Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode
Abstract
1. Introduction
2. Results and Discussion
3. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.G.; Zhang, J.L.; Kintner-Meyer, M.C.W.; Lu, X.C.; Choi, D.W.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.L.; Hu, Y.S.; Chen, L.Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360. [Google Scholar] [CrossRef]
- Fang, C.; Huang, Y.H.; Zhang, W.X.; Han, J.T.; Deng, Z.; Cao, Y.L.; Yang, H.X. Routes to High Energy Cathodes of Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1501727. [Google Scholar] [CrossRef]
- Zhao, H.-S.; Qi, Y.-L.; Liang, K.; Zhu, W.-K.; Wu, H.-B.; Li, J.-B.; Ren, Y.-R. Phosphorus-doping and oxygen vacancy endowing anatase TiO2 with excellent sodium storage performance. Rare Met. 2021, 41, 1284–1293. [Google Scholar] [CrossRef]
- Zhao, H.; Qi, Y.; Liang, K.; Li, J.; Zhou, L.; Chen, J.; Huang, X.; Ren, Y. Interface-Driven Pseudocapacitance Endowing Sandwiched CoSe2/N-Doped Carbon/TiO2 Microcubes with Ultra-Stable Sodium Storage and Long-Term Cycling Stability. ACS Appl. Mater. Interfaces 2021, 13, 61555–61564. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, Y.F.; Yao, H.R.; Wang, P.F.; Zhang, X.D.; Li, H.L.; Yang, X.N.; Gu, L.; Li, Y.C.; Wang, T.; et al. A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery. Adv. Energy Mater. 2019, 9, 1803978. [Google Scholar] [CrossRef]
- Guo, S.H.; Yu, H.J.; Jian, Z.L.; Liu, P.; Zhu, Y.B.; Guo, X.W.; Chen, M.W.; Ishida, M.; Zhou, H.S. A High-Capacity, Low-Cost Layered Sodium Manganese Oxide Material as Cathode for Sodium-Ion Batteries. Chemsuschem 2014, 7, 2115–2119. [Google Scholar] [CrossRef]
- Han, M.H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energ Environ. Sci. 2015, 8, 81–102. [Google Scholar] [CrossRef]
- Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600275. [Google Scholar] [CrossRef]
- Chen, M.; Chen, L.; Hu, Z.; Liu, Q.; Zhang, B.; Hu, Y.; Gu, Q.; Wang, J.L.; Wang, L.Z.; Guo, X.; et al. Carbon-Coated Na3.32 Fe2.34 (P2O7)2 Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1605535. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Su, D.; Notten, P.H.L.; Wang, G. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 2018, 11, 3979–3990. [Google Scholar] [CrossRef]
- Nie, P.; Yuan, J.; Wang, J.; Le, Z.; Xu, G.; Hao, L.; Pang, G.; Wu, Y.; Dou, H.; Yan, X.; et al. Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 20306–20312. [Google Scholar] [CrossRef]
- Knight, J.C.; Therese, S.; Manthiram, A. Chemical extraction of Zn from ZnMn2O4-based spinels. J. Mater. Chem. A 2015, 3, 21077–21082. [Google Scholar] [CrossRef]
- Luo, W.; Allen, M.; Raju, V.; Ji, X. An Organic Pigment as a High-Performance Cathode for Sodium-Ion Batteries. Adv. Energy Mater. 2014, 4, 1400554. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, D.; Yang, B.; Zhang, C.; Cao, M. Oxygen Vacancy Engineering in Na3V2(PO4)3 for Boosting Sodium Storage Kinetics. Adv. Mater. Interfaces 2021, 8, 2100188. [Google Scholar] [CrossRef]
- Puspitasari, D.A.; Patra, J.; Hung, I.M.; Bresser, D.; Lee, T.-C.; Chang, J.-K. Optimizing the Mg Doping Concentration of Na3V2–xMgx(PO4)2F3/C for Enhanced Sodiation/Desodiation Properties. ACS Sustain. Chem. Eng. 2021, 9, 6962–6971. [Google Scholar] [CrossRef]
- Broux, T.; Fauth, F.; Hall, N.; Chatillon, Y.; Bianchini, M.; Bamine, T.; Leriche, J.B.; Suard, E.; Carlier, D.; Reynier, Y.; et al. High Rate Performance for Carbon-Coated Na3V2(PO4)2F3 in Na-Ion Batteries. Small Methods 2019, 3, 1800215. [Google Scholar] [CrossRef]
- Deng, L.; Yu, F.-D.; Xia, Y.; Jiang, Y.-S.; Sui, X.-L.; Zhao, L.; Meng, X.-H.; Que, L.-F.; Wang, Z.-B. Stabilizing fluorine to achieve high-voltage and ultra-stable Na3V2(PO4)2F3 cathode for sodium ion batteries. Nano Energy 2021, 82, 105659. [Google Scholar] [CrossRef]
- Park, Y.U.; Seo, D.H.; Kwon, H.S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H.I.; Kang, K. A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability. J. Am. Chem. Soc. 2013, 135, 13870–13878. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675. [Google Scholar] [CrossRef]
- Qi, Y.; Mu, L.; Zhao, J.; Hu, Y.-S.; Liu, H.; Dai, S. pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability. J. Mater. Chem. A 2016, 4, 7178–7184. [Google Scholar] [CrossRef]
- Cai, Y.; Cao, X.; Luo, Z.; Fang, G.; Liu, F.; Zhou, J.; Pan, A.; Liang, S. Caging Na3V2(PO4)2F3 Microcubes in Cross-Linked Graphene Enabling Ultrafast Sodium Storage and Long-Term Cycling. Adv. Sci. 2018, 5, 1800680. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Adv. Energy Mater. 2020, 10, 2000927. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, H.; Sun, D.; Tang, Y.; Wang, H. A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. J. Mater. Chem. A 2020, 8, 21387–21407. [Google Scholar] [CrossRef]
- Xin, M. Effect of Cu and Mn doping on optical properties of ZnS:Cu, Mn nanoparticles synthesized by the hydrothermal technique. J. Sulfur Chem. 2021, 43, 206–214. [Google Scholar] [CrossRef]
- Bhat, A.A.; Tomar, R. Mn and Ce doping in hydrothermally derived CaSnO3 perovskite nanostructure. A facile way to enhance optical, magnetic and electrochemical properties. J. Alloys Compd. 2021, 876, 160043. [Google Scholar] [CrossRef]
- Vanetsev, A.; Põdder, P.; Oja, M.; Khaidukov, N.M.; Makhov, V.N.; Nagirnyi, V.; Romet, I.; Vielhauer, S.; Mändar, H.; Kirm, M. Microwave-hydrothermal synthesis and investigation of Mn-doped K2SiF6 microsize powder as a red phosphor for warm white LEDs. J. Lumin. 2021, 239, 118389. [Google Scholar] [CrossRef]
- Yi, H.M.; Ling, M.X.; Xu, W.B.; Li, X.F.; Zheng, Q.; Zhang, H.M. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties. Nano Energy 2018, 47, 340–352. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.R.; Xu, H.Y. Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 4525–4534. [Google Scholar] [CrossRef]
- Liang, K.; Wang, S.; Zhao, H.; Huang, X.; Ren, Y.; He, Z.; Mao, J.; Zheng, J. A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries. Chem. Eng. J. 2022, 428, 131780. [Google Scholar] [CrossRef]
- Fuentes, R.O.; Figueiredo, F.M.; Marques, F.M.B.; Franco, J.I. Influence of microstructure on the electrical properties of NASICON materials. Solid State Ion. 2001, 140, 173–179. [Google Scholar] [CrossRef]
- Barker, J.; Saidi, M.Y.; Swoyer, J.L. A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 2004, 151, A1670–A1677. [Google Scholar] [CrossRef]
- Song, W.X.; Ji, X.B.; Chen, J.; Wu, Z.P.; Zhu, Y.R.; Ye, K.F.; Hou, H.S.; Jing, M.J.; Banks, C.E. Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 159–165. [Google Scholar] [CrossRef]
- Song, W.X.; Cao, X.Y.; Wu, Z.P.; Chen, J.; Zhu, Y.R.; Hou, H.S.; Lan, Q.; Ji, X.B. Investigation of the Sodium Ion Pathway and Cathode Behavior in Na3V2(PO4)2F3 Combined via a First Principles Calculation. Langmuir 2014, 30, 12438–12446. [Google Scholar] [CrossRef]
- Song, W.X.; Ji, X.B.; Wu, Z.P.; Yang, Y.C.; Zhou, Z.; Li, F.Q.; Chen, Q.Y.; Banks, C.E. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J. Power Sources 2014, 256, 258–263. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Zhang, L.L.; Ma, D.; Li, T.; Liu, J.; Ding, X.K.; Huang, Y.H.; Yang, X.L. Polydopamine-Derived Nitrogen-Doped Carbon-Covered Na3V2(PO4)2F3 Cathode Material for High-Performance Na-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 36851–36859. [Google Scholar] [CrossRef]
- Shen, C.; Long, H.; Wang, G.C.; Lu, W.; Shao, L.; Xie, K.Y. Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. J. Mater. Chem. A 2018, 6, 6007–6014. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Chen, G.; Zhong, W.; Deng, Q.; Zheng, F.; Yang, C.; Liu, M.; Hu, J. In-situ constructing Na3V2(PO4)2F3/carbon nanocubes for fast ion diffusion with high-performance Na+-storage. Chem. Eng. J. 2020, 387, 123952. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Guo, J.Z.; Sun, Z.H.; Zhao, X.X.; Wang, X.T.; Liang, H.J.; Zhao, B.; Li, W.H.; Pan, X.M.; Wu, X.L. Aliovalent-Ion-Induced Lattice Regulation Based on Charge Balance Theory: Advanced Fluorophosphate Cathode for Sodium-Ion Full Batteries. Small 2021, 17, 2102010. [Google Scholar] [CrossRef] [PubMed]
- Kaliyappan, K.; Liu, J.; Xiao, B.W.; Lushington, A.; Li, R.Y.; Sham, T.K.; Sun, X.L. Enhanced Performance of P2-Na0.66(Mn0.54Co0.13Ni0.13)O2 Cathode for Sodium-Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition. Adv. Funct. Mater. 2017, 27, 1701870. [Google Scholar] [CrossRef]
- Shen, W.; Li, H.; Guo, Z.Y.; Li, Z.H.; Xu, Q.J.; Liu, H.M.; Wang, Y.G. Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries. Rsc. Adv. 2016, 6, 71581–71588. [Google Scholar] [CrossRef]
- Zhu, C.B.; Song, K.P.; van Aken, P.A.; Maier, J.; Yu, Y. Carbon-Coated Na3V2(PO4)3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li Cathodes. Nano Lett. 2014, 14, 2175–2180. [Google Scholar] [CrossRef]
- Aragon, M.J.; Lavela, P.; Ortiz, G.F.; Tirado, J.L. Benefits of Chromium Substitution in Na3V2(PO4)3 as a Potential Candidate for Sodium-Ion Batteries. Chemelectrochem 2015, 2, 995–1002. [Google Scholar] [CrossRef]
- Shin, J.; Yang, J.; Sergey, C.; Song, M.S.; Kang, Y.M. Carbon Nanofibers Heavy Laden with Li3V2(PO4)3 Particles Featuring Superb Kinetics for High-Power Lithium Ion Battery. Adv. Sci. 2017, 4, 1700128. [Google Scholar] [CrossRef]
- Zheng, S.Y.; Zhong, G.M.; McDonald, M.J.; Gong, Z.L.; Liu, R.; Wen, W.; Yang, C.; Yang, Y. Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries. J. Mater. Chem. A 2016, 4, 9054–9062. [Google Scholar] [CrossRef]
- Yi, T.f.; Shi, L.; Han, X.; Wang, F.; Zhu, Y.; Xie, Y. Approaching High-Performance Lithium Storage Materials by Constructing Hierarchical CoNiO2@CeO2 Nanosheets. Energy Enviro. Mater. 2020, 4, 586–595. [Google Scholar] [CrossRef]
- Yi, T.f.; Qiu, L.Y.; Mei, J.; Qi, S.Y.; Cui, P.; Luo, S.; Zhu, Y.R.; Xie, Y.; He, Y.B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 2020, 65, 546–556. [Google Scholar] [CrossRef]
- Gao, H.C.; Li, Y.T.; Park, K.; Goodenough, J.B. Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples. Chem. Mater. 2016, 28, 6553–6559. [Google Scholar] [CrossRef]
- Wu, L.Y.; Dong, S.Y.; Pang, G.; Li, H.S.; Xu, C.Y.; Zhang, Y.D.; Dou, H.; Zhang, X.G. Rocking-chair Na-ion hybrid capacitor: A high energy/power system based on Na3V2O2(PO4)2F@PEDOT core-shell nanorods. J. Mater. Chem. A 2019, 7, 1030–1037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, R.; Zhu, W.; Liang, K.; Wei, P.; Li, J.; Liu, W.; Ren, Y. Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode. Molecules 2023, 28, 1409. https://doi.org/10.3390/molecules28031409
Su R, Zhu W, Liang K, Wei P, Li J, Liu W, Ren Y. Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode. Molecules. 2023; 28(3):1409. https://doi.org/10.3390/molecules28031409
Chicago/Turabian StyleSu, Renyuan, Weikai Zhu, Kang Liang, Peng Wei, Jianbin Li, Wenjun Liu, and Yurong Ren. 2023. "Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode" Molecules 28, no. 3: 1409. https://doi.org/10.3390/molecules28031409
APA StyleSu, R., Zhu, W., Liang, K., Wei, P., Li, J., Liu, W., & Ren, Y. (2023). Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode. Molecules, 28(3), 1409. https://doi.org/10.3390/molecules28031409