Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the SC and SCP
2.2. Electrochemical Behaviour of the SC/GCE and SCP/GCE Sensors
2.3. Anti-Interference, Stability, Repeatability, and Real Sample Detection of SCP/GCE
3. Experiments
3.1. Reagents and Instruments
3.2. Synthesis of SrCoO3−δ and SrCo0.95P0.05O3−δ Perovskite Oxides
3.3. Preparation of the Working Electrodes
3.4. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelraheem, M.; El-Tigani, M.; Hassan, E.; Ali, M.; Mohamed, I.; Nazik, A. Acute renal failure owing to paraphenylene diamine hair dye poisoning in Sudanese children. Ann. Trop. Paediatr. 2009, 29, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Tian, H.; Ding, X. Investigation of Parabens in Commercial Cosmetics for Children in Beijing, China. J.Cosmet. Sci. 2013, 64, 67–72. [Google Scholar] [PubMed]
- Rollison, D.; Helzlsouer, K.; Pinney, S. Personal hair dye use and cancer: A systematic literature review and evaluation of exposure assessment in studies published since 1992, Journal of toxicology and environmental health. Part B. Crit. Rev. 2006, 9, 413–439. [Google Scholar]
- Yu, Q.; Kong, X.; Chen, C.; Kang, C.; Meng, M.; Huang, S. Synthesis of Ag NPs layer and its application as SERS substrate in the determination of p-phenylenediamine. J. Solid State Electrochem. 2020, 25, 683–688. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, Z. Influence of annealing on spin state of cobalt ions in La1–xSrxCoO3 (0 ≤ x ≤0.5) system. J. Rare Earths 2009, 27, 92–95. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, X.; Wang, L.; Lin, L.; Wang, D. Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water. Ecotoxicol. Environ. Saf. 2019, 181, 241–247. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, B.; Hu, D.; Zhang, S.; Pei, Y.; Gong, Z. Sensitive and visual detection of p-phenylenediamine by using dialdehyde cellulose membrane as a solid matrix. Anal. Chim. Acta 2020, 1139, 189–197. [Google Scholar] [CrossRef]
- Mo, F.; Xie, J.; Wu, T.; Liu, M.; Zhang, Y.; Yao, S. A sensitive electrochemical sensor for bisphenol A on the basis of the AuPd incorporated carboxylic multi-walled carbon nanotubes. Food Chem. 2019, 292, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Ronkainen, N.; Halsall, H.; Heineman, W. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Sakdaphetsiri, K.; Thaweeskulchai, T.; Schulte, A. Rapid sub-micromolar amperometric enzyme biosensing with free substrate access but without nanomaterial signalling support: Oxidase-based glucose detection as a proof-of-principle example. Chem. Commun. 2020, 56, 7132–7135. [Google Scholar] [CrossRef]
- Hu, L.; Li, J.; Zhou, X.; Bai, T.; Cui, Q.; Tang, J.; Xu, W. Prussian blue/ superactivated carbon composite-modified electrode for detection of p-phenylenediamine. Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem. 2018, 57, 896–904. [Google Scholar]
- Bessegato, G.; Hudari, F.; Zanoni, M. Self-doped TiO2 nanotube electrodes: A powerful tool as a sensor platform for electroanalytical applications. Electrochim. Acta 2017, 235, 527–533. [Google Scholar] [CrossRef]
- Bai, Y.-H.; Li, J.-Y.; Zhu, Y.-h.; Xu, J.-J.; Chen, H.-Y. Selective detection of p-phenylenediamine in hair dyes based on a special CE mechanism using MnO2 nanowires. Electroanalysis 2010, 22, 1239–1247. [Google Scholar] [CrossRef]
- Hudari, F.; de Almeida, L.; da Silva, B.; Zanoni, M. Voltammetric sensor for simultaneous determination of p-phenylenediamine and resorcinol in permanent hair dyeing and tap water by composite carbon nanotubes/chitosan modified electrode. Microchem. J. 2014, 116, 261–268. [Google Scholar] [CrossRef]
- Wu, L.; Zhong, J.; Waqas, M.; Jiang, Z.; Fan, Y.; Sun, Y.; Li, J.; Chen, W. Controllable synthesis of six corner star-like Cu2O/PEDOT-MWCNT composites and their performance toward electrochemical glucose sensing. Electrochim. Acta 2019, 318, 837–846. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Yu, J.; Guan, D.; She, S.; Zhou, W.; Shao, Z. Self-catalyzed formation of strongly interconnected multiphase molybdenum-based composites for efficient hydrogen evolution. Carbon Energy 2021, 4, 77–87. [Google Scholar] [CrossRef]
- Meng, X.; Deng, X.; Zhou, L.; Hu, B.; Tan, W.; Zhou, W.; Liu, M.; Shao, Z. A highly ordered hydrophilic–hydrophobic janus bi-Functional layer with ultralow Pt loading and fast gas/water transport for fuel cells. Energy Environ. Mater. 2020, 4, 126–133. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Z.; Sun, H.; Wang, X.; Xu, P. Selective determination of phenols and aromatic amines based on horseradish peroxidase-nanoporous gold co-catalytic strategy. Biosens. Bioelectron. 2016, 79, 843–849. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Y.; Wang, W.; Zhou, C.; Zhong, Y.; Yang, G.; Zhou, W.; Liu, M.; Shao, Z. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 2019, 3, 2842–2853. [Google Scholar] [CrossRef]
- Guan, D.; Zhou, J.; Huang, Y.; Dong, C.; Wang, J.; Zhou, W.; Shao, Z. Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nat. Commun. 2019, 10, 3755. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Duan, X.; Li, J.; Dai, J.; Liu, B.; Wang, S.; Zhou, W.; Shao, Z. Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element. Chem. Eng. J. 2019, 355, 721–730. [Google Scholar] [CrossRef]
- Sun, H.; He, J.; Hu, Z.; Chen, C.-T.; Zhou, W.; Shao, Z. Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. Electrochim. Acta 2019, 299, 926–932. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Kim, H.; Jung, W.; Zhou, W.; Shao, Z. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 2022. [Google Scholar] [CrossRef]
- Wang, X.; Dai, J.; Zhou, C.; Guan, D.; Wu, X.; Zhou, W.; Shao, Z. Engineering charge redistribution within perovskite oxides for synergistically enhanced overall water splitting. ACS Mater. Lett. 2021, 3, 1258–1265. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with atomic-level arranged perovskite and oxide layers for advanced oxidation with an enhanced non-free radical pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Man, I.; Su, H.; Calle-Vallejo, F.; Hansen, H.; Martínez, J.; Inoglu, N.; Kitchin, J.; Jaramillo, T.; Nørskov, J.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165. [Google Scholar] [CrossRef]
- Calle-Vallejo, F.; Díaz-Morales, O.; Kolb, M.; Koper, M. Why is bulk thermochemistry a good descriptor for the electrocatalytic activity of transition metal oxides? ACS Catal. 2015, 5, 869–873. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Zhong, Y.; Shi, C.; Guan, D.; Ge, L.; Hu, Z.; Chin, Y.-Y.; Lin, H.-J.; Chen, C.-T.; et al. New undisputed evidence and strategy for enhanced lattice-oxygen participation of perovskite electrocatalyst through cation deficiency manipulation. Adv. Sci. 2022, 9, 2200530. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Sunarso, J.; Miao, J.; Sun, H.; Dai, J.; Zhang, C.; Zhou, W.; Shao, Z. A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. J. Hazard. Mater. 2019, 369, 699–706. [Google Scholar] [CrossRef]
- Shin, J.; Orera, A.; Apperley, D.; Slater, P. Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5. J. Mater. Chem. 2011, 21, 874–879. [Google Scholar] [CrossRef]
- Shin, J.; Apperley, D.; Slater, P. Silicon Doping in Ba2In2O5: Example of a beneficial effect of silicon incorporation on oxide ion/proton conductivity. Chem. Mater. 2010, 22, 5945–5948. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Ran, R.; Chen, Y.; Shao, Z.; Liu, M. Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Lett. 2016, 16, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhou, W.; Sunarso, J.; Zhong, Y.; Shao, Z. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 2016, 26, 5862–5872. [Google Scholar] [CrossRef]
- Hancock, C.; Slade, R.; Varcoe, J.; Slater, P. Synthesis, structure and conductivity of sulfate and phosphate doped SrCoO3. J. Solid State Chem. 2011, 184, 2972–2977. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.-Q.; Wang, J.-F.; Yang, B.; Yuan, Y.-B. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Front. Phys. 2019, 14, 53401. [Google Scholar] [CrossRef]
- Risch, M. Perovskite electrocatalysts for the oxygen reduction reaction in alkaline media. Catalysts 2017, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhou, W.; Yu, J.; Chen, Y.; Liu, M.; Shao, Z. Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chem. Mater. 2016, 28, 1691–1697. [Google Scholar] [CrossRef]
- Chen, A.; Ding, Y.; Yang, Z.; Yang, S. Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor. Biosens. Bioelectron. 2015, 74, 967–973. [Google Scholar] [CrossRef]
- He, J.; Zhou, W.; Sunarso, J.; Xu, X.; Zhong, Y.; Shao, Z.; Chen, X.; Zhu, H. 3D ordered macroporous SmCoO3 perovskite for highly active and selective hydrogen peroxide detection. Electrochim. Acta 2018, 260, 372–383. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, S.; Xi, S.; Ren, X.; Zhou, Y.; Zhang, G.; Yang, H.; Du, Y.; Xu, Z. Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem. Mater. 2017, 29, 10534–10541. [Google Scholar] [CrossRef]
- Majee, R.; Chakraborty, S.; Salunke, H.; Bhattacharyya, S. Maneuvering the physical properties and spin states to enhance the activity of La–Sr–Co–Fe–O perovskite oxide nanoparticles in electrochemical water oxidation. ACS Appl. Energy Mater. 2018, 1, 3342–3350. [Google Scholar] [CrossRef]
- Goodenough, R.J.B.; Paranthaman, M. Surface protonation and electrochemical activity of oxides in aqueous solution. J. Am. Chem. Soc. 1990, 112, 2076–2082. [Google Scholar] [CrossRef]
- Liu, R.; Liang, F.; Zhou, W.; Yang, Y.; Zhu, Z. Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy 2015, 12, 115–122. [Google Scholar] [CrossRef]
- He, J.; Sunarso, J.; Zhu, Y.; Zhong, Y.; Miao, J.; Zhou, W.; Shao, Z. High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sens. Actuators B-Chem. 2017, 244, 482–491. [Google Scholar] [CrossRef]
- Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W.; Lee, Y.; Giordano, L.; Stoerzinger, K.; Koper, M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.-C.J.; Qin, Y.; Al-Bardan, Z.; Sun, C.-J.; Yang, H. Porous pyrochlore Y2[Ru1.6Y0.4]O7-δ electrocatalyst for enhanced performance towards oxygen evolution reaction in acid media. Angew. Chem. Int. Ed. 2018, 57, 13877–13881. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Y.; Hu, Z.; Peterson, V.; et al. High-performance perovskite composite electrocatalysts enabled by controllable interface engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef] [PubMed]
- Mefford, J.; Rong, X.; Abakumov, A.; Hardin, W.; Dai, S.; Kolpak, A.; Johnston, K.; Stevenson, K. Water electrolysis on La(1-x)Sr(x)CoO(3−δ) perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.-F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J.; Wang, C.; Xu, Z.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338. [Google Scholar] [CrossRef]
- Chen, X.; Feng, M.; Xie, X.; Zhang, Y.; Zhang, J.; Yang, X. Fe single atoms anchored on fluorine-doped ultrathin carbon nanosheets for sensitive colorimetric detection of p-phenylenediamine. Talanta 2022, 246, 123487. [Google Scholar] [CrossRef]
- Shi, B.; Su, Y.; Zhang, L.; Huang, M.; Li, X.; Zhao, S. Facilely prepared Fe3O4/nitrogen-doped graphene quantum dot hybrids as a robust nonenzymatic catalyst for visual discrimination of phenylenediamine isomers. Nanoscale 2016, 8, 10814–10822. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, Q.; Chen, X.; Deng, D.; Xie, X.; Yang, X. Controllable synthesis of boron-doped Zn-N-C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosens. Bioelectron. 2022, 210, 114294. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Nam, Y.-S.; Nah, I.; Lee, Y.; Lee, K.-B. Colorimetric Determination of p-Phenylenediamine Using Silver Nanoparticles Modified with Poly (ethylene glycol) Methyl Ether Thiol. J. Nanosci. Nanotechnol. 2017, 17, 3261–3267. [Google Scholar] [CrossRef]
- Gao, L.; Lin, X.; Hai, X.; Chen, X.; Wang, J. Polymeric Ionic Liquid-Based Fluorescent Amphiphilic Block Copolymer Micelle for Selective and Sensitive Detection of p-Phenylenediamine. ACS Appl. Mater. Interfaces 2018, 10, 43049–43056. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-J.; Xia, J.-M.; Hai, X.; Chen, M.-L.; Wang, J.-H. A hybrid of carbon dots with 4-chloro-7-nitro-2,1,3-benzoxadiazole for selective detection of p-phenylenediamine. Environ. Sci. Nano 2017, 4, 1037–1044. [Google Scholar] [CrossRef]
Sample | Co 2p3/2 | O 1s | |||||
---|---|---|---|---|---|---|---|
Co4+ (%) | Co3+ (%) | Co2+ (%) | Lattice Oxygen O2− (%) | Highly Oxidative Oxygen Species O22−/O− (%) | Surface Adsorbed Oxygen −OH/O2 (%) | Surface Adsorbed Water H2O/CO32− (%) | |
SCP | 5.9 | 78.3 | 15.8 | 5 | 23.5 | 47.4 | 24.1 |
SC | 8.4 | 80 | 11.6 | 8.1 | 8.5 | 49.7 | 33.7 |
Samples | Detection Method | LOD (µM) | Liner Response Range (µM) | Sensitivity (µA mM−1 cm−2) | Response Time (s) | Ref |
---|---|---|---|---|---|---|
SCP/GCE | Electrochemistry | 0.3 | 0.8–5000 | 502 (0.8–2000 µM) 314 (2000–5000 µM) | 3 | This work |
SC/GCE | Electrochemistry | 0.5 | 1.5–5000 | 438 (1.5–2000 µM) 248 (2000–5000 µM) | 4 | This work |
HRP/NPG/GCE | Electrochemistry | 0.33 | 2–170 | 26.5 | [18] | |
PSC82/GCE | Electrochemistry | 0.17 | 0.5–2900 | 655 | 3 | [29] |
P-TiO2NTs | Electrochemistry | 0.056 | 0.5–98.6 | 1456 (0.5–5µM) | [12] | |
Fe–SAs@FNC | Colorimetry | 0.07 | 0.2–50 | [50] | ||
Fe3O4/N-GQDs | Colorimetry | 0.53 | 2–70 | [51] | ||
ZnBNC SAzyme | Colorimetry | 0.1 | 0.3–10 | [52] | ||
AgNPs | Colorimetry | 0.53 | 0.002–1500 | [53] | ||
AgNPs layer | Surface-enhanced Raman spectroscopy | 10−11 | 10−10–10−6 | [4] | ||
S-PPD-DCM | Fluorescence | 0.05 | 0.09–0.92 | [9] | ||
BCP-Py-CHO | Fluorescence | 0.007 | 0.02–1.5 | [54] | ||
CDs@NBD | Fluorescence | 0.056 | 0.1–10 | [55] |
Electrode Number | 1 | 2 | 3 | 4 | 5 | Average Value | Amount Added (Mm) | Standard Error (%) | Deviation (%) |
---|---|---|---|---|---|---|---|---|---|
Result/(mM) | 0.978 | 0.975 | 0.985 | 0.997 | 1.031 | 0.993 | 1 | 2.3% | 0.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Xu, X.; Sun, H.; Miao, T.; Li, M.; Zhou, S.; Zhou, W. Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection. Molecules 2023, 28, 1122. https://doi.org/10.3390/molecules28031122
He J, Xu X, Sun H, Miao T, Li M, Zhou S, Zhou W. Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection. Molecules. 2023; 28(3):1122. https://doi.org/10.3390/molecules28031122
Chicago/Turabian StyleHe, Juan, Xiaomin Xu, Hainan Sun, Tengfei Miao, Meisheng Li, Shouyong Zhou, and Wei Zhou. 2023. "Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection" Molecules 28, no. 3: 1122. https://doi.org/10.3390/molecules28031122
APA StyleHe, J., Xu, X., Sun, H., Miao, T., Li, M., Zhou, S., & Zhou, W. (2023). Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection. Molecules, 28(3), 1122. https://doi.org/10.3390/molecules28031122