A Novel Photoluminescent Ag/Cu Cluster Exhibits a Chromic Photoluminescence Response towards Volatile Organic Vapors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.1.1. Synthesis of 1
2.1.2. Single Crystal Structure of 1·2CH2Cl2
2.1.3. Characterization of 1
2.1.4. Interconversions of 1 and 1a
2.2. Photoluminescent Properties
2.2.1. Photoluminescent Properties of 1
2.2.2. Photoluminescent Properties of 1a and Vapor-Chromic Responses toward Water and VOCs
2.3. Photoluminescent Probe for the Detection of MeCN
3. Materials and Methods
3.1. Materials and Measurements
3.2. Synthesis of 1 and 1a
3.3. Preparation of 1a/PMMA
3.4. Single-Crystal Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wenger, O.S. Vapochromism in organometallic and coordination complexes: Chemical sensors for volatile organic compounds. Chem. Rev. 2013, 113, 3686–3733. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Jang, M.; Suslick, K.S. Preoxidation for colorimetric sensor array detection of VOCs. J. Am. Chem. Soc. 2011, 133, 16786–16789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 2000, 205, 59–83. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Chen, Z.H.; Chen, Z.N. Luminescence vapochromism in solid materials based on metal complexes for detection of volatile organic compounds (VOCs). Mater. Chem. 2012, 22, 11427–11441. [Google Scholar] [CrossRef]
- Li, E.; Jie, K.; Liu, M.; Sheng, X.; Zhu, W.; Huang, F. Vapochromic crystals: Understanding vapochromism from the perspective of crystal engineering. Chem. Soc. Rev. 2020, 49, 1517–1544. [Google Scholar]
- Krytchankou, I.S.; Koshevoy, I.O.; Gurzhiy, V.V.; Pomogaev, V.A.; Tunik, S.P. Luminescence solvato- and vapochromism of alkynyl-phosphine copper clusters. Inorg. Chem. 2015, 54, 8288–8297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Sumitani, T.; Sato, H.; Seki, T.; Ito, H. Mechanical-stimulation-triggered and solvent-vapor-induced reverse single-crystal-to-single-crystal phase transitions with alterations of the luminescence color. J. Am. Chem. Soc. 2018, 140, 2875–2879. [Google Scholar] [CrossRef]
- England, K.R.; Lim, S.H.; Luong, L.M.C.; Olmstead, M.M.; Balch, A.L. Vapoluminescent behavior and the single-crystal-to-single-crystal transformations of chloroform solvates of [Au2(μ-1,2-bis(diphenylarsino)ethane)2](AsF6)2. Chem. Eur. J. 2019, 25, 874–878. [Google Scholar] [CrossRef]
- Chu, A.; Hau, F.K.W.; Yao, L.Y.; Yam, V.W.W. Decanuclear gold(I) sulfido pseudopolymorphs displaying stimuli-responsive RGBY luminescence changes. ACS Mater. Lett. 2019, 1, 277–284. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Davydova, M.P.; Berezin, A.S.; Ryzhikov, M.R.; Samsonenko, D.G. Dicopper(I) paddle-wheel complexes with thermally activated delayed fluorescence adjusted by ancillary ligands. Inorg. Chem. 2020, 59, 10699–10706. [Google Scholar] [CrossRef]
- Smith, M.B. The backbone of success of P,N-hybrid ligands: Some recent developments. Molecules 2022, 27, 6293. [Google Scholar] [PubMed]
- Baranov, A.Y.; Slavova, S.O.; Berezin, A.S.; Petrovskii, S.K.; Samsonenko, D.G.; Bagryanskaya, I.Y.; Fedin, V.P.; Grachova, E.V.; Artem’ev, A.V. Controllable synthesis and luminescence behavior of tetrahedral Au@Cu4 and Au@Ag4 clusters supported by tris(2-pyridyl)phosphine. Inorg. Chem. 2022, 61, 10925–10933. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhang, R.; He, L.-H.; Chen, J.-L.; Zhano, F.; Liu, S.-J.; Wen, H.-R. Thermo-, mechano-, and vapochromic dinuclear cuprous-emissive complexes with a switchable CH3CN−Cu bond. Inorg. Chem. 2022, 61, 15629–15637. [Google Scholar] [CrossRef]
- Xu, L.J.; Zhang, X.; Wang, J.Y.; Chen, Z.N. High-efficiency solution-processed OLEDs based on cationic Ag6Cu heteroheptanuclear cluster complexes with aromatic acetylides. J. Mater. Chem. C 2016, 4, 1787–1794. [Google Scholar] [CrossRef]
- Chen, K.; Shearer, J.; Catalano, V.J. Subtle modulation of Cu4X4L2 phosphine cluster cores leads to changes in luminescence. Inorg. Chem. 2015, 54, 6245–6256. [Google Scholar]
- Wu, Y.; Wang, J.Y.; Zhang, L.Y.; Xu, L.J.; Chen, Z.N. Vapor-triggered green-to-yellow luminescence conversion due to the variation of ligand orientations in tetranuclear copper(I) complex. Inorg. Chem. 2020, 59, 17415–17420. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, S.; Houjou, H.; Sugaya, K.; Koyama, E.; Tokuhisa, H.; Sasaki, T.; Kanesato, M. Fluorescence color modulation by intramolecular and intermolecular π−π interactions in a helical zinc(II) complex. Chem. Mater. 2005, 17, 50–56. [Google Scholar] [CrossRef]
- Kritchenkov, I.S.; Gitlina, A.Y.; Koshevoy, I.O.; Melnikov, A.S.; Tunik, S.P. Luminescent silver–copper “hourglass” hepta- and decanuclear alkynyl-phosphine clusters. Eur. J. Inorg. Chem. 2018, 2018, 3822–3828. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Xu, L.J.; Zhang, X.; Wang, J.Y.; Li, J.; Chen, Z.N. Spectroscopic and phosphorescent modulation in triphosphine-supported PtAg2 heterotrinuclear alkynyl complexes. Inorg. Chem. 2013, 52, 5167–5175. [Google Scholar]
- Laguna, A.; Lasanta, T.; López-de-Luzuriaga, J.M.; Monge, M.; Naumov, P.; Olmos, M.E. Combining aurophilic interactions and halogen bonding to control the luminescence from bimetallic gold−silver clusters. J. Am. Chem. Soc. 2010, 132, 456–457. [Google Scholar] [CrossRef]
- Mo, L.Q.; Jia, J.H.; Sun, L.J.; Wang, Q.M. Solvent-induced intercluster rearrangements and the reversible luminescence responses in sulfide bridged gold(I)–silver(I) clusters. Chem. Commun. 2012, 48, 8691–8693. [Google Scholar]
- Lei, Z.; Pei, X.L.; Jiang, Z.G.; Wang, Q.M. Cluster linker approach: Preparation of a luminescent porous framework with NbO topology by linking silver ions with gold(I) clusters. Angew. Chem. Int. Ed. 2014, 53, 12771–12775. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, B.C.; Lin, C.Y.; Hung, J.W.; Chen, S.Y.; Chang, A.H.H.; Lee, G.H. Solvent-induced luminescence and structural transformation of a dinuclear gold(I) (aza-18-crown-6)dithiocarbamate compound. Inorg. Chem. 2021, 60, 2694–2703. [Google Scholar] [CrossRef] [PubMed]
- Luong, L.M.C.; Olmstead, M.M.; Balch, A.L. A non-luminescent polymorph of [(cyclohexyl isocyanide)2Au]PF6 that becomes luminescent upon grinding or exposure to dichloromethane vapor. Chem. Commun. 2021, 57, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhang, J.; Ma, J.Q.; Zheng, W.; Chen, L.J.; Sun, B.; Li, C.; Hu, B.W.; Tan, H.; Li, X.; et al. Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J. Am. Chem. Soc. 2016, 138, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Hudson, Z.M.; Sun, C.; Harris, K.J.; Lucier, B.E.G.; Schurko, R.W.; Wang, S. Probing the structural origins of vapochromism of a triarylboron-functionalized platinum(II) acetylide by optical and multinuclear solid-state NMR spectroscopy. Inorg. Chem. 2011, 50, 3447–3457. [Google Scholar]
- Nayeri, S.; Jamali, S.; Jamjah, A.; Samouei, H. Tetranuclear Au2Cu2 clusters with butterfly- and planar-shaped metal cores: Strong rigidochromism induced by Jahn–Teller distortion in two-coordinated gold(I) centers. Inorg. Chem. 2019, 58, 12122–12131. [Google Scholar]
- López-de-Luzuriaga, J.M.; Monge, M.; Olmos, M.E.; Quintana, J.; Rodríguez-Castillo, M. Stimuli-responsive solvatochromic Au(I)–Ag(I) clusters: Reactivity and photophysical properties induced by the nature of the solvent. Inorg. Chem. 2019, 58, 1501–1512. [Google Scholar] [CrossRef]
- Strasser, C.E.; Catalano, V.J. “On−off” Au(I)⋯Cu(I) interactions in an Au(NHC)2 luminescent vapochromic sensor. J. Am. Chem. Soc. 2010, 132, 10009–10011. [Google Scholar]
- Li, Y.J.; Deng, Z.Y.; Xu, X.F.; Wu, H.B.; Cao, Z.X.; Wang, Q.M. Methanol triggered ligand flip isomerization in a binuclear copper(I) complex and the luminescence response. Chem. Commun. 2011, 47, 9179–9181. [Google Scholar]
- Lee, J.Y.; Kim, H.J.; Jung, J.H.; Sim, W.; Lee, S.S. Networking of calixcrowns: From heteronuclear endo/exocyclic coordination polymers to a photoluminescence switch. J. Am. Chem. Soc. 2008, 130, 13838–13839. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Zou, X.; He, Y.; Wang, X. Pyridylphosphine supported Ag(I) and Cu(I) complexes for detection of alcohols and nitriles via structural transformations from 1D to 0D. CrystEngComm 2019, 21, 5595–5601. [Google Scholar]
- Lei, Z.; Chang, S.S.; Wang, Q.M. Vapochromic gold(I)–silver(I) cluster protected by alkynyl and phosphine ligands. Eur. J. Inorg. Chem. 2017, 2017, 5098–5102. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yan, J.J.; Hu, S.; Young, D.J.; Li, H.X.; Ren, Z.G. A photoluminescent Ag10Cu6 cluster stabilized by a PNNP ligand and phenylacetylides selectively and reversibly senses ammonia in air and water. Chem. Asian J. 2021, 16, 2681–2686. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Ren, Z.G.; Yang, J.H.; He, R.T.; Wang, F.; Wu, X.Y.; Gong, W.J.; Li, H.X.; Lang, J.P. Formation of N-heterocyclic Biphosphine Ligands from Ag(I)-Assisted Condensation Reactions between bdppeda and Formaldehyde and Their Binuclear Silver(I) Complexes. Dalton Trans. 2012, 41, 8447–8454. [Google Scholar] [CrossRef] [PubMed]
- Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Zhang, J.; Vittal, J.J.; Henderson, W.; Wheaton, J.R.; Hall, I.H.; Hor, T.S.A.; Yan, Y.K. Tricarbonylrhenium(I) complexes of phosphine-derivatized amines, amino acids and a model peptide: Structures, solution behavior and cytotoxicity. J. Organomet. Chem. 2002, 650, 123–132. [Google Scholar] [CrossRef]
- Grim, S.O.; Matienzo, L.J. The synthesis and characterization of some novel polydentate phosphorus-nitrogen ligands. Tetrahedron Lett. 1973, 14, 2951–2953. [Google Scholar] [CrossRef]
- Teo, K.; Xu, Y.H.; Zhong, B.Y.; He, Y.K.; Chen, H.Y.; Qian, W.; Deng, Y.J.; Zou, Y.H. A comparative study of third-order nonlinear optical properties of silver phenylacetylide and related compounds via ultrafast optical Kerr effect measurements. Inorg. Chem. 2001, 40, 6794–6801. [Google Scholar]
- Sheldrick, G.M. SHELXTL-2016/6; Universität Göttingen: Göttingen, Germany, 2016. [Google Scholar]
Compound | 1·2CH2Cl2 |
---|---|
Empirical formula | C160H136Ag10Cl8Cu6N4O18P4 |
Formula weight | 4270.14 |
Crystal system | monoclinic |
Space group | P21/n |
a/Å | 30.834(2) |
b/Å | 16.5897(11) |
c/Å | 33.5688(19) |
β/° | 116.652(2) |
V/Å3 | 15,346.8(17) |
Z | 4 |
ρcalc/g·cm−3 | 1.848 |
μ/mm−1 | 12.665 |
F(000) | 8432 |
θmax/° | 56.966 |
No. of reflections measured | 345,696 |
No. of independent reflections | 31,366 (Rint = 0.1724) |
Data/restraints/parameters | 31,366/79/1867 |
R1 [I > 2.00 σ(I)] a | 0.1049 |
wR2 (all reflections) | 0.3419 |
Goodness of fit | 1.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Hu, S.; Wang, Y.; Yan, S.; Cao, X.-Q.; Li, H.-X.; Young, D.J.; Ren, Z.-G. A Novel Photoluminescent Ag/Cu Cluster Exhibits a Chromic Photoluminescence Response towards Volatile Organic Vapors. Molecules 2023, 28, 1257. https://doi.org/10.3390/molecules28031257
Yang W, Hu S, Wang Y, Yan S, Cao X-Q, Li H-X, Young DJ, Ren Z-G. A Novel Photoluminescent Ag/Cu Cluster Exhibits a Chromic Photoluminescence Response towards Volatile Organic Vapors. Molecules. 2023; 28(3):1257. https://doi.org/10.3390/molecules28031257
Chicago/Turabian StyleYang, Wei, Shengnan Hu, Yuwei Wang, Sisi Yan, Xiang-Qian Cao, Hong-Xi Li, David James Young, and Zhi-Gang Ren. 2023. "A Novel Photoluminescent Ag/Cu Cluster Exhibits a Chromic Photoluminescence Response towards Volatile Organic Vapors" Molecules 28, no. 3: 1257. https://doi.org/10.3390/molecules28031257
APA StyleYang, W., Hu, S., Wang, Y., Yan, S., Cao, X. -Q., Li, H. -X., Young, D. J., & Ren, Z. -G. (2023). A Novel Photoluminescent Ag/Cu Cluster Exhibits a Chromic Photoluminescence Response towards Volatile Organic Vapors. Molecules, 28(3), 1257. https://doi.org/10.3390/molecules28031257