N-Methyl- and N-Phenylpiperazine Functionalized Styryl Dyes Inside Cucurbiturils: Theoretical Assessment of the Factors Governing the Host–Guest Recognition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reactions Modeled
2.2. Encapsulation of Dyes1-12+ in CB[7/8]
2.2.1. Effect of the Substituents
2.2.2. Effect of the Cavity Volume
2.2.3. Effect of the Dielectric Constant of the Medium
2.3. Encapsulation of Dye9 Ⴈ+/2+ in CB[7] in Absence/Presence of Metal Cations
2.3.1. Effect of the pH of the Medium/Charge of the Dye Molecule
2.3.2. Effect of the Metal Cations
3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blackburn, G.M.; Gait, M.J.; Loakes, D.; Williams, D.M. Nucleic Acids in Chemistry and Biology, 3rd ed.; The Royal Society of Chemistry: Cambridge, UK, 2006. [Google Scholar]
- Neidle, S. Quadruplex Nucleic Acids as Novel Therapeutic Targets. J. Med. Chem. 2016, 59, 5987–6011. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, I.; Recagni, M.; Zaffaroni, N.; Folini, M. On the Road to Fight Cancer: The Potential of G-quadruplex Ligands as Novel Therapeutic Agents. Int. J. Mol. Sci. 2021, 22, 5947. [Google Scholar] [CrossRef] [PubMed]
- Kosiol, N.; Juranek, S.; Brossart, P.; Heine, A.; Paeschke, K. G-Quadruplexes: A Promising Target for Cancer Therapy. Mol. Cancer 2021, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Smargiasso, N.; Hsia, W.; Colson, P.; Baker, E.S.; Bowers, M.T.; Pauw, E. De G-Quadruplex DNA Assemblies: Loop Length, Cation Identity, and Multimer Formation. J. Am. Chem. Soc. 2008, 130, 10208–10216. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, J.; Adhikari, S.; Balasubramanian, S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020, 2, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Neidle, S. The Structures of Quadruplex Nucleic Acids and Their Drug Complexes. Curr. Opin. Struct. Biol. 2009, 19, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Huppert, J.L. Four-Stranded Nucleic Acids: Structure, Function and Targeting of G-Quadruplexes. Chem. Soc. Rev. 2008, 37, 1375–1384. [Google Scholar] [CrossRef]
- Luedtke, N.W. Targeting G-Quadruplex DNA with Small Molecules. Chimia 2009, 63, 134–139. [Google Scholar] [CrossRef]
- Kaneti, J.; Kurteva, V.; Georgieva, M.; Krasteva, N.; Miloshev, G.; Tabakova, N.; Petkova, Z.; Bakalova, S.M. Small Heterocyclic Ligands as Anticancer Agents: QSAR with a Model G-Quadruplex. Molecules 2022, 27, 7577. [Google Scholar] [CrossRef]
- Frasson, I.; Pirota, V.; Richter, S.N.; Doria, F. Multimeric G-Quadruplexes: A Review on Their Biological Roles and Targeting. Int. J. Biol. Macromol. 2022, 204, 89–102. [Google Scholar] [CrossRef]
- Komljenovic, D.; Wiessler, M.; Waldeck, W.; Ehemann, V.; Pipkorn, R.; Schrenk, H.H.; Debus, J.; Braun, K. NIR-Cyanine Dye Linker: A Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring. Theranostics 2016, 6, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Y.; Yue, X.; Dai, Z. Cyanine Conjugates in Cancer Theranostics. Bioact. Mater. 2021, 6, 794–809. [Google Scholar] [CrossRef] [PubMed]
- Deligeorgiev, T.; Vasilev, A.; Kaloyanova, S.; Vaquero, J.J. Styryl Dyes—Synthesis and Applications during the Last 15 Years. Color. Technol. 2010, 126, 55–80. [Google Scholar] [CrossRef]
- Volkova, K.D.; Kovalska, V.B.; Tatarets, A.L.; Patsenker, L.D.; Kryvorotenko, D.V.; Yarmoluk, S.M. Spectroscopic Study of Squaraines as Protein-Sensitive Fluorescent Dyes. Dye. Pigment. 2007, 72, 285–292. [Google Scholar] [CrossRef]
- Balanda, A.O.; Volkova, K.D.; Kovalska, V.B.; Losytskyy, M.Y.; Tokar, V.P.; Prokopets, V.M.; Yarmoluk, S.M. Synthesis and Spectral-Luminescent Studies of Novel 4-Oxo-4,6,7,8-Tetrahydropyrrolo[1,2-a]Thieno[2,3-d]Pyrimidinium Styryls as Fluorescent Dyes for Biomolecules Detection. Dye. Pigment. 2007, 75, 25–31. [Google Scholar] [CrossRef]
- Verma, R.K.; Garg, S. Current Status of Drug Delivery Technologies and Future Directions. Pharm. Technol. On-Line 2001, 25, 1–14. [Google Scholar]
- Ma, X.; Zhao, Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem. Rev. 2015, 115, 7794–7839. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, B.; Zhang, X.; Scherman, O.A. Supramolecular Chemistry at Interfaces: Host–Guest Interactions for Fabricating Multifunctional Biointerfaces. Acc. Chem. Res. 2014, 47, 2106–2115. [Google Scholar] [CrossRef]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, S.-S.; Lee, S.; Oh, H. Bin Noncovalent Complexes of Cyclodextrin with Small Organic Molecules: Applications and Insights into Host–Guest Interactions in the Gas Phase and Condensed Phase. Molecules 2020, 25, 4048. [Google Scholar] [CrossRef] [PubMed]
- Homden, D.M.; Redshaw, C. The Use of Calixarenes in Metal-Based Catalysis. Chem. Rev. 2008, 108, 5086–5130. [Google Scholar] [CrossRef] [PubMed]
- Vicens, J.; Böhmer, V. Calixarenes: A Versatile Class of Macrocyclic Compounds; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Bukhzam, A.; Bader, N. Crown Ethers: Their Complexes and Analytical Applications. J. Appl. Chem. 2017, 3, 237–244. [Google Scholar]
- Kralj, M.; Tušek-Božić, L.; Frkanec, L. Biomedical Potentials of Crown Ethers: Prospective Antitumor Agents. ChemMedChem 2008, 3, 1478–1492. [Google Scholar] [CrossRef] [PubMed]
- Barrow, S.J.; Kasera, S.; Rowland, M.J.; Del Barrio, J.; Scherman, O.A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115, 12320–12406. [Google Scholar] [CrossRef]
- Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The Cucurbit[n]Uril Family. Angew. Chem. Int. Ed. 2005, 44, 4844–4870. [Google Scholar] [CrossRef]
- Masson, E.; Ling, X.; Joseph, R.; Kyeremeh-Mensah, L.; Lu, X. Cucurbituril Chemistry: A Tale of Supramolecular Success. RSC Adv. 2012, 2, 1213–1247. [Google Scholar] [CrossRef]
- Lee, J.W.; Samal, S.; Selvapalam, N.; Kim, H.J.; Kim, K. Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry. Acc. Chem. Res. 2003, 36, 621–630. [Google Scholar] [CrossRef]
- Kim, K. Cucurbiturils and Related Macrocycles; The Royal Society of Chemistry: London, UK, 2019; ISBN 978-1-78801-500-4. [Google Scholar]
- El-Sheshtawy, H.S.; Chatterjee, S.; Assaf, K.I.; Shinde, M.N.; Nau, W.M.; Mohanty, J. A Supramolecular Approach for Enhanced Antibacterial Activity and Extended Shelf-Life of Fluoroquinolone Drugs with Cucurbit[7]Uril. Sci. Rep. 2018, 8, 13925. [Google Scholar] [CrossRef]
- Lü, J.; Lin, J.X.; Cao, M.N.; Cao, R. Cucurbituril: A Promising Organic Building Block for the Design of Coordination Compounds and Beyond. Coord. Chem. Rev. 2013, 257, 1334–1356. [Google Scholar] [CrossRef]
- Assaf, K.I.; Nau, W.M. Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis. Chem. Soc. Rev. 2015, 44, 394–418. [Google Scholar] [CrossRef] [PubMed]
- Nau, W.M. Supramolecular Capsules: Under Control. Nat. Chem. 2010, 2, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.S.; Moon, K.; Park, S.H.; Chun, H.; Ko, Y.H.; Lee, J.Y.; Lee, E.S.; Samal, S.; Selvapalam, N.; Rekharsky, M.V.; et al. Complexation of Ferrocene Derivatives by the Cucurbit[7]Uril Host: A Comparative Study of the Cucurbituril and Cyclodextrin Host Families. J. Am. Chem. Soc. 2005, 127, 12984–12989. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.; Mohanty, J.; Singh, P.K.; Nau, W.M.; Pal, H. Complexation of Acridine Orange by Cucurbit[7]Uril and β-Cyclodextrin: Photophysical Effects and PKa Shifts. Photochem. Photobiol. Sci. 2008, 7, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Pal, H.; Koti, A.S.R.; Sapre, A.V. Photophysical Properties and Rotational Relaxation Dynamics of Neutral Red Bound to β-Cyclodextrin. J. Phys. Chem. A 2004, 108, 1465–1474. [Google Scholar] [CrossRef]
- Zonjić, I.; Radić Stojković, M.; Crnolatac, I.; Tomašić Paić, A.; Pšeničnik, S.; Vasilev, A.; Kandinska, M.; Mondeshki, M.; Baluschev, S.; Landfester, K.; et al. Styryl Dyes with N-Methylpiperazine and N-Phenylpiperazine Functionality: AT-DNA and G-Quadruplex Binding Ligands and Theranostic Agents. Bioorg. Chem. 2022, 127, 105999–106014. [Google Scholar] [CrossRef]
- Chernikova, E.Y.; Ruleva, A.Y.; Tsvetkov, V.B.; Fedorov, Y.V.; Novikov, V.V.; Aliyeu, T.M.; Pavlov, A.A.; Shepel, N.E.; Fedorova, O.A. Cucurbit[7]Uril-Driven Modulation of Ligand-DNA Interactions by Ternary Assembly. Org. Biomol. Chem. 2020, 18, 755–766. [Google Scholar] [CrossRef]
- Tian, T.; Song, Y.; Wei, L.; Wang, J.; Fu, B.; He, Z.; Yang, X.R.; Wu, F.; Xu, G.; Liu, S.M.; et al. Reversible Manipulation of the G-Quadruplex Structures and Enzymatic Reactions through Supramolecular Host-Guest Interactions. Nucleic Acids Res. 2017, 45, 2283–2293. [Google Scholar] [CrossRef]
- Perevozchikova, P.S.; Chernikova, E.Y.; Shepel, N.E.; Fedorova, O.A.; Fedorov, Y.V. DNA-Based Assemblies with Bischromophoric Styryl Dye-Chromene Conjugates and Cucurbit[7]Uril. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 286, 121971. [Google Scholar] [CrossRef]
- Gavvala, K.; Satpathi, S. Acetylcholine Induced Interplay of Proflavine between Cucurbit[7]Uril and DNA. J. Lumin. 2016, 171, 234–237. [Google Scholar] [CrossRef]
- Kircheva, N.; Dobrev, S.; Dasheva, L.; Koleva, I.; Nikolova, V.; Angelova, S.; Dudev, T. Complexation of Biologically Essential (Mono- and Divalent) Metal Cations to Cucurbiturils: A DFT/SMD Evaluation of the Key Factors Governing the Host–Guest Recognition. RSC Adv. 2020, 10, 28139–28147. [Google Scholar] [CrossRef] [PubMed]
- Koleva, I.Z.; Dobrev, S.; Kircheva, N.; Dasheva, L.; Nikolova, V.; Angelova, S.; Dudev, T. Complexation of Trivalent Metal Cations (Al3+, Ga3+, In3+, La3+, Lu3+) to Cucurbiturils: A DFT/SMD Evaluation of the Key Factors Governing the Host-Guest Recognition†. Phys. Chem. Chem. Phys. 2022, 24, 6274–6281. [Google Scholar] [CrossRef] [PubMed]
- Kircheva, N.; Dobrev, S.; Dasheva, L.; Nikolova, V.; Angelova, S.; Dudev, T. Metal-Assisted Complexation of Fluorogenic Dyes by Cucurbit[7]Uril and Cucurbit[8]Uril: A DFT Evaluation of the Key Factors Governing the Host–Guest Recognition. Molecules 2023, 28, 1540. [Google Scholar] [CrossRef] [PubMed]
- Kircheva, N.; Nikolova, V.; Dobrev, S.; Angelova, S.; Dudev, T. β -Cyclodextrin-Modulated Interaction of Gd3 + with Levofloxacin: A Molecular Modeling Study. Trends Phys. Chem. 2022, 22, 39–49. [Google Scholar]
- Nikolova, V.; Dobrev, S.; Kircheva, N.; Yordanova, V.; Dudev, T.; Angelova, S. Host-Guest Complexation of Cucurbit[7]Uril and Cucurbit[8]Uril with the Antimuscarinic Drugs Tropicamide and Atropine. J. Mol. Graph. Model. 2023, 119, 108380. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.; Thakur, N.; Dutta Choudhury, S.; Barooah, N.; Pal, H.; Bhasikuttan, A.C. Recognition-Mediated Light-up of Thiazole Orange with Cucurbit[8]Uril: Exchange and Release by Chemical Stimuli. J. Phys. Chem. B 2012, 116, 130–135. [Google Scholar] [CrossRef]
- Choudhury, S.D.; Mohanty, J.; Pal, H.; Bhasikuttan, A.C. Cooperative Metal Ion Binding to a Cucurbit[7]Uril—Thioflavin T Complex: Demonstration of a Stimulus-Responsive Fluorescent Supramolecular Capsule. J. Am. Chem. Soc. 2010, 132, 1395–1401. [Google Scholar] [CrossRef]
- Shaikh, M.; Choudhury, S.D.; Mohanty, J.; Bhasikuttan, A.C.; Pal, H. Contrasting Guest Binding Interaction of Cucurbit[7-8]Urils with Neutral Red Dye: Controlled Exchange of Multiple Guests. Phys. Chem. Chem. Phys. 2010, 12, 7050–7055. [Google Scholar] [CrossRef]
- Biedermann, F.; Uzunova, V.D.; Scherman, O.A.; Nau, W.M.; De Simone, A. Release of High-Energy Water as an Essential Driving Force for the High-Affinity Binding of Cucurbit[n]Urils. J. Am. Chem. Soc. 2012, 134, 15318–15323. [Google Scholar] [CrossRef]
- Jeon, Y.M.; Kim, J.; Whang, D.; Kim, K. Molecular Container Assembly Capable of Conrolling Binding and Release of Its Guest Molecules: Reversible Encapsulation of Organic Molecules in Sodium Ion Complexed Cucurbituril. J. Am. Chem. Soc. 1996, 118, 9790–9791. [Google Scholar] [CrossRef]
- Shen, F.F.; Zhao, J.L.; Chen, K.; Hua, Z.Y.; Chen, M.D.; Zhang, Y.Q.; Zhu, Q.J.; Tao, Z. Supramolecular Coordination Assemblies of a Symmetrical Octamethyl-Substituted Cucurbituril with Alkali Metal Ions Based on the Outer-Surface Interactions of Cucurbit[: N] Urils. CrystEngComm 2017, 19, 2464–2474. [Google Scholar] [CrossRef]
- Yao, Y.Q.; Chen, K.; Hua, Z.Y.; Zhu, Q.J.; Xue, S.F.; Tao, Z. Cucurbit[n]Uril-Based Host–Guest-Metal Ion Chemistry: An Emerging Branch in Cucurbit[n]Uril Chemistry. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 1–14. [Google Scholar] [CrossRef]
- Zhang, S.; Grimm, L.; Miskolczy, Z.; Biczók, L.; Biedermann, F.; Nau, W.M. Binding Affinities of Cucurbit[: N] Urils with Cations. Chem. Commun. 2019, 55, 14131–14134. [Google Scholar] [CrossRef]
- Ko, Y.H.; Kim, K.; Kang, J.K.; Chun, H.; Lee, J.W.; Sakamoto, S.; Yamaguchi, K.; Fettinger, J.C.; Kim, K. Designed Self-Assembly of Molecular Necklaces Using Host-Stabilized Charge-Transfer Interactions. J. Am. Chem. Soc. 2004, 126, 1932–1933. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.L.; Lin, J.X.; Zheng, Y.Y.; Wu, W.S.; Zhang, Y.Q.; Xue, S.F.; Zhu, Q.J.; Tao, Z.; Day, A.I. Supramolecular Bracelets and Interlocking Rings Elaborated through the Interrelationship of Neighboring Chemical Environments of Alkyl-Substitution on Cucurbit[5]Uril. Cryst. Growth Des. 2008, 8, 3446–3450. [Google Scholar] [CrossRef]
- Zhang, F.; Yajima, T.; Li, Y.Z.; Xu, G.Z.; Chen, H.L.; Liu, Q.T.; Yamauchi, O. Iodine-Assisted Assembly of Helical Coordination Polymers of Cucurbituril and Asymmetric Copper(II) Complexes. Angew. Chem. Int. Ed. 2005, 44, 3402–3407. [Google Scholar] [CrossRef]
- Chandra, F.; Dutta, T.; Koner, A.L. Supramolecular Encapsulation of a Neurotransmitter Serotonin by Cucurbit[7]Uril. Front. Chem. 2020, 8, 582757. [Google Scholar] [CrossRef]
- Kircheva, N.; Dobrev, S.; Petkova, V.; Bakalova, S.; Kaneti, J.; Angelova, S. Theoretical Assessment of the Ligand/Metal/Quadruplex Recognition in the Non-Canonical Nucleic Acids Structures. Molecules 2023, 28, 6109. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision d. 01; Gaussian: Wallingford, CT, USA, 2013. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Nikolova, V.; Velinova, A.; Dobrev, S.; Kircheva, N.; Angelova, S.; Dudev, T. Host–Guest Complexation of Cucurbit[7]Uril and Cucurbit[8]Uril with the Antineoplastic and Multiple Sclerosis Agent Mitoxantrone (Novantrone). J. Phys. Chem. A 2021, 125, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Škalamera, Đ.; Zavalij, P.Y.; Hostaš, J.; Hobza, P.; Mlinarić-Majerski, K.; Glaser, R.; Isaacs, L. Influence of Hydrophobic Residues on the Binding of CB[7] toward Diammonium Ions of Common Ammonium⋯ammonium Distance. Org. Biomol. Chem. 2015, 13, 6249–6254. [Google Scholar] [CrossRef] [PubMed]
- Bardelang, D.; Udachin, K.A.; Leek, D.M.; Margeson, J.C.; Chan, G.; Ratcliffe, C.I.; Ripmeester, J.A. Cucurbit[n]Urils (n = 5–8): A Comprehensive Solid State Study. Cryst. Growth Des. 2011, 11, 5598–5614. [Google Scholar] [CrossRef]
- McQuire, D.A.; Simon, J.D. Physical Chemistry: A Molecular Approach; University Science Books: Herndon, VA, USA, 1997. [Google Scholar]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Schrödinger, L.; DeLano, W. PyMOL. 2020. Available online: http://www.pymol.org/pymol (accessed on 1 July 2023).
DyeN | R1 | R2 | R3 | |
---|---|---|---|---|
Dye1 | CH3 | H | CH3 | N-methyl- piperazine styryl dyes |
Dye2 | CH3 | CH3 | CH3 | |
Dye3 | CH3 | Br | CH3 | |
Dye4 | Bn | H | CH3 | |
Dye5 | Bn | CH3 | CH3 | |
Dye6 | Bn | Br | CH3 | |
Dye7 | CH3 | H | Ph | N-phenyl- piperazine styryl dyes |
Dye8 | CH3 | CH3 | Ph | |
Dye9 | CH3 | Br | Ph | |
Dye10 | Bn | H | Ph | |
Dye11 | Bn | CH3 | Ph | |
Dye12 | Bn | Br | Ph |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kircheva, N.; Petkova, V.; Dobrev, S.; Nikolova, V.; Angelova, S.; Dudev, T. N-Methyl- and N-Phenylpiperazine Functionalized Styryl Dyes Inside Cucurbiturils: Theoretical Assessment of the Factors Governing the Host–Guest Recognition. Molecules 2023, 28, 8130. https://doi.org/10.3390/molecules28248130
Kircheva N, Petkova V, Dobrev S, Nikolova V, Angelova S, Dudev T. N-Methyl- and N-Phenylpiperazine Functionalized Styryl Dyes Inside Cucurbiturils: Theoretical Assessment of the Factors Governing the Host–Guest Recognition. Molecules. 2023; 28(24):8130. https://doi.org/10.3390/molecules28248130
Chicago/Turabian StyleKircheva, Nikoleta, Vladislava Petkova, Stefan Dobrev, Valya Nikolova, Silvia Angelova, and Todor Dudev. 2023. "N-Methyl- and N-Phenylpiperazine Functionalized Styryl Dyes Inside Cucurbiturils: Theoretical Assessment of the Factors Governing the Host–Guest Recognition" Molecules 28, no. 24: 8130. https://doi.org/10.3390/molecules28248130