Mechanisms of Phototoxic Effects of Cationic Porphyrins on Human Cells In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compounds, Lighting
2.2. Cells
2.3. MTT Assay
2.4. Colony Formation Assays
2.5. Trypan Blue Test
2.6. Microscopy
2.7. Spectroscopy
3. Results
3.1. Effect of Porphyrins on Colony Formation
3.2. Dependence of Porphyrin Toxicity on Concentration and Time after Light Irradiation (MTT Test)
3.3. Study of Cellular Permeability with Trypan Blue
3.4. Morphological Studies of Porphyrins Action
3.5. Porphyrin Penetration into the Cell
3.6. Trypsinization Procedure
3.7. Annexin V Staining
3.8. Aggregation Studies of Porphyrins
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cheng, M.J.; Cao, Y.G. TMPYP4 exerted antitumor effects in human cervical cancer cells through activation of p38 mitogen-activated protein kinase. Biol. Res. 2017, 50, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedeva, N.S.; Gubarev, Y.A.; Koifman, M.O.; Koifman, O.I. The Application of Porphyrins and Their Analogues for Inactivation of Viruses. Molecules 2020, 25, 4368. [Google Scholar] [CrossRef]
- Shitikov, E.; Bespiatykh, D.; Malakhova, M.; Bespyatykh, J.; Bodoev, I.; Vedekhina, T.; Zaychikova, M.; Veselovsky, V.; Klimina, K.; Ilina, E.; et al. Genome-Wide Transcriptional Response of Mycobacterium smegmatis MC(2)155 to G-Quadruplex Ligands BRACO-19 and TMPyP4. Front. Microbiol. 2022, 13, 817024. [Google Scholar] [CrossRef]
- Artusi, S.; Ruggiero, E.; Nadai, M.; Tosoni, B.; Perrone, R.; Ferino, A.; Zanin, I.; Xodo, L.; Flamand, L.; Richter, S. Antiviral Activity of the G-Quadruplex Ligand TMPyP4 against Herpes Simplex Virus-1. Viruses 2021, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Malatesti, N.; Munitic, I.; Jurak, I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys. Rev. 2017, 9, 149–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharjee, A.J.; Ahluwalia, K.; Taylor, S.; Jin, O.; Nicoludis, J.M.; Buscaglia, R.; Chaires, J.B.; Kornfilt, D.J.; Marquardt, D.G.; Yatsunyk, L.A. Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin. Biochimie 2011, 93, 1297–1309. [Google Scholar] [CrossRef]
- DuPont, J.; Henderson, K.L.; Metz, A.; Le, V.H.; Emerson, J.; Lewis, E.A. Calorimetric and spectroscopic investigations of the binding of metallated porphyrins to G-quadruplex DNA. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 902–909. [Google Scholar] [CrossRef]
- Kovaleva, O.A.; Tsvetkov, V.B.; Mamaeva, O.K.; Ol’Shevskaya, V.A.; Makarenkov, A.V.; Dezhenkova, L.G.; Semeikin, A.S.; Borisova, O.F.; Shtil, A.A.; Shchyolkina, A.K.; et al. Preferential DNA photocleavage potency of Zn(II) over Ni(II) derivatives of carboxymethyl tetracationic porphyrin: The role of the mode of binding to DNA. Eur. Biophys. J. 2014, 43, 545–554. [Google Scholar] [CrossRef]
- Beniaminov, A.D.; Novikov, R.A.; Mamaeva, O.K.; Mitkevich, V.A.; Smirnov, I.P.; Livshits, M.A.; Shchyolkina, A.K.; Kaluzhny, D.N. Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin. Nucleic Acids Res. 2016, 44, 10031–10041. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.-H.; Nie, X.; Liu, H.-Y.; Fang, Y.-M.; Zhao, Y.; Xia, L.-X. TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses. Sci. Rep. 2016, 6, 26592. [Google Scholar] [CrossRef]
- Liu, H.; Lv, C.; Ding, B.; Wang, J.; Li, S.; Zhang, Y. Antitumor activity of G-quadruplex-interactive agent TMPyP4 with photodynamic therapy in ovarian carcinoma cells. Oncol. Lett. 2014, 8, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konieczna, N.; Romaniuk-Drapała, A.; Lisiak, N.; Totoń, E.; Paszel-Jaworska, A.; Kaczmarek, M.; Rubiś, B. Telomerase Inhibitor TMPyP4 Alters Adhesion and Migration of Breast-Cancer Cells MCF7 and MDA-MB-231. Int. J. Mol. Sci. 2019, 20, 2670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, D.; Sujatha, S. Interactions of porphyrins with DNA: A review focusing recent advances in chemical modifications on porphyrins as artificial nucleases. J. Inorg. Biochem. 2021, 219, 111434. [Google Scholar] [CrossRef]
- Fujimori, J.; Matsuo, T.; Shimose, S.; Kubo, T.; Ishikawa, M.; Yasunaga, Y.; Ochi, M. Antitumor effects of telomerase inhibitor TMPyP4 in osteosarcoma cell lines. J. Orthop. Res. 2011, 29, 1707–1711. [Google Scholar] [CrossRef] [PubMed]
- Zidanloo, S.G.; Colagar, A.H.; Ayatollahi, H.; Raoof, J.-B. Downregulation of the WT1 gene expression via TMPyP4 stabilization of promoter G-quadruplexes in leukemia cells. Tumor Biol. 2016, 37, 9967–9977. [Google Scholar] [CrossRef]
- Zhuang, X.-Y.; Yao, Y.-G. Mitochondrial dysfunction and nuclear-mitochondrial shuttling of TERT are involved in cell proliferation arrest induced by G-quadruplex ligands. FEBS Lett. 2013, 587, 1656–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Yang, L.; Huang, J.; Zhang, L.; Weng, X.; Zhang, X.; Shen, C.; Zhou, X.; Zheng, C. Cationic Ester Porphyrins Cause High Levels of Phototoxicity in Tumor Cells and Induction of Apoptosis in HeLa Cells. Chem. Biodivers. 2009, 6, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Tada-Oikawa, S.; Oikawa, S.; Hirayama, J.; Hirakawa, K.; Kawanishi, S. DNA Damage and Apoptosis Induced by Photosensitization of 5,10,15,20-Tetrakis (N-methyl-4-pyridyl)-21H,23H-porphyrin via Singlet Oxygen Generation. Photochem. Photobiol. 2009, 85, 1391–1399. [Google Scholar] [CrossRef]
- Acedo, P.; Stockert, J.C.; Cañete, M.; Villanueva, A. Two combined photosensitizers: A goal for more effective photodynamic therapy of cancer. Cell Death Dis. 2014, 5, e1122. [Google Scholar] [CrossRef] [Green Version]
- Rapozzi, V.; Zorzet, S.; Zacchigna, M.; Della Pietra, E.; Cogoi, S.; Xodo, L.E. Anticancer activity of cationic porphyrins in melanoma tumour-bearing mice and mechanistic in vitro studies. Mol. Cancer 2014, 13, 75. [Google Scholar] [CrossRef]
- Arutyunyan, A.F.; Tevonyan, L.L.; Beniaminov, A.D.; Yegorov, Y.E.; Kaluzhny, D.N. The Phototoxic Effect of Water-Soluble Porphyrins on Human Clear Cell Renal Cell Carcinoma Line Caki-1. Biophysics 2021, 66, 273–277. [Google Scholar] [CrossRef]
- Kovaleva, O.A.; Tsvetkov, V.B.; Shchyolkina, A.K.; Borisova, O.F.; Ol’Shevskaya, V.A.; Makarenkov, A.V.; Semeikin, A.S.; Shtil, A.A.; Kaluzhny, D.N. The role of carboxymethyl substituents in the interaction of tetracationic porphyrins with DNA. Eur. Biophys. J. 2012, 41, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Vishnyakova, K.S.; Popov, K.V.; Pan, X.; Jasko, M.V.; Yegorov, Y.E. Long-Chain Free Fatty Acids Influence Lipid Accumulation, Lysosome Activation and Glycolytic Shift in Various Cells In Vitro. Mol. Biol. 2021, 55, 624–636. [Google Scholar] [CrossRef]
- Moldaver, M.V.; Yegorov, Y.E. Sparse plating increases the heterogeneity of proliferative potential of fibroblasts. Mech. Ageing Dev. 2009, 130, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Kalyanasundaram, K.; Neumann-Spallart, M. Photophysical Redox Prop. Water-Soluble Porphyr. Aqueous Media. J. Phys. Chem. 1982, 86, 5163–5169. [Google Scholar] [CrossRef]
- Sobczyński, J.; Tønnesen, H.H.; Kristensen, S. Influence of aqueous media properties on aggregation and solubility of four structurally related meso-porphyrin photosensitizers evaluated by spectrophotometric measurements. Pharmazie 2013, 68, 100–109. [Google Scholar]
- Koehorst, R.B.M.; Hofstra, U.; Schaafsma, T.J. Solution structure of porphyrin aggregates determined by 1H NMR ring current shifts. II. Conformations of dimers and higher aggregates of water-soluble porphyrins. Magn. Reson. Chem. 1988, 26, 167–172. [Google Scholar] [CrossRef]
- Monsù Scolaro, L.; Castriciano, M.; Romeo, A.; Mazzaglia, A.; Mallamace, F.; Micali, N. Nucleation effects in the aggregation of water-soluble porphyrin aqueous solutions. Phys. A Stat. Mech. Its Appl. 2002, 304, 158–169. [Google Scholar] [CrossRef]
- Mosinger, J.; Janošková, M.; Lang, K.; Kubát, P. Light-induced aggregation of cationic porphyrins. J. Photochem. Photobiol. A Chem. 2006, 181, 283–289. [Google Scholar] [CrossRef]
- Ricchelli, F.; Gobbo, S.; Moreno, G.; Salet, C.; Brancaleon, L.; Mazzini, A. Photophysical properties of porphyrin planar aggregates in liposomes. Eur. J. Biochem. 1998, 253, 760–765. [Google Scholar] [CrossRef]
- Susanto, J.; Lin, Y.-H.; Chen, Y.-N.; Shen, C.-R.; Yan, Y.-T.; Tsai, S.-T.; Chen, C.-H.; Shen, C.-N. Porphyrin Homeostasis Maintained by ABCG2 Regulates Self-Renewal of Embryonic Stem Cells. PLoS ONE 2008, 3, e4023. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, K.; Tamura, A.; Saito, H.; Onishi, Y.; Ishikawa, T. Human ABC Transporter ABCG2 in Xenobiotic Protection and Redox Biology. Drug Metab. Rev. 2006, 38, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Maitra, D.; Carter, E.L.; Richardson, R.; Rittié, L.; Basrur, V.; Zhang, H.; Nesvizhskii, A.I.; Osawa, Y.; Wolf, M.W.; Ragsdale, S.W.; et al. Oxygen and Conformation Dependent Protein Oxidation and Aggregation by Porphyrins in Hepatocytes and Light-Exposed Cells. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 659–682.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacellar, I.O.L.; Baptista, M.S. Mech. Photosensit. Lipid Oxid. Membr. Permeabilization. ACS Omega 2019, 4, 21636–21646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezende, L.G.; Tasso, T.T.; Candido, P.H.S.; Baptista, M.S. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem. Photobiol. 2022, 98, 572–590. [Google Scholar] [CrossRef]
Cells | Control | 0.1 μM ZnP1 | 1 μM ZnP1 | 0.1 μM ZnP1+ 5 Min Light | 1 μM ZnP1+ 5 Min Light |
---|---|---|---|---|---|
A549 | 1024 | 1024 | 512 | 512 | 64 |
977hTERT | 64 | 32 | 32 | 16 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yegorov, Y.E.; Vishnyakova, K.S.; Pan, X.; Egorov, A.E.; Popov, K.V.; Tevonyan, L.L.; Chashchina, G.V.; Kaluzhny, D.N. Mechanisms of Phototoxic Effects of Cationic Porphyrins on Human Cells In Vitro. Molecules 2023, 28, 1090. https://doi.org/10.3390/molecules28031090
Yegorov YE, Vishnyakova KS, Pan X, Egorov AE, Popov KV, Tevonyan LL, Chashchina GV, Kaluzhny DN. Mechanisms of Phototoxic Effects of Cationic Porphyrins on Human Cells In Vitro. Molecules. 2023; 28(3):1090. https://doi.org/10.3390/molecules28031090
Chicago/Turabian StyleYegorov, Yegor E., Khava S. Vishnyakova, Xiaowen Pan, Anton E. Egorov, Konstantin V. Popov, Liana L. Tevonyan, Galina V. Chashchina, and Dmitry N. Kaluzhny. 2023. "Mechanisms of Phototoxic Effects of Cationic Porphyrins on Human Cells In Vitro" Molecules 28, no. 3: 1090. https://doi.org/10.3390/molecules28031090
APA StyleYegorov, Y. E., Vishnyakova, K. S., Pan, X., Egorov, A. E., Popov, K. V., Tevonyan, L. L., Chashchina, G. V., & Kaluzhny, D. N. (2023). Mechanisms of Phototoxic Effects of Cationic Porphyrins on Human Cells In Vitro. Molecules, 28(3), 1090. https://doi.org/10.3390/molecules28031090