Investigation of Photoluminescence and Optoelectronics Properties of Transition Metal-Doped ZnO Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Thin Films
2.2. Characterization of Thin Films
3. Results
3.1. Structural Analysis
3.2. AFM Analysis
3.3. Elemental Analysis
3.4. FTIR Analysis
3.5. Optical Analysis
3.6. PL Analysis
3.7. Electrical Analysis
3.8. Application in Solar Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molefe, F.V.; Koao, L.F.; Dejene, B.F.; Swart, H.C. Phase formation of hexagonal wurtzite ZnO through decomposition of Zn (OH) 2 at various growth temperatures using CBD method. Opt. Mater. 2015, 46, 292–298. [Google Scholar] [CrossRef]
- Papadimitriou, D.N. Engineering of optical and electrical properties of electrodeposited highly doped Al: ZnO and In ZnO for cost-effective photovoltaic device technology. Micromachines 2022, 13, 1966. [Google Scholar] [CrossRef] [PubMed]
- Yahia, I.S.; Farag, A.A.M.; Cavas, M.; Yakuphanoglu, F. Effects of stabilizer ratio on the optical constants and optical dispersion parameters of ZnO nano-fiber thin films. Superlattices Microstruct. 2013, 53, 63–75. [Google Scholar] [CrossRef]
- Klingshirn, C.F.; Waag, A.; Hoffmann, A.; Geurts, J. Zinc Oxide: From Fundamental Properties towards Novel Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Truong, V.D.; Nguyen, T.T.; Vo, T.L.; Huynh, H.T.; Pham, T.K. Effects of Growth Temperature on Morphological and Structural Properties of ZnO Films. J. Tech. Educ. Sci. 2022, 72A, 39–44. [Google Scholar] [CrossRef]
- Hassan, N.K.; Fakhri, M.A.; Abdulwahhab, A.W.; Hashim, U. Preparation of gold nanoparticles doped zinc oxide using reactive pulsed laser ablation in liquid. Key Eng. Mater. 2022, 911, 55–64. [Google Scholar] [CrossRef]
- Ghosh, S.P.; Das, K.C.; Tripathy, N.; Bose, G.; Kim, D.H.; Lee, T.I.; Myoung, J.M.; Kar, J.P. February. Ultraviolet photodetection characteristics of Zinc oxide thin films and nanostructures. IOP Conf. Ser. Mater. Sci. Eng. 2016, 115, 012035. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Kumar, A.; Krishnan, V. Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catal. Rev. 2020, 62, 346–405. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S.; Kumar, A.; Akhtar, M.S. Zinc oxide nanostructure-based dye-sensitized solar cells. J. Mater. Sci. 2017, 52, 4743–4795. [Google Scholar] [CrossRef]
- Gong, B.; Shi, T.; Zhu, W.; Liao, G.; Li, X.; Huang, J.; Zhou, T.; Tang, Z. UV irradiation-assisted ethanol detection operated by the gas sensor based on ZnO nanowires/optical fiber hybrid structure. Sens. Actuators B Chem. 2017, 245, 821–827. [Google Scholar] [CrossRef]
- Kumari, P.; Misra, K.P.; Chattopadhyay, S.; Samanta, S. A brief review on transition metal ion doped ZnO nanoparticles and its optoelectronic applications. Mater. Today Proc. 2021, 43, 3297–3302. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R.; Singh, R.K. Progress on transition metal-doped ZnO nanoparticles and its application. Ind. Eng. Chem. Res. 2019, 58, 17130–17163. [Google Scholar] [CrossRef]
- Babu, K.R.; Laxmikanth, C. A Review on Optical Properties of Transition Metal Doped Zno Nanostructures. Int. J. Innov. Res. Adv. Stud. (IJIRAS) 2018, 5, 6. [Google Scholar]
- Petrov, V.V.; Ignatieva, I.O.; Volkova, M.G.; Gulyaeva, I.A.; Pankov, I.V.; Bayan, E.M. Polycrystalline transparent Al-doped ZnO thin films for photosensitivity and optoelectronic applications. Nanomaterials 2023, 13, 2348. [Google Scholar] [CrossRef] [PubMed]
- Barick, K.C.; Singh, S.; Aslam, M.; Bahadur, D. Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 2010, 134, 195–202. [Google Scholar] [CrossRef]
- Allabergenov, B.; Chung, S.H.; Jeong, S.M.; Kim, S.; Choi, B. Enhanced blue photoluminescence realized by copper diffusion doping of ZnO thin films. Opt. Mater. Express 2013, 3, 1733–1741. [Google Scholar] [CrossRef]
- Kouklin, N. Cu-doped ZnO nanowires for efficient and multispectral photodetection applications. Adv. Mater. 2008, 20, 2190–2194. [Google Scholar] [CrossRef]
- Madani-Mashaei, N.; Soleimani, E.A.; Shirvani-Mahdavi, H. Optimization of sol–gel based ZnO metal–semiconductor–metal UV detectors by Zr doping through sputtering method. Appl. Phys. A 2021, 127, 204. [Google Scholar] [CrossRef]
- Blažeka, D.; Radičić, R.; Maletić, D.; Živković, S.; Momčilović, M.; Krstulović, N. Enhancement of methylene blue photodegradation rate using laser synthesized Ag-doped ZnO nanoparticles. Nanomaterials 2022, 12, 2677. [Google Scholar] [CrossRef]
- Qiu, X.; Li, G.; Sun, X.; Li, L.; Fu, X. Doping effects of Co2+ ions on ZnO nanorods and their photocatalytic properties. Nanotechnology 2008, 19, 215703. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Sanguino, P.; Pina, J.; Abdelmoula, N.; de Melo, J.S.S. Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J. Mater. Sci. Mater. Electron. 2023, 34, 116. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Rhouma, F.I.H.; Sanguino, P.; Guermazi, S.; Khirouni, K.; Vieira, M.T. Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J. Mater. Sci. Mater. Electron. 2021, 32, 1536–1556. [Google Scholar] [CrossRef]
- Sharma, D.K.; Shukla, S.; Sharma, K.K.; Kumar, V. A review on ZnO: Fundamental properties and applications. Mater. Today Proc. 2022, 49, 3028–3035. [Google Scholar] [CrossRef]
- Arya, S.; Sharma, A.; Singh, B.; Riyas, M.; Bandhoria, P.; Aatif, M.; Gupta, V. Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode. Opt. Mater. 2018, 79, 115–119. [Google Scholar] [CrossRef]
- Agarwal, D.C.; Singh, U.B.; Gupta, S.; Singhal, R.; Kulriya, P.K.; Singh, F.; Tripathi, A.; Singh, J.; Joshi, U.S.; Avasthi, D.K. Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesized by neutral beam sputtering. Sci. Rep. 2019, 9, 6675. [Google Scholar] [CrossRef] [PubMed]
- Khantoul, A.; Sebais, M.; Rahal, B.; Boudine, B.; Halimi, O. Structural and optical properties of ZnO and Co-doped ZnO thin films prepared by sol-gel. Acta Phys. Pol. A 2018, 133, 114–117. [Google Scholar] [CrossRef]
- Boukhari, A.; Deghfel, B.; Mahroug, A.; Amari, R.; Selmi, N.; Mohamad, A.A. Thickness Effect on the Properties of 4% Mn-Doped ZnO Thin Films Grown by Sol-Gel Spin Coating Deposition. Macromol. Symp. 2021, 397, 2000235. [Google Scholar] [CrossRef]
- Berra, S.; Mahroug, A.; Hamrit, S.; Azmin, M.A.; Zoukel, A.; Berri, S.; Selmi, N. Experimental and DFT study of structural and optical properties of Ni-doped ZnO nanofiber thin films for optoelectronic applications. Opt. Mater. 2022, 134, 113188. [Google Scholar] [CrossRef]
- Srinivasulu, T.; Saritha, K.; Reddy, K.R. Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Mod. Electron. Mater. 2017, 3, 76–85. [Google Scholar] [CrossRef]
- Lv, M.; Xiu, X.; Pang, Z.; Dai, Y.; Ye, L.; Cheng, C.; Han, S. Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Film. 2008, 516, 2017–2021. [Google Scholar] [CrossRef]
- Khan, M.; Alam, M.S.; Ahmed, S.F. Effect of nickel incorporation on structural and optical properties of zinc oxide thin films deposited by RF/DC sputtering technique. Mater. Phys. Mech. 2023, 51, 19–32. [Google Scholar]
- Ali, R.; Hanif, M.; Shah, S.A.B.; Abbas, S.Z.; Karim, M.R.A.; Arshad, M.; Ahmad, S.H.A. Effect of chromium-doping on the structure and optoelectronic properties of nanostructured indium tin oxide thin films. Appl. Phys. A 2022, 128, 508. [Google Scholar] [CrossRef]
- Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287. [Google Scholar] [CrossRef] [PubMed]
- Merzouk, H.; Chelouche, A.; Saoudi, S.; Djouadi, D.; Aksas, A. Influence of Mn doping on structural and optical properties of ZnO nano thin films synthesized by sol–gel technique. Appl. Phys. A 2012, 109, 841–844. [Google Scholar] [CrossRef]
- Bokuniaeva, A.O.; Vorokh, A.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J. Phys. Conf. Ser 2019, 1410, 012057. [Google Scholar] [CrossRef]
- Zhang, S.B.; Wei, S.H.; Zunger, A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 2001, 63, 075205. [Google Scholar] [CrossRef]
- Rajouâ, K.; Bakloutia, L.; Favier, F. Platinum for hydrogen sensing: Surface and grain boundary scattering antagonistic effects in Pt@Au core–shell nanoparticle assemblies prepared using a Langmuir–Blodgett method. Phys. Chem. Chem. Phys. 2018, 20, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Khatamian, M.; Khandar, A.A.; Divband, B.; Haghighi, M.; Ebrahimiasl, S. Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J. Mol. Catal. A Chem. 2012, 365, 120–127. [Google Scholar] [CrossRef]
- Sutapa, I.W.; Wahab, A.W.; Taba, P.; Nafie, N.L. Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles. J. Phys. Conf. Series 2018, 979, 012021. [Google Scholar] [CrossRef]
- Morkoç, H.; Özgür, Ü. Zinc Oxide: Fundamentals, Materials, and Device Technology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Aparna, P.U.; Divya, N.K.; Pradyumnan, P.P. Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J. Mater. Sci. Chem. Eng. 2016, 4, 79. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Sahar, M.; Riaz, S.; Naseem, S.; Saddiqe, Z. Enhanced magnetic, antibacterial and optical properties of Sm doped ZnO thin films: Role of Sm doping. Opt. Mater. 2020, 108, 110457. [Google Scholar] [CrossRef]
- Cong, C.J.; Liao, L.; Liu, Q.Y.; Li, J.C.; Zhang, K.L. Effects of temperature on the ferromagnetism of Mn-doped ZnO nanoparticles and Mn-related Raman vibration. Nanotechnology 2006, 17, 1520. [Google Scholar] [CrossRef]
- Senthilkumaar, S.; Rajendran, K.; Banerjee, S.; Chini, T.K.; Sengodan, V. Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 2008, 11, 6–12. [Google Scholar] [CrossRef]
- Maensiri, S.; Laokul, P.; Phokha, S. A simple synthesis and magnetic behavior of nanocrystalline Zn0. 9Co0. 1O powders by using Zn and Co acetates and polyvinyl pyrrolidone as precursors. J. Magn. Magn. Mater. 2006, 305, 381–387. [Google Scholar] [CrossRef]
- Hernández, A.; Maya, L.; Sánchez-Mora, E.; Sánchez, E.M. Sol-gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3. J. Sol-Gel Sci. Technol. 2007, 42, 71–78. [Google Scholar] [CrossRef]
- Jain, A.; Panwar, S.; Kang, T.W.; Jeon, H.C.; Kumar, S.; Choubey, R.K. Effect of zinc oxide concentration in fluorescent ZnS: Mn/ZnO core–shell nanostructures. J. Mater. Sci. Mater. Electron. 2014, 25, 1716–1723. [Google Scholar] [CrossRef]
- Das, J.; Evans, I.R.; Khushalani, D. Zinc glycolate: A precursor to ZnO. Inorg. Chem. 2009, 48, 3508–3510. [Google Scholar] [CrossRef]
- Prakoso, S.P.; Saleh, R. Synthesis and spectroscopic characterization of undoped nanocrystalline ZnO particles prepared by co-precipitation. Mater. Sci. Appl. 2012, 3, 530–537. [Google Scholar]
- Saleh, R.; Munisa, L.; Beyer, W. Infrared absorption in a-SiC: H alloy prepared by DC sputtering. Thin Solid Film 2003, 426, 117–123. [Google Scholar] [CrossRef]
- Manasreh, M.O.; Baranowski, J.M.; Pakula, K.; Jiang, H.X.; Lin, J. Localized vibrational modes of carbon-hydrogen complexes in GaN. Appl. Phys. Lett. 1999, 75, 659–661. [Google Scholar] [CrossRef]
- Joseph, D.M.; Balagopal, R.; Hicks, R.F.; Sadwick, L.P.; Wang, K.L. Observation of carbon incorporation during gallium arsenide growth by molecular beam epitaxy. Appl. Phys. Lett. 1998, 53, 2203–2204. [Google Scholar] [CrossRef]
- Kim, Y.S.; Tai, W.P.; Shu, S.J. Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin Solid Films 2005, 491, 153–160. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Zaib, A.; Shah, A.A.; Khan, M.; Shakoor, A.; Bukhari, S.N.S.; Riaz, M.; Hussain, S.S.; Shar, M.A.; Alhazaa, A. Preparation and Numerical Optimization of TiO2: CdS Thin Films in Double Perovskite Solar Cell. Energies 2023, 16, 900. [Google Scholar] [CrossRef]
- Yan, X.; Hu, D.; Li, H.; Li, L.; Chong, X.; Wang, Y. Nanostructure and optical properties of M doped ZnO (M = Ni, Mn) thin films prepared by sol–gel process. Phys. B Condens. Matter 2011, 406, 3956–3962. [Google Scholar] [CrossRef]
- Khranovskyy, V.; Lazorenko, V.; Lashkarev, G.; Yakimova, R. Luminescence anisotropy of ZnO microrods. J. Lumin. 2012, 132, 2643–2647. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO nanowires: A review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Sadat, M.E.; Dunn, A.W.; Mast, D.B. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 2015, 7, 8209–8232. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaqri, N.; Muthuvel, A.; Jothibas, M.; Alsalme, A.; Alharthi, F.A.; Mohana, V. Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: Characterization, photocatalytic degradation, and antibacterial activities. Inorg. Chem. Commun. 2021, 127, 108507. [Google Scholar] [CrossRef]
- Khan, G.R.; Dar, R.A. Smart interplay of reaction parameters in sol-gel protocols of ZnO nanocrystallites. Mater. Sci. Eng. 2021, 267, 115110. [Google Scholar] [CrossRef]
- Umar, A.; Karunagaran, B.; Suh, E.K.; Hahn, Y.B. Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 2006, 17, 4072. [Google Scholar] [CrossRef]
- Karmakar, A.; Kazimierczuk, T.; Antoniazzi, I.; Raczyński, M.; Park, S.; Jang, H.; Taniguchi, T.; Watanabe, K.; Babiński, A.; Al-Mahboob, A.; et al. Excitation-dependent high-lying excitonic exchange via interlayer energy transfer from lower-to-higher bandgap 2D material. Nano Lett. 2023, 23, 5617–5624. [Google Scholar] [CrossRef]
- Penfold, T.J.; Szlachetko, J.; Santomauro, F.G.; Britz, A.; Gawelda, W.; Doumy, G.; March, A.M.; Southworth, S.H.; Rittmann, J.; Abela, R.; et al. Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy. Nat. Commun. 2018, 9, 478. [Google Scholar] [CrossRef] [PubMed]
- Djurišić, A.B.; Leung, Y.H.; Tam, K.H.; Hsu, Y.F.; Ding, L.; Ge, W.K.; Zhong, Y.C.; Wong, K.S.; Chan, W.K.; Tam, H.L.; et al. Defect emissions in ZnO nanostructures. Nanotechnology 2007, 18, 095702. [Google Scholar] [CrossRef]
- Wang, X.B.; Song, C.; Geng, K.W.; Zeng, F.; Pan, F. Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Appl. Surf. Sci. 2007, 253, 6905–6909. [Google Scholar] [CrossRef]
- Rahman, F. Zinc oxide light-emitting diodes: A review. Opt. Eng. 2019, 58, 010901. [Google Scholar] [CrossRef]
- Güell, F.; Galdámez-Martínez, A.; Martínez-Alanis, P.R.; Catto, A.C.; da Silva, L.F.; Mastelaro, V.R.; Santana, G.; Dutt, A. ZnO-based nanomaterials approach for photocatalytic and sensing applications: Recent progress and trends. Mater. Adv. 2023, 4, 3685–3707. [Google Scholar] [CrossRef]
- Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35. [Google Scholar] [CrossRef]
- Shakoor, A.; Nowsherwan, G.A.; Alam, W.; Bhatti, S.Y.; Bilal, A.; Nadeem, M.; Zaib, A.; Hussain, S.S. Fabrication and characterization of TiO2: ZnO thin films as electron transport material in perovskite solar cell (PSC). Physica B: Condensed Matter. 2023, 654, 414690. [Google Scholar] [CrossRef]
- Jayathilake, D.; Peiris, T.N. Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. SF J. Mater. Chem. Eng. 2018, 1, 1004. [Google Scholar]
Parameters | ZnO | Co: ZnO | Fe: ZnO | Zr: ZnO |
---|---|---|---|---|
Crystalline size (Dp) | 49.26 | 47.58 | 44.83 | 43.71 |
Microstrain (ε) | 2.951 | 3.5911 | 3.709 | 4.022 |
Dislocation density (δ) | 0.412 | 0.4416 | 0.497 | 0.523 |
Lattice parameter (a) | 3.006 | 3.004 | 3.003 | 3.003 |
Lattice parameter (c) | 5.169 | 5.151 | 5.145 | 5.122 |
Volume (V) | 23.0148 | 23.0148 | 22.998 | 22.9208 |
Bond length (L) | 1.850 | 1.850 | 1.847 | 1.847 |
Internal relaxation parameter (u) | 0.2943 | 0.2951 | 0.2971 | 0.2971 |
Specific surface area (S) | 21.73 | 21.84 | 23.87 | 24.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Nowsherwan, G.A.; Ali, R.; Ahmed, M.; Anwar, N.; Riaz, S.; Farooq, A.; Hussain, S.S.; Naseem, S.; Choi, J.R. Investigation of Photoluminescence and Optoelectronics Properties of Transition Metal-Doped ZnO Thin Films. Molecules 2023, 28, 7963. https://doi.org/10.3390/molecules28247963
Khan M, Nowsherwan GA, Ali R, Ahmed M, Anwar N, Riaz S, Farooq A, Hussain SS, Naseem S, Choi JR. Investigation of Photoluminescence and Optoelectronics Properties of Transition Metal-Doped ZnO Thin Films. Molecules. 2023; 28(24):7963. https://doi.org/10.3390/molecules28247963
Chicago/Turabian StyleKhan, Mohsin, Ghazi Aman Nowsherwan, Rashid Ali, Muqarrab Ahmed, Nadia Anwar, Saira Riaz, Aroosa Farooq, Syed Sajjad Hussain, Shahzad Naseem, and Jeong Ryeol Choi. 2023. "Investigation of Photoluminescence and Optoelectronics Properties of Transition Metal-Doped ZnO Thin Films" Molecules 28, no. 24: 7963. https://doi.org/10.3390/molecules28247963
APA StyleKhan, M., Nowsherwan, G. A., Ali, R., Ahmed, M., Anwar, N., Riaz, S., Farooq, A., Hussain, S. S., Naseem, S., & Choi, J. R. (2023). Investigation of Photoluminescence and Optoelectronics Properties of Transition Metal-Doped ZnO Thin Films. Molecules, 28(24), 7963. https://doi.org/10.3390/molecules28247963