Study of the Mechanism of Astragali Radix in Treating Type 2 Diabetes Mellitus and Its Renal Protection Based on Enzyme Activity, Network Pharmacology, and Experimental Verification
Abstract
:1. Introduction
2. Results
2.1. Results of α-Glucosidase Inhibition
2.2. Analysis of HA Components
2.3. AR Prediction of Core Targets for T2DM Treatment
2.4. KEGG Pathway Analysis and Construction of “Component-Effect Target-Pathway” Network
2.5. Molecular Docking Results
2.6. Molecular Dynamics Simulation
2.7. In Vivo Activity Verification
2.7.1. The Effect of HA on the Body Weight and Blood Sugar in Model Mice
2.7.2. Effect of HA on Serum Renal Function in Model Mice
2.7.3. Effects of Oxidative Damage Index and Inflammatory Markers in Kidney Tissues
2.7.4. Histopathological Examination of Kidney
2.7.5. Effect of HA on the Expression of RAGE, p38, p-AKT, and PI3Kp85 Protein in Kidney Tissue of Model Mice
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Plant Materials and Extraction
4.3. Measurement of α-Glucosidase Inhibitory Activity
4.4. UPLC-QE-Orbitrap-MS Condition
4.5. AR Treatment of T2DM Target Acquisition
4.6. KEGG Pathway Analysis
4.7. Network Construction of “Component-Core Target-Signaling Pathway”
4.8. Molecular Docking
4.9. Molecular Dynamics Simulation
4.10. Animals Experiment In Vivo
4.10.1. Animals and Experimental Design
4.10.2. Analysis of Serum and Tissue
4.10.3. Histopathological Examinations
4.10.4. Western Blotting
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mi, W.; Xia, Y.; Bian, Y. Meta-analysis of the association between aldose reductase gene (CA)n microsatellite variants and risk of diabetic retinopathy. Exp. Ther. Med. 2019, 18, 4499–4509. [Google Scholar] [CrossRef] [PubMed]
- Buttermore, E.; Campanella, V.; Priefer, R. The increasing trend of Type 2 diabetes in youth: An overview. Diabetes Metab. Syndr. 2021, 15, 102253. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 2019, 15, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Sun, X.Y.; Ouyang, J.M. Preparation and characterization of selenized Astragalus polysaccharide and its inhibitory effect on kidney stones. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110732. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhong, Y.; Liu, W.; Xiang, L.; Deng, Y. The Efficacy and Mechanism of Chinese Herbal Medicine on Diabetic Kidney Disease. J. Diabetes Res. 2019, 2019, 2697672. [Google Scholar] [CrossRef]
- Hua, Y.L.; Ma, Q.; Yuan, Z.W.; Zhang, X.S.; Yao, W.L.; Ji, P.; Hu, J.J.; Wei, Y.M. A novel approach based on metabolomics coupled with network pharmacology to explain the effect mechanisms of Danggui Buxue Tang in anaemia. Chin. J. Nat. Med. 2019, 17, 275–290. [Google Scholar] [CrossRef]
- Dai, H.; Shan, Y.; Yu, M.; Wang, F.; Zhou, Z.; Sun, J.; Sheng, L.; Huang, L.; Sheng, M. Network pharmacology, molecular docking and experimental verification of the mechanism of huangqi-jixuecao herb pair in treatment of peritoneal fibrosis. J. Ethnopharmacol. 2024, 318, 116874. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zheng, Y.; Tian, Y.; Xu, Q.; Liu, S.; Li, H.; Cheng, K.; Yuan, J.; Liu, H.; Zhu, P. Astragalus polysaccharide alleviates alcoholic-induced hepatic fibrosis by inhibiting polymerase I and transcript release factor and the TLR4/JNK/NF-κB/MyD88 pathway. J. Ethnopharmacol. 2023, 314, 116662. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, Y.; Baak, J.P.; Dai, J.; Jing, L.; Zhu, H.; Gan, Y.; Zheng, S. Network module analysis and molecular docking-based study on the mechanism of astragali radix against non-small cell lung cancer. BMC Complement. Med. Ther. 2023, 23, 345. [Google Scholar] [CrossRef]
- Li, K.; Li, S.; Du, Y.; Qin, X. Screening and structure study of active components of Astragalus polysaccharide for injection based on different molecular weights. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1152, 122255. [Google Scholar] [CrossRef]
- Ren, J.; Ding, Y.; Li, S.; Lei, M. Predicting the anti-inflammatory mechanism of Radix Astragali using network pharmacology and molecular docking. Medicine 2023, 102, e34945. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Luo, Q.M.; Guo, J.C.; Xu, M.T.; Fang, Z.H.; Jiang, A.J.; Shen, G.M. Prescription and medication rules of traditional Chinese medicine for prevention and treatment of diabetic microangiopathy based on literature mining. China J. Chin. Mater. Medica 2023, 48, 5091–5101. [Google Scholar] [CrossRef]
- Su, M.; Tang, T.; Tang, W.; Long, Y.; Wang, L.; Liu, M. Astragalus improves intestinal barrier function and immunity by acting on intestinal microbiota to treat T2DM: A research review. Front. Immunol. 2023, 14, 1243834. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, Z.; Zhao, W.; Chen, Q.; Bai, H.; Wang, S.; Yang, L.; Bi, C.; Shi, Y.; Liu, Y. Integrated lipidomics, transcriptomics and network pharmacology analysis to reveal the mechanisms of Danggui Buxue Decoction in the treatment of diabetic nephropathy in type 2 diabetes mellitus. J. Ethnopharmacol. 2022, 283, 114699. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Liao, C.; Guo, Q.; Wu, L.; Zhang, L.; Wang, X. Combined systems pharmacology and fecal metabonomics to study the biomarkers and therapeutic mechanism of type 2 diabetic nephropathy treated with Astragalus and Leech. RSC Adv. 2018, 8, 27448–27463. [Google Scholar] [CrossRef]
- Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Kim, S.; Lee, Y.M.; Koh, Y.S.; Kim, Y.H. Flavonoids from Astragalus membranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch. Pharmacal Res. 2014, 37, 186–192. [Google Scholar] [CrossRef]
- Luo, G.; Liu, H.; Xie, B.; Deng, Y.; Xie, P.; Zhao, X.; Sun, X. Therapeutic mechanism of Shenbing Decoction Ⅲ for renal fibrosis in chronic kidney disease: A study with network pharmacology, molecular docking and validation in rats. J. South. Med. Univ. 2023, 43, 924–934. [Google Scholar] [CrossRef]
- Guo, F.; Yao, L.; Zhang, W.; Chen, P.; Hao, R.; Huang, X.; Jiang, J.; Wu, S. The therapeutic mechanism of Yuye decoction on type 2 diabetes mellitus based on network pharmacology and experimental verification. J. Ethnopharmacol. 2023, 308, 116222. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, J.; Gao, H.; Zhang, X.; Chao, J.; Gong, G.; Yuan, H.; Xie, C. Exploration of the Effect and Mechanism of ShenQi Compound in a Spontaneous Diabetic Rat Model. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 622–631. [Google Scholar] [CrossRef]
- Yang, M.; Hu, Z.; Zhang, L.; Yue, R. Effects and Mechanisms of Ban-Xia Xie-Xin Decoction on Type 2 Diabetes Mellitus: Network Pharmacology Analysis and Experimental Evidence. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 947–963. [Google Scholar] [CrossRef]
- Zhu, F.; Song, Z.; Zhang, S.; Zhang, X.; Zhu, D. The Renoprotective Effect of Shikonin in a Rat Model of Diabetic Kidney Disease. Transplant. Proc. 2023, 55, 1731–1738. [Google Scholar] [CrossRef]
- Zhao, Y.; Niu, M.; Jia, Y.; Yuan, J.; Xiang, L.; Dai, X.; Wang, G.; Chen, H. Establishment of type 2 diabetes mellitus models using streptozotocin after 3 months high-fat diet in Bama minipigs. Anim. Biotechnol. 2023, 34, 2295–2312. [Google Scholar] [CrossRef]
- Wang, Z.; Jian, G.; Chen, T.; Chen, Y.; Li, J.; Wang, N. The Qi-Bang-Yi-Shen formula ameliorates renal dysfunction and fibrosis in rats with diabetic kidney disease via regulating PI3K/AKT, ERK and PPARγ signaling pathways. Eur. J. Histochem. 2023, 67, 3648. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, G.; Zhou, H.; Cheng, F.; Yang, X.; Liu, X.; Wang, R. Protective effect of thymol on glycerol-induced acute kidney injury. Ren. Fail. 2023, 45, 2227728. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Khorramabadi, R.M.; Assadollahi, V.; Khosravi, P.; Cheraghi Venol, A.; Veiskerami, S.; Ahmadvand, H. The effects of pomegranate peel extract on the gene expressions of antioxidant enzymes in a rat model of alloxan-induced diabetes. Arch. Physiol. Biochem. 2023, 129, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, J.; Chen, X.; Jiang, Y.; Pan, Z.K. Rolipram Protects Mice from Gram-negative Bacterium Escherichia coli-induced Inflammation and Septic Shock. Sci. Rep. 2020, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, Y.; Lai, Z.; Huang, J.; Li, C.; Zhang, Y.; Gong, X.; Deng, J.; Ye, X.; Li, X. An integrated network pharmacology and transcriptomic method to explore the mechanism of the total Rhizoma Coptidis alkaloids in improving diabetic nephropathy. J. Ethnopharmacol. 2021, 270, 113806. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Randive, R.; Stewart, J.A. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J. Diabetes 2014, 5, 860–867. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Chen, S.; Li, F.; Wu, Y.; Xie, X.; Zhang, N.; Zeng, C.; Bai, L.; Dai, M.; et al. The protective mechanism of Dehydromiltirone in diabetic kidney disease is revealed through network pharmacology and experimental validation. Front. Pharmacol. 2023, 14, 1201296. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, Y.; Liu, Z.; Fu, X. Hedysarum polybotrys polysaccharide attenuates renal inflammatory infiltration and fibrosis in diabetic mice by inhibiting the HMGB1/RAGE/TLR4 pathway. Exp. Ther. Med. 2023, 26, 493. [Google Scholar] [CrossRef]
- Wang, J.L.; Ren, C.H.; Feng, J.; Ou, C.H.; Liu, L. Oleanolic acid inhibits mouse spinal cord injury through suppressing inflammation and apoptosis via the blockage of p38 and JNK MAPKs. Biomed. Pharmacother. 2020, 123, 109752. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Shi, Q.; Liu, Y.; Han, M.; Su, Y.; Sun, R.; Zhou, H.; Li, W.; Li, W. Ginsenoside Rg1 treatment alleviates renal fibrosis by inhibiting the NOX4-MAPK pathway in T2DM mice. Ren. Fail. 2023, 45, 2197075. [Google Scholar] [CrossRef] [PubMed]
- Cavdar, Z.; Kocak, A.; Ural, C.; Afagh, A.; Ersan, S.; Ozbal, S.; Tatli, M.; Celik, A.; Arslan, S.; Cavdar, C. Role of p38 MAPK, Akt and NFκB in renoprotective effects of nebivolol on renal ischemia-reperfusion injury in rats. Biotech Histochem. 2023, 98, 401–411. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, J.; Wang, X.; Hu, B.; Lv, F. Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice. Int. J. Biol. Macromol. 2015, 81, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.J.; Guan, X.M.; Zeng, J.; Zhou, H.; Meng, X.M.; Tang, L.Q. Berberine regulates mesangial cell proliferation and cell cycle to attenuate diabetic nephropathy through the PI3K/Akt/AS160/GLUT1 signalling pathway. J. Cell. Mol. Med. 2022, 26, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Li, S.; Li, W.; Yuan, G.; Pan, Y.; Chen, H. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed. Pharmacother. 2017, 95, 1669–1677. [Google Scholar] [CrossRef]
- Wan, C.; Yuan, T.; Li, L.; Kandhi, V.; Cech, N.B.; Xie, M.; Seeram, N.P. Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems. Bioorg. Med. Chem. Lett. 2012, 22, 597–600. [Google Scholar] [CrossRef]
No. | Time | Formula | Measured Weight | MS2 Characteristic Ions (m/z) | Chemical Compound |
---|---|---|---|---|---|
1 | 3.8 | C22H22O12 | 477.1027 | 253.0930, 150.9785 | Isorhamnetin-3-Glucoside |
2 | 3.84 | C5H11NO2 | 188.0347 | 58.0657 | Betaine |
3 | 4.10 | C16H18O9 | 353.0709 | 191.0189, 179.0547, 161.0440 | Chlorogenic acid |
4 | 4.19 | C15H10O7 | 303.0414 | 119.0333, 117.0174, 151.0972 | Quercetin |
5 | 9.05 | C10H13N5O4 | 268.1028 | 268.1036, 136.0617 | Adenosine |
6 | 9.86 | C15H10O5 | 271.1024 | 254.1129 | Apigenin |
7 | 10.81 | C9H11NO2 | 166.0856 | 166.0860, 120.0808 | Phenprobamate |
8 | 12.97 | C23H24O10 | 461.1396 | 299.0885 | 6,4′-dimethoxyisoflavone-7-O-glucoside |
9 | 13.30 | C16H12O6 | 299.0764 | 285.0621, 239.0517 | Kaempferide |
10 | 15.87 | C9H11NO3 | 182.0780 | 164.1181, 136.0012, 119.9608 | Tyrosine |
11 | 16.64 | C22H22O10 | 447.1263 | 285.0753, 270.0517, 253.0484, 225.0542 | Calycosin-7-O-β-D-glucoside |
12 | 17.90 | C16H12O5 | 285.0330 | 270.0518, 253.0490, 225.0544, 137.0232 | Calycosin |
13 | 18.59 | C22H22O9 | 431.1172 | 269.0414 | Ononin |
14 | 20.90 | C17H18O5 | 303.1209 | 193.0855, 181.0853, 167.0701, 123.0441 | 7,2′-Dihydroxy-3′,4′-dimethoxyisoflavan |
15 | 21.65 | C25H24O12 | 514.3209 | 187.0961, 225.1126 | Malonyl ononin |
16 | 22.71 | C17H14O6 | 315.0844 | 300.0619 | Odoratin |
17 | 23.14 | C24H24O10 | 473.1461 | 270.0837, 269.0804 | Formononetin-7-O-β-Dglucoside-6″-Oacetate (4), (8) |
18 | 23.70 | C14H16N2O5 | 293.1343 | 165.0365, 135.0803 | Methylnissolin |
19 | 24.08 | C6H14O2N4 | 175.0695 | 116.3644 | L(+)-Arginine |
20 | 25.33 | C11H12N2O2 | 205.6131 | 163.8078, 149.0228 | D(+)-Tryptophan |
21 | 26.77 | C16H12O4 | 269.0730 | 254.0569, 237.0544, 226.0612, 118.0414 | Formononetin |
22 | 27.42 | C16H12O6 | 301.1030 | 286.0821, 241.0858 | Pratensein |
23 | 34.22 | C18H32O3 | 295.1392 | 195.1378, 171.1011 | 13-Hydroxy-9,11-octadecenoic acid |
Group | 0 d | 7 d | 14 d | 21 d | 28 d |
---|---|---|---|---|---|
Control | 5.23 ± 0.21 | 5.30 ± 0.35 | 5.12 ± 0.26 | 5.27 ± 0.21 | 5.17 ± 0.23 |
Model | 10.02 ± 1.01 | 10.93 ± 0.32 | 11.9 ± 0.30 | 12.93 ± 0.25 | 12.09 ± 1.10 |
MH | 9.60 ± 0.81 | 9.36 ± 0.46 | 8.62 ± 0.93 * | 7.53 ± 1.22 ** | 6.6 ± 0.85 ** |
HA | 9.54 ± 0.76 | 8.3 ± 1.06 * | 7.85 ± 0.93 * | 6.76 ± 1.13 ** | 5.7 ± 1.47 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhang, K.; Liu, L.; Shen, J.; Wang, Y.; Tan, Y.; Feng, X.; Liu, W.; Zhang, H.; Sun, J. Study of the Mechanism of Astragali Radix in Treating Type 2 Diabetes Mellitus and Its Renal Protection Based on Enzyme Activity, Network Pharmacology, and Experimental Verification. Molecules 2023, 28, 8030. https://doi.org/10.3390/molecules28248030
Li C, Zhang K, Liu L, Shen J, Wang Y, Tan Y, Feng X, Liu W, Zhang H, Sun J. Study of the Mechanism of Astragali Radix in Treating Type 2 Diabetes Mellitus and Its Renal Protection Based on Enzyme Activity, Network Pharmacology, and Experimental Verification. Molecules. 2023; 28(24):8030. https://doi.org/10.3390/molecules28248030
Chicago/Turabian StyleLi, Chunnan, Kaiyue Zhang, Lu Liu, Jiaming Shen, Yuelong Wang, Yiying Tan, Xueqin Feng, Wanjie Liu, Hui Zhang, and Jiaming Sun. 2023. "Study of the Mechanism of Astragali Radix in Treating Type 2 Diabetes Mellitus and Its Renal Protection Based on Enzyme Activity, Network Pharmacology, and Experimental Verification" Molecules 28, no. 24: 8030. https://doi.org/10.3390/molecules28248030
APA StyleLi, C., Zhang, K., Liu, L., Shen, J., Wang, Y., Tan, Y., Feng, X., Liu, W., Zhang, H., & Sun, J. (2023). Study of the Mechanism of Astragali Radix in Treating Type 2 Diabetes Mellitus and Its Renal Protection Based on Enzyme Activity, Network Pharmacology, and Experimental Verification. Molecules, 28(24), 8030. https://doi.org/10.3390/molecules28248030