence Probe with Continuous Multiple Responses under Acidic Conditions and Its Application for Environmental Water Systems and Cells. J. Photochem. Photobiol. Chem. 2021, 418, 113438. [Google Scholar] [CrossRef]
- Chao, J.; Li, M.; Zhang, Y.; Yin, C.; Huo, F. A Fluorescent Probe Based on Pyrene Ring for Detecting Cys and Its Application in Biology. J. Fluoresc. 2019, 29, 1241–1248. [Google Scholar] [CrossRef]
- Yu, C.; Yang, M.; Cui, S.; Ji, Y.; Zhang, J. A Ratiometric Selective Fluorescent Probe Derived from Pyrene for Cu2+ Detection. Chemosensors 2022, 10, 207. [Google Scholar] [CrossRef]
- Chen, G.; Qiu, Z.; Tan, J.-H.; Chen, W.-C.; Zhou, P.; Xing, L.; Ji, S.; Qin, Y.; Zhao, Z.; Huo, Y. Deep-Blue Organic Light-Emitting Diodes Based on Push-Pull π-Extended Imidazole-Fluorene Hybrids. Dye. Pigment. 2021, 184, 108754. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Kvashnin, Y.A.; Bogdanov, P.I.; Medvedeva, M.V.; Svalova, T.S.; Kozitsina, A.N.; Samsonova, L.G.; Degtyarenko, K.M.; Grigoryev, D.V.; Kurtcevich, A.E.; et al. The Effect of Molecular Structure on the Efficiency of 1,4-Diazine–Based D–(π)–A Push-Pull Systems for Non-Doped OLED Applications. Dye. Pigment. 2021, 187, 109124. [Google Scholar] [CrossRef]
- Rémond, M.; Hwang, J.; Kim, J.; Kim, S.; Kim, D.; Bucher, C.; Bretonnière, Y.; Andraud, C.; Kim, E. Push–Pull Dyes for Yellow to NIR Emitting Electrochemical Cells. Adv. Funct. Mater. 2020, 30, 2004831. [Google Scholar] [CrossRef]
- Abeywickrama, C.S.; Wijesinghe, K.J.; Stahelin, R.V.; Pang, Y. Red-Emitting Pyrene–Benzothiazolium: Unexpected Selectivity to Lysosomes for Real-Time Cell Imaging without Alkalinizing Effect. Chem. Commun. 2019, 55, 3469–3472. [Google Scholar] [CrossRef]
- Abeywickrama, C.S.; Wijesinghe, K.J.; Stahelin, R.V.; Pang, Y. Bright Red-Emitting Pyrene Derivatives with a Large Stokes Shift for Nucleus Staining. Chem. Commun. 2017, 53, 5886–5889. [Google Scholar] [CrossRef]
- Chakraborty, D.; Lischka, H.; Hase, W.L. Dynamics of Pyrene-Dimer Association and Ensuing Pyrene-Dimer Dissociation. J. Phys. Chem. A 2020, 124, 8907–8917. [Google Scholar] [CrossRef]
- Sabbah, H.; Biennier, L.; Klippenstein, S.J.; Sims, I.R.; Rowe, B.R. Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization. J. Phys. Chem. Lett. 2010, 1, 2962–2967. [Google Scholar] [CrossRef]
- Kholghy, M.R.; Kelesidis, G.A.; Pratsinis, S.E. Reactive Polycyclic Aromatic Hydrocarbon Dimerization Drives Soot Nucleation. Phys. Chem. Chem. Phys. 2018, 20, 10926–10938. [Google Scholar] [CrossRef] [PubMed]
- Tehfe, M.-A.; Dumur, F.; Contal, E.; Graff, B.; Morlet-Savary, F.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. New Insights into Radical and Cationic Polymerizations upon Visible Light Exposure: Role of Novel Photoinitiator Systems Based on the Pyrene Chromophore. Polym. Chem. 2013, 4, 1625–1634. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Dumur, F.; Graff, B.; Morlet-Savary, F.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Design of New Type I and Type II Photoinitiators Possessing Highly Coupled Pyrene–Ketone Moieties. Polym. Chem. 2013, 4, 2313–2324. [Google Scholar] [CrossRef]
- Telitel, S.; Dumur, F.; Faury, T.; Graff, B.; Tehfe, M.-A.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. New Core-Pyrene π Structure Organophotocatalysts Usable as Highly Efficient Photoinitiators. Beilstein J. Org. Chem. 2013, 9, 877–890. [Google Scholar] [CrossRef]
- Dumur, F. Recent Advances on Pyrene-Based Photoinitiators of Polymerization. Eur. Polym. J. 2020, 126, 109564. [Google Scholar] [CrossRef]
- Pigot, C.; Noirbent, G.; Brunel, D.; Dumur, F. Recent Advances on Push–Pull Organic Dyes as Visible Light Photoinitiators of Polymerization. Eur. Polym. J. 2020, 133, 109797. [Google Scholar] [CrossRef]
- Ghosh, I.; Shaikh, R.S.; König, B. Sensitization-Initiated Electron Transfer for Photoredox Catalysis. Angew. Chem. Int. Ed. 2017, 56, 8544–8549. [Google Scholar] [CrossRef]
- Kazunga, C.; Aitken, M.D. Products from the Incomplete Metabolism of Pyrene by Polycyclic Aromatic Hydrocarbon-Degrading Bacteria. Appl. Environ. Microbiol. 2000, 66, 1917–1922. [Google Scholar] [CrossRef]
- Bömmel, H.; Li-Weber, M.; Serfling, E.; Duschl, A. The Environmental Pollutant Pyrene Induces the Production of IL-4. J. Allergy Clin. Immunol. 2000, 105, 796–802. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Kumar, V.; Vlaskin, M.S.; Nanda, M. Impact of Pyrene (Polycyclic Aromatic Hydrocarbons) Pollutant on Metabolites and Lipid Induction in Microalgae Chlorella Sorokiniana (UUIND6) to Produce Renewable Biodiesel. Chemosphere 2021, 285, 131482. [Google Scholar] [CrossRef] [PubMed]
- Defois, C.; Ratel, J.; Denis, S.; Batut, B.; Beugnot, R.; Peyretaillade, E.; Engel, E.; Peyret, P. Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota. Front. Microbiol. 2017, 8, 1562. [Google Scholar] [CrossRef] [PubMed]
- Jouanneau, Y.; Willison, J.C.; Meyer, C.; Krivobok, S.; Chevron, N.; Besombes, J.-L.; Blake, G. Stimulation of Pyrene Mineralization in Freshwater Sediments by Bacterial and Plant Bioaugmentation. Environ. Sci. Technol. 2005, 39, 5729–5735. [Google Scholar] [CrossRef] [PubMed]
- Child, R.; Miller, C.D.; Liang, Y.; Sims, R.C.; Anderson, A.J. Pyrene Mineralization by Mycobacterium Sp. Strain KMS in a Barley Rhizosphere. J. Environ. Qual. 2007, 36, 1260–1265. [Google Scholar] [CrossRef]
- Ute, S.; Fritsche, W. Enhancement of Pyrene Mineralization in Soil by Wood-Decaying Fungi. FEMS Microbiol. Ecol. 1997, 22, 77–83. [Google Scholar] [CrossRef]
- Haderlein, A.; Legros, R.; Ramsay, B.A. Pyrene Mineralization Capacity Increases with Compost Maturity. Biodegradation 2006, 17, 293–302. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Dumur, F.; Graff, B.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions. Macromolecules 2013, 46, 3332–3341. [Google Scholar] [CrossRef]
- Cao, X.; Yi, H.; Li, L.; Zhang, S.; Pan, H.; Chen, J.; Xu, J. Using a Fluorescent 1-Methyl-4-(2-Pyren-1-Yl-Vinyl)-Pyridinium Iodide to Characterize Solvent Polarities. J. Appl. Spectrosc. 2018, 84, 939–947. [Google Scholar] [CrossRef]
- Planells, M.; Pizzotti, M.; Nichol, G.S.; Tessore, F.; Robertson, N. Effect of Torsional Twist on 2nd Order Non-Linear Optical Activity of Anthracene and Pyrene Tricyanofuran Derivatives. Phys. Chem. Chem. Phys. 2014, 16, 23404–23411. [Google Scholar] [CrossRef]
- Samanta, D.; Mukherjee, P.S. Multicomponent Self-Sorting of a Pd7 Molecular Boat and Its Use in Catalytic Knoevenagel Condensation. Chem. Commun. 2013, 49, 4307–4309. [Google Scholar] [CrossRef]
- Tonga, M.; Lahti, P.M. Designing Conjugation-Extended Viologens for High Molar Absorptivity with Longer Wavelength Absorption. Synth. Met. 2019, 254, 75–84. [Google Scholar] [CrossRef]
- Thetford, D.; Chorlton, A.P.; Hardman, J. Synthesis and Properties of Some Polycyclic Barbiturate Pigments. Dye. Pigment. 2003, 59, 185–191. [Google Scholar] [CrossRef]
- Ludwanowski, S.; Samanta, A.; Loescher, S.; Barner-Kowollik, C.; Walther, A. A Modular Fluorescent Probe for Viscosity and Polarity Sensing in DNA Hybrid Mesostructures. Adv. Sci. 2021, 8, 2003740. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Manna, A.K. Origins of Large Stokes Shifts in a Pyrene–Styrene-Based Push–Pull Organic Molecular Dyad in Polar Solvents and Large Electron Mobility in the Crystalline State: A Theoretical Perspective. J. Phys. Chem. C 2022, 126, 423–433. [Google Scholar] [CrossRef]
- Gudeika, D.; Zilinskaite, V.; Grazulevicius, J.V.; Lytvyn, R.; Rutkis, M.; Tokmakov, A. 4-(Diethylamino)Salicylaldehyde-Based Twin Compounds as NLO-Active Materials. Dye. Pigment. 2016, 134, 244–250. [Google Scholar] [CrossRef]
- Zilinskaite, V.; Gudeika, D.; Grazulevicius, J.V.; Hladka, I. Synthesis and Cationic Polymerization of Oxyranyl-Functionalized Indandiones. Polym. Bull. 2016, 1, 229–239. [Google Scholar] [CrossRef]
- Sun, K.; Liu, S.; Pigot, C.; Brunel, D.; Graff, B.; Nechab, M.; Gigmes, D.; Morlet-Savary, F.; Zhang, Y.; Xiao, P.; et al. Novel Push–Pull Dyes Derived from 1H-Cyclopenta[b]Naphthalene-1,3(2H)-Dione as Versatile Photoinitiators for Photopolymerization and Their Related Applications: 3D Printing and Fabrication of Photocomposites. Catalysts 2020, 10, 1196. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B. GAUSSIAN 09, Revision, C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. A New Mixing of Hartree–Fock and Local Density-functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level. J. Mol. Struct. THEOCHEM 1999, 464, 211–226. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, M.J. Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General Formalism. J. Chem. Phys. 2010, 132, 114110. [Google Scholar] [CrossRef] [PubMed]
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
- Nakayama, K.; Okura, T.; Okuda, Y.; Matsui, J.; Masuhara, A.; Yoshida, T.; White, M.S.; Yumusak, C.; Stadler, P.; Scharber, M.; et al. Single-Component Organic Solar Cells Based on Intramolecular Charge Transfer Photoabsorption. Materials 2021, 14, 1200. [Google Scholar] [CrossRef]
- Leenaers, P.J.; Maufort, A.J.L.A.; Wienk, M.M.; Janssen, R.A.J. Impact of π-Conjugated Linkers on the Effective Exciton Binding Energy of Diketopyrrolopyrrole–Dithienopyrrole Copolymers. J. Phys. Chem. C 2020, 124, 27403–27412. [Google Scholar] [CrossRef]
- Mokbel, H.; Dumur, F.; Telitel, S.; Vidal, L.; Xiao, P.; Versace, D.-L.; Tehfe, M.-A.; Morlet-Savary, F.; Graff, B.; Fouassier, J.-P.; et al. Photoinitiating Systems of Polymerization and in Situ Incorporation of Metal Nanoparticles into Polymer Matrices upon Exposure to Visible Light: Push–Pull Malonate and Malononitrile Based Dyes. Polym. Chem. 2013, 4, 5679–5687. [Google Scholar] [CrossRef]
- Haenle, J.C.; Bruchlos, K.; Ludwigs, S.; Köhn, A.; Laschat, S. Rigidified Push–Pull Dyes: Using Chromophore Size, Donor, and Acceptor Units to Tune the Ground State between Neutral and the Cyanine Limit. ChemPlusChem 2017, 82, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Klikar, M.; Jelínková, V.; Růžičková, Z.; Mikysek, T.; Pytela, O.; Ludwig, M.; Bureš, F. Malonic Acid Derivatives on Duty as Electron-Withdrawing Units in Push–Pull Molecules. Eur. J. Org. Chem. 2017, 2017, 2764–2779. [Google Scholar] [CrossRef]
- Coluccini, C.; Terraneo, G.; Pasini, D. Synthesis of Binaphthyl-Based Push-Pull Chromophores with Supramolecularly Polarizable Acceptor Ends. J. Chem. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, S.; Zhu, H.; Xie, G.; Liu, R.; Zhu, H. Dimethyl Malonate Based Organic Compounds Bearing Different Aromatic Substituents: Synthesis, Photophysics and Application in Anti-Blue Light Lenses. Opt. Mater. 2022, 126, 112183. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, π*, α, and β, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Catalán, J. On the ET (30), π*, Py, S‘, and SPP Empirical Scales as Descriptors of Nonspecific Solvent Effects. J. Org. Chem. 1997, 62, 8231–8234. [Google Scholar] [CrossRef] [PubMed]
- Kawski, A. Der Wellenzahl von Elecktronenbanden Lumineszierenden Molecule. Acta Phys Pol. 1966, 29, 507–518. [Google Scholar]
- Lippert, E. Dipolmoment Und Elektronenstruktur von Angeregten Molekülen. Z. Für Nat. A 1955, 10, 541–545. [Google Scholar] [CrossRef]
- Suppan, P. Solvent Effects on the Energy of Electronic Transitions: Experimental Observations and Applications to Structural Problems of Excited Molecules. J. Chem. Soc. Inorg. Phys. Theor. 1968, 0, 3125–3133. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Bakshiev, N.G. Universal Intermolecular Interactions and Their Effect on the Position of the Electronic Spectra of Molecules in Two Component Solutions. Opt. Spektrosk. 1964, 16, 821–832. [Google Scholar]
- Schade, A.; Schreiter, K.; Rüffer, T.; Lang, H.; Spange, S. Interactions of Enolizable Barbiturate Dyes. Chem. Eur. J. 2016, 22, 5734–5748. [Google Scholar] [CrossRef]
- Ding, S.; Yao, B.; Schobben, L.; Hong, Y. Barbituric Acid Based Fluorogens: Synthesis, Aggregation-Induced Emission, and Protein Fibril Detection. Molecules 2020, 25, 32. [Google Scholar] [CrossRef]
- Seifert, S.; Seifert, A.; Brunklaus, G.; Hofmann, K.; Rüffer, T.; Lang, H.; Spange, S. Probing the Surface Polarity of Inorganic Oxides Using Merocyanine-Type Dyes Derived from Barbituric Acid. New J. Chem. 2012, 36, 674–684. [Google Scholar] [CrossRef]
- Rezende, M.C.; Aracena, A. A General Framework for the Solvatochromism of Pyridinium Phenolate Betaine Dyes. Chem. Phys. Lett. 2013, 558, 77–81. [Google Scholar] [CrossRef]
- Jacques, P.; Graff, B.; Diemer, V.; Ay, E.; Chaumeil, H.; Carré, C.; Malval, J.-P. Negative Solvatochromism of a Series of Pyridinium Phenolate Betaine Dyes with Increasing Steric Hindrance. Chem. Phys. Lett. 2012, 531, 242–246. [Google Scholar] [CrossRef]
- Ooyama, Y.; Asada, R.; Inoue, S.; Komaguchi, K.; Imae, I.; Harima, Y. Solvatochromism of Novel Donor–π–Acceptor Type Pyridinium Dyes in Halogenated and Non-Halogenated Solvents. New J. Chem. 2009, 33, 2311–2316. [Google Scholar] [CrossRef]
- Grimme, S. Accurate Description of van Der Waals Complexes by Density Functional Theory Including Empirical Corrections. J. Comput. Chem. 2004, 25, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.; Lim, E.C. Evaluation of the Hartree−Fock Dispersion (HFD) Model as a Practical Tool for Probing Intermolecular Potentials of Small Aromatic Clusters: Comparison of the HFD and MP2 Intermolecular Potentials. J. Phys. Chem. A 2003, 107, 10105–10110. [Google Scholar] [CrossRef]
- Schuetz, C.A.; Frenklach, M. Nucleation of Soot: Molecular Dynamics Simulations of Pyrene Dimerization. Proc. Combust. Inst. 2002, 29, 2307–2314. [Google Scholar] [CrossRef]
- Zreid, M.; Tabasi, Z.A.; Zhao, Y. Comparative Studies of the Noncovalent Interactions in the Single-Crystal Packing of Pyrene, Pyrene-4,5-Dione, and Pyrene-4,5,9,10-Tetraone. J. Phys. Org. Chem. 2021, 34, e4192. [Google Scholar] [CrossRef]
- King, N.J.; Brown, A. Intermolecular Interactions of Pyrene and Its Oxides in Toluene Solution. J. Phys. Chem. A 2022, 126, 4931–4940. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, S.K. Ab Initio-Based Intermolecular Carbon–Carbon Pair Potentials for Polycyclic Aromatic Hydrocarbon Clusters. J. Chem. Phys. 2005, 122, 031102. [Google Scholar] [CrossRef]
- Podeszwa, R.; Szalewicz, K. Physical Origins of Interactions in Dimers of Polycyclic Aromatic Hydrocarbons. Phys. Chem. Chem. Phys. 2008, 10, 2735–2746. [Google Scholar] [CrossRef]
- Herdman, J.D.; Miller, J.H. Intermolecular Potential Calculations for Polynuclear Aromatic Hydrocarbon Clusters. J. Phys. Chem. A 2008, 112, 6249–6256. [Google Scholar] [CrossRef]
- Elvati, P.; Violi, A. Thermodynamics of Poly-Aromatic Hydrocarbon Clustering and the Effects of Substituted Aliphatic Chains. Proc. Combust. Inst. 2013, 34, 1837–1843. [Google Scholar] [CrossRef]
- Silva, N.J.; Machado, F.B.C.; Lischka, H.; Aquino, A.J.A. π–π Stacking between Polyaromatic Hydrocarbon Sheets beyond Dispersion Interactions. Phys. Chem. Chem. Phys. 2016, 18, 22300–22310. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H. Structures, Stability, and Growth Sequence Patterns of Small Homoclusters of Naphthalene, Anthracene, Phenanthrene, Phenalene, Naphthacene, and Pyrene. Clust. Dimers Nanoparticles 2013, 1021, 84–90. [Google Scholar] [CrossRef]
- Hoche, J.; Schmitt, H.-C.; Humeniuk, A.; Fischer, I.; Mitrić, R.; Röhr, M.I.S. The Mechanism of Excimer Formation: An Experimental and Theoretical Study on the Pyrene Dimer. Phys. Chem. Chem. Phys. 2017, 19, 25002–25015. [Google Scholar] [CrossRef] [PubMed]
- Cabaleiro-Lago, E.M.; Rodríguez-Otero, J. On the Nature of σ–σ, σ–π, and π–π Stacking in Extended Systems. ACS Omega 2018, 3, 9348–9359. [Google Scholar] [CrossRef]
- Singh, A.; Raj, P.; Dubowski, J.J.; Singh, N. ATP Induced Modulation in π–π Stacking Interactions in Pyrene Based Zinc Complexes: Chemosensor Study and Quantitative Investigation of Apyrase Activity. Cryst. Growth Des. 2018, 18, 4320–4333. [Google Scholar] [CrossRef]
- Jiang, N.; Sumitomo, T.; Lee, T.; Pellaroque, A.; Bellon, O.; Milliken, D.; Desilvestro, H. High Temperature Stability of Dye Solar Cells. Sol. Energy Mater. Sol. Cells 2013, 119, 36–50. [Google Scholar] [CrossRef]
- Matsui, H.; Okada, K.; Kitamura, T.; Tanabe, N. Thermal Stability of Dye-Sensitized Solar Cells with Current Collecting Grid. Sol. Energy Mater. Sol. Cells 2009, 93, 1110–1115. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Wu, Y.; Tan, S. An Efficient and Thermally Stable Dye-Sensitized Solar Cell Based on a Lamellar Nanostructured Thiolate/Disulfide Liquid Crystal Electrolyte and Carbon/PEDOT Composite Nanoparticle Electrode. RSC Adv. 2019, 9, 35924–35930. [Google Scholar] [CrossRef]
- Mohammadnezhad, M.; Selopal, G.S.; Wang, Z.M.; Stansfield, B.; Zhao, H.; Rosei, F. Towards Long-Term Thermal Stability of Dye-Sensitized Solar Cells Using Multiwalled Carbon Nanotubes. ChemPlusChem 2018, 83, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Wen, Y.; Li, S.; Du, S.; He, X.; Cai, L.; Li, Y.; Yang, L.; Gao, H.; Song, Y. A Triphenylamine-Containing Donor−Acceptor Molecule for Stable, Reversible, Ultrahigh Density Data Storage. J. Am. Chem. Soc. 2007, 129, 11674–11675. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.R.; Frazer, A.; Woodward, A.W.; Ahn-White, H.-Y.; Fonari, A.; Tongwa, P.; Timofeeva, T.; Belfield, K.D. Design, Synthesis, and Structural and Spectroscopic Studies of Push–Pull Two-Photon Absorbing Chromophores with Acceptor Groups of Varying Strength. J. Org. Chem. 2013, 78, 1014–1025. [Google Scholar] [CrossRef]
- Pigot, C.; Noirbent, G.; Peralta, S.; Duval, S.; Bui, T.-T.; Aubert, P.-H.; Nechab, M.; Gigmes, D.; Dumur, F. New Push-Pull Dyes Based on 2-(3-Oxo-2,3-Dihydro-1H-Cyclopenta[b]Naphthalen-1-Ylidene)Malononitrile: An Amine-Directed Synthesis. Dye. Pigment. 2020, 175, 108182. [Google Scholar] [CrossRef]
- Pigot, C.; Noirbent, G.; Peralta, S.; Duval, S.; Nechab, M.; Gigmes, D.; Dumur, F. Unprecedented Nucleophilic Attack of Piperidine on the Electron Acceptor during the Synthesis of Push-Pull Dyes by a Knoevenagel Reaction. Helv. Chim. Acta 2019, 102, e1900229. [Google Scholar] [CrossRef]
- Schmidt, K.; Barlow, S.; Leclercq, A.; Zojer, E.; Jang, S.-H.; Marder, S.R.; Jen, A.K.-Y.; Brédas, J.-L. Efficient Acceptor Groups for NLO Chromophores: Competing Inductive and Resonance Contributions in Heterocyclic Acceptors Derived from 2-Dicyanomethylidene-3-Cyano-4,5,5-Trimethyl-2,5-Dihydrofuran. J. Mater. Chem. 2007, 17, 2944–2949. [Google Scholar] [CrossRef]
- Liu, F.; Xu, H.; Zhang, H.; Chen, L.; Liu, J.; Bo, S.; Zhen, Z.; Liu, X.; Qiu, L. Synthesis of Julolidine-Containing Nonlinear Optical Chromophores: Achieving Excellent Electro-Optic Activity by Optimizing the Bridges and Acceptors. Dye. Pigment. 2016, 134, 358–367. [Google Scholar] [CrossRef]
- Bürckstümmer, H.; Tulyakova, E.V.; Deppisch, M.; Lenze, M.R.; Kronenberg, N.M.; Gsänger, M.; Stolte, M.; Meerholz, K.; Würthner, F. Efficient Solution-Processed Bulk Heterojunction Solar Cells by Antiparallel Supramolecular Arrangement of Dipolar Donor–Acceptor Dyes. Angew. Chem. Int. Ed. 2011, 50, 11628–11632. [Google Scholar] [CrossRef]
Experimental Data | |||||||||||||||
Dye 1 | Dye 2 | Dye 3 | Dye 4 | Dye 5 | Dye 6 | Dye 7 | Dye 8 | Dye 9 | Dye 10 | Dye 11 | Dye 12 | Dye 13 | Dye 14 | Dye 15 | |
λabs (nm) a | 374 | 442 | 471 | 496 | 543 | 496 | 549 | 442 | 467 | 442 | 477 | 454 | 452 | 507 | 497 |
ϵ (M−1·cm−1) | 22,300 | 22,900 | 26,500 | 21,600 | 18,200 | 32,200 | 19,925 | 7500 | 8500 | 9800 | 1600 | 44,800 | 35,950 | 14,800 | 19,500 |
λem (nm) a | 462 | 535 | 567 | 546 | 713 | 594 | 563 | 539 | - | 533 | 529 | 550 | 552 | 659 | - |
λexc (nm) a | 360 | 440 | 460 | 420 | 640 | 480 | 520 | 400 | - | 380 | 400 | 380 | 380 | 440 | - |
Δλ (nm) a | 88 | 93 | 96 | 50 | 170 | 83 | 14 | 97 | - | 91 | 52 | 96 | 100 | 152 | - |
λabs (nm) b | 374 | 453 | 480 | 533 | 554 | 504 | - | 478 | 489 | 459 | 492 | 460 | 461 | 525 | 500 |
λem (nm) b | 446 | 529 | 554 | 542 | 642 | 579 | - | - | - | 544 | 575 | 541 | 539 | 635 | 545 |
λexc (nm) b | 380 | 460 | 460 | 400 | 500 | 480 | - | - | - | 400 | 400 | 380 | 440 | 460 | 420 |
Δλ (nm) b | 72 | 76 | 74 | 9 | 138 | 75 | - | - | - | 85 | 83 | 81 | 78 | 110 | 45 |
Theoretical Data | |||||||||||||||
Dye 1 | Dye 2 | Dye 3 | Dye 4 | Dye 5 | Dye 6 | Dye 7 | Dye 8 | Dye 9 | Dye 10 | Dye 11 | Dye 12 | Dye 13 | Dye 14 | Dye 15 | |
λabs (nm)th | 353 | 399 | 405 | 438 | 439 | 418 | 451 | 408 | 432 | 398 | 422 | 392 | 392 | 451 | 442 |
ϵ (M−1·cm−1) | 77,500 | 80,950 | 92,300 | 55,850 | 55,200 | 105,800 | 62,950 | 73,350 | 85,600 | 72,200 | 83,100 | 91,300 | 91,300 | 147,900 | 71,650 |
λabs (nm)exp | 374 | 442 | 471 | 496 | 543 | 496 | 549 | 442 | 467 | 442 | 477 | 454 | 452 | 507 | 497 |
Compounds | EHOMO (th) (eV) | ELUMO (th) (eV) | λmax (nm) | λ (nm) | Transitions |
---|---|---|---|---|---|
Dye 1 | −7.563 | −1.069 | 353 | 352 | HOMO − 1 => LUMO (94%) |
Dye 2 | −7.712 | −1.705 | 399 | 399 | HOMO => LUMO (94%) |
Dye 3 | −7.605 | −1.445 | 405 | 405 | HOMO => LUMO (87%) |
Dye 4 | −7.623 | −1.784 | 438 | 437 | HOMO => LUMO (83%) |
Dye 5 | −7.647 | −1.829 | 439 | 439 | HOMO => LUMO (84%) |
Dye 6 | −7.582 | −1.823 | 418 | 418 | HOMO => LUMO (84%) |
Dye 7 | −7.619 | −1.905 | 451 | 450 | HOMO => LUMO (84%) |
Dye 8 | −7.650 | −1.670 | 408 | 408 | HOMO => LUMO (91%) |
Dye 9 | −7.676 | −1.885 | 432 | 422 | HOMO => LUMO (88%) |
Dye 10 | −7.616 | −1.318 | 398 | 397 | HOMO => LUMO (90%) |
Dye 11 | −7.626 | −1.783 | 422 | 423 | HOMO => LUMO (88%) |
Dye 12 | −7.480 | −1.460 | 392 | 392 | HOMO => LUMO (82%) |
Dye 13 | −6.197 | −1.260 | 392 | 392 | HOMO => LUMO (82%) |
Dye 14 | −7.519 | −2.089 | 451 | 450 | HOMO => LUMO (88%) |
Dye 15 | −7.572 | −1.759 | 442 | 443 | HOMO => LUMO (61%) |
Dye 1 | Dye 2 | Dye 3 | Dye 4 | Dye 5 | Dye 6 | Dye 7 | Dye 8 | Dye 9 | Dye 10 | Dye 11 | Dye 12 | Dye 13 | Dye 14 | Dye 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
acetone | 370 | 437 | 465 | - | - | 491 | - | 439 | 461 | 439 | 471 | 448 | 450 | 506 | 491 |
acetonitrile | 370 | 437 | 464 | - | 530 | 489 | - | 442 | 453 | 436 | 471 | 445 | 451 | 507 | 498 |
AcOEt | 371 | 437 | 471 | 516 | 527 | 493 | - | 446 | 468 | 443 | 474 | 449 | 452 | 502 | 493 |
anisole | 376 | 453 | 482 | 537 | 554 | 505 | 565 | 463 | 498 | 454 | 495 | 463 | 465 | 526 | 507 |
butanol | 373 | 446 | 482 | - | 589 | 504 | - | - | - | 459 | 493 | 458 | 460 | 524 | - |
chloroform | 376 | 459 | 488 | 544 | 571 | 512 | 580 | 486 | - | 459 | 504 | 463 | 464 | 529 | - |
cyclohexane | 369 | 446 | 479 | - | - | 498 | - | - | - | 466 | 493 | 435 | 459 | - | - |
1,2-dichloroethane | 374 | 450 | 477 | 531 | 550 | 501 | 562 | 471 | 503 | 454 | 489 | 460 | 461 | 523 | 499 |
dichloromethane | 374 | 453 | 480 | 533 | 554 | 504 | - | 478 | 489 | 459 | 492 | 460 | 461 | 525 | 500 |
diethyl carbonate | - | 437 | 472 | 520 | 535 | 495 | - | 454 | 473 | 443 | 476 | 444 | 453 | 498 | |
diethyl ether | 369 | 443 | 472 | - | - | 493 | - | - | - | 446 | 485 | 454 | 456 | - | 488 |
diglyme | 373 | 440 | 474 | 525 | 542 | 497 | 551 | 445 | 477 | 448 | 485 | 455 | 457 | 515 | 497 |
1,4-dioxane | 372 | 435 | 474 | 523 | 543 | 495 | 549 | 443 | 474 | 444 | 476 | 444 | 446 | 505 | 497 |
dimethylacetamide | 373 | 441 | 472 | - | 578 | 498 | - | 439 | 465 | 442 | 476 | 458 | 456 | 518 | 495 |
DMF | 374 | 441 | 472 | 496 | 553 | 497 | - | 438 | 458 | 443 | 475 | 456 | 455 | 514 | 494 |
DMSO | 375 | 441 | 473 | - | 534 | 498 | - | 432 | 470 | 442 | 480 | 458 | 458 | 517 | - |
ethanol | 371 | 442 | 477 | - | - | 500 | - | - | - | 453 | 485 | 455 | 454 | 518 | - |
heptane | 369 | 444 | 477 | - | - | 495 | - | - | - | 464 | 491 | 456 | 460 | - | - |
nitrobenzene | - | 456 | 487 | - | 567 | 511 | 565 | - | 504 | 443 | 499 | 458 | 469 | 538 | 506 |
THF | 371 | 439 | 472 | 520 | 534 | 494 | - | 439 | 468 | 444 | 475 | 452 | 454 | 512 | 496 |
toluene | 375 | 451 | 483 | 542 | 562 | 505 | 566 | 472 | 500 | 464 | 497 | 465 | 465 | - | 506 |
triethylamine | 370 | 445 | - | - | - | - | - | 462 | 513 | 497 | - | 459 | 460 | - | - |
p-xylene | 375 | 451 | 483 | 540 | 562 | 505 | 565 | 471 | 501 | 462 | 498 | 465 | 467 | 518 | 508 |
Dye | Dye 1 | Dye 2 | Dye 3 | Dye 4 | Dye 5 | Dye 6 | Dye 7 | Dye 8 | Dye 9 | Dye 10 | Dye 11 | Dye 12 | Dye 13 | Dye 14 | Dye 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | 243 | 245 | 176 | 358 | 318 | 374 | 376 | 370 | 356 | 298 | 307 | 317 | 319 | 259 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, T.-T.; Péralta, S.; Dumur, F. Synthesis and Optical Properties of a Series of Push-Pull Dyes Based on Pyrene as the Electron Donor. Molecules 2023, 28, 1489. https://doi.org/10.3390/molecules28031489
Bui T-T, Péralta S, Dumur F. Synthesis and Optical Properties of a Series of Push-Pull Dyes Based on Pyrene as the Electron Donor. Molecules. 2023; 28(3):1489. https://doi.org/10.3390/molecules28031489
Chicago/Turabian StyleBui, Thanh-Tuân, Sébastien Péralta, and Frédéric Dumur. 2023. "Synthesis and Optical Properties of a Series of Push-Pull Dyes Based on Pyrene as the Electron Donor" Molecules 28, no. 3: 1489. https://doi.org/10.3390/molecules28031489
APA StyleBui, T. -T., Péralta, S., & Dumur, F. (2023). Synthesis and Optical Properties of a Series of Push-Pull Dyes Based on Pyrene as the Electron Donor. Molecules, 28(3), 1489. https://doi.org/10.3390/molecules28031489