Two-Dimensional Transition Metal Boride TMB12 (TM = V, Cr, Mn, and Fe) Monolayers: Robust Antiferromagnetic Semiconductors with Large Magnetic Anisotropy
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awschalom, D.D.; Flatté, M.E. Challenges for semiconductor spintronics. Nat. Phys. 2007, 3, 153–159. [Google Scholar] [CrossRef]
- Ashton, M.; Gluhovic, D.; Sinnott, S.B.; Guo, J.; Stewart, D.A.; Hennig, R.G. Two-dimensional intrinsic half-metals with large spin gaps. Nano Lett. 2017, 17, 5251–5257. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Q.; Xing, J.; Liu, N.; Guo, Y.; Liu, Z.; Zhao, J. Recent progress on 2D magnets: Fundamental mechanism, structural design, and modification. Appl. Phys. Rev. 2021, 8, 031305. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Zhang, X.; Yuan, S.; Ma, L.; Wang, J. Magnetic Two-Dimensional Layered Crystals Meet with Ferromagnetic Semiconductors. InfoMat 2020, 2, 639–655. [Google Scholar] [CrossRef]
- Zhong, D.; Seyler, K.L.; Linpeng, X.Y.; Cheng, R.; Sivadas, N.; Huang, B.; Schmidgall, E.; Taniguchi, T.; Watanabe, K.; McGuire, M.A. Van Der Waals Engineering of Ferromagnetic Semiconductor Heterostructures for Spin and Valleytronics. Sci. Adv. 2017, 3, e1603113. [Google Scholar] [CrossRef]
- Han, W. Perspectives for Spintronics in 2D Materials. APL Mater. 2016, 4, 032401. [Google Scholar] [CrossRef]
- Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, I.-L.; Dieny, B.; Pirro, P.; Hillebrands, B. Review on Spintronics: Principles and Device Applications. J. Magn. Magn. Mater. 2020, 509, 166711. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, C.; Zhong, J.; Ding, J.; Wang, Z.M.; Liu, Z. Spintronics in Two-Dimensional Materials. Nanomicro Lett. 2020, 12, 93. [Google Scholar] [CrossRef]
- Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Meng, L.; Wang, Y.; Zhang, L.; Du, S.; Wu, R.; Li, L.; Zhang, Y.; Li, G.; Zhou, H.; Hofer, W.A.; et al. Buckled Silicene Formation on Ir(111). Nano Lett. 2013, 13, 685–690. [Google Scholar] [CrossRef]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Cai, X.; Song, T.; Wilson, N.P.; Clark, G.; He, M.; Zhang, X.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xiao, D.; et al. Atomically thin CrCl3: An in-plane layered antiferromagnetic insulator. Nano Lett. 2019, 19, 3993–3998. [Google Scholar] [CrossRef]
- Zhang, Z.; Shang, J.; Jiang, C.; Rasmita, A.; Gao, W.; Yu, T. Direct photoluminescence probingof ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 2019, 19, 3138–3142. [Google Scholar] [CrossRef]
- Li, P.; Wang, C.; Zhang, J.; Chen, S.; Guo, D.; Ji, W.; Zhong, D. Single-layer CrI3 grown by molecular beam epitaxy. Sci. Bull. 2020, 65, 1064–1071. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Ma, C.; Yang, Z. Bipolar ferromagnetic semiconductors and doping-tuned room-temperature half-metallicity in monolayer MoX3(X=Cl, Br, I): An HSE06 study. Phys. Rev. B 2021, 103, 075433. [Google Scholar] [CrossRef]
- Kulish, V.V.; Huang, W. Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C 2017, 5, 8734–8741. [Google Scholar] [CrossRef]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Y.L.; Gou, J.; Liang, Q.; Chua, R.; Arramel, S.; Duan, L.; Zhang, L.; Cai, X.; Yu, D.; et al. Diverse Structures and Magnetic Properties in Nonlayered Monolayer Chromium Selenide. J. Phys. Chem. Lett. 2021, 12, 7752–7760. [Google Scholar] [CrossRef]
- Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef]
- Zhang, L.; Song, L.; Dai, H.; Yuan, J.-H.; Wang, M.; Huang, X.; Qiao, L.; Cheng, H.; Wang, X.; Ren, W.; et al. Substrate-modulated ferromagnetism of two-dimensional Fe3GeTe2. Appl. Phys. Lett. 2020, 116, 042402. [Google Scholar] [CrossRef]
- Wang, X.; Du, K.; Liu, Y.Y.F.; Hu, P.; Zhang, J.; Zhang, Q.; Owen, M.H.S.; Lu, X.; Gan, C.K.; Sengupta, P.; et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfifide (FePS3) crystals. 2D Mater. 2016, 3, 031009. [Google Scholar] [CrossRef]
- Kim, K.; Lim, S.Y.; Kim, J.; Lee, J.-U.; Lee, S.; Kim, P.; Park, K.; Son, S.; Park, C.-H.; Park, J.-G.; et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy. 2D Mater. 2019, 6, 041001. [Google Scholar] [CrossRef]
- Chen, X.; Qi, J.; Shi, D. Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: Competition of direct exchange interaction and superexchange interaction. Phys. Lett. A 2015, 379, 60. [Google Scholar] [CrossRef]
- Chittari, B.L.; Lee, D.; Banerjee, N.; MacDonald, A.H.; Hwang, E.; Jung, J. Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides. Phys. Rev. B 2020, 101, 085415. [Google Scholar] [CrossRef]
- Zhuang, H.L.; Xie, Y.; Kent, P.R.C.; Ganesh, P. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys. Rev. B 2015, 92, 035407. [Google Scholar] [CrossRef]
- Yu, M.; Liu, X.; Guo, W. Novel two-dimensional ferromagnetic semiconductors: Ga-based transition-metal trichalcogenide monolayers. Phys. Chem. Chem. Phys. 2018, 20, 6374–6382. [Google Scholar] [CrossRef]
- Wu, D.; Zhuo, Z.; Lv, H.; Wu, X. Two-Dimensional Cr2X3S3 (X=Br, I) Janus Semiconductor with Intrinsic Room-Temperature Magnetism. J. Phys. Chem. Lett. 2021, 12, 2905–2911. [Google Scholar] [CrossRef]
- Rizzo, D.J.; McLeod, A.S.; Carnahan, C.; Telford, E.J.; Dismukes, A.H.; Wiscons, R.A.; Dong, Y.; Nuckolls, C.; Dean, C.R.; Pasupathy, A.N.; et al. Visualizing Atomically Layered Magnetism in CrSBr. Adv. Mater. 2022, 34, 2201000. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Y.; Bai, Y.; Shi, P.; Zhang, G.; Zhang, Y.; Liu, C. Origin and regulation of triaxial magnetic anisotropy in the ferromagnetic semiconductor CrSBr monolayer. Nanoscale 2023, 15, 13402–13410. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, Y.; Jia, C.; Hou, L.; Wang, B. Two-dimensional 4f magnetic EuSn2X2 (X=P, As) monolayers: A first-principles study. Appl. Phys. Lett. 2023, 123, 012401. [Google Scholar] [CrossRef]
- Du, W.; Dou, K.; He, Z.; Dai, Y.; Huang, B.; Ma, Y. Spontaneous Magnetic Skyrmions in Single-Layer CrInX3 (X = Te, Se). Nano Lett. 2022, 22, 3440–3446. [Google Scholar] [CrossRef]
- Pang, K.; Xu, X.; Ku, R.; Wei, Y.; Ying, T.; Li, W.; Yang, J.; Li, X.; Jiang, Y. Ferroelectricity and High Curie Temperature in a 2D Janus Magnet. ACS Appl. Mater. Interfaces 2023, 15, 10133–10140. [Google Scholar] [CrossRef]
- Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231–241. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, P.; Jiang, X.; Zhao, J. MBene (MnB): A new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz. 2018, 3, 335–341. [Google Scholar] [CrossRef]
- Liu, C.; Fu, B.; Yin, H.; Zhang, G.; Dong, C. Strain-tunable magnetism and nodal loops in monolayer MnB. Appl. Phys. Lett. 2020, 117, 103101. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Hou, J.; Du, A.; Chen, Z. Dirac State in the FeB2 Monolayer with Graphene-Like Boron Sheet. Nano Lett. 2016, 16, 6124–6129. [Google Scholar] [CrossRef]
- Yao, X.; Wang, L.; Sun, Y.; Li, X.; Sun, J.; Wang, B.; He, M.; Zhang, X. Two-dimensional transition metal triborides: Monolayers with robust intrinsic magnetism and high spin stability. Phys. Rev. B 2022, 105, 214421. [Google Scholar] [CrossRef]
- Qu, X.; Yang, J.; Wang, Y.; Lv, J.; Chen, Z.; Ma, Y. A two-dimensional TiB4 monolayer exhibits planar octacoordinate Ti. Nanoscale 2017, 9, 17983–17990. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Hou, J.; Tu, K.; Chen, Z. FeBMonolayers: The Graphene-like Material with Hypercoordinate Transition Metal. J. Am. Chem. Soc. 2016, 138, 5644–5651. [Google Scholar] [CrossRef]
- Wang, S.; Khazaei, M.; Wang, J.; Hosono, H. Hypercoordinate two-dimensional transition-metal borides for spintronics and catalyst applications. J. Mater. Chem. C 2021, 9, 9212–9221. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, H.; Wang, C.; Zhang, M.; Geng, Y.; Li, Q.; Su, Z. All Boron Atoms in a ScB12 Monolayer Contribute to the Hydrogen Evolution Reaction. J. Phys. Chem. C 2020, 124, 23221–23229. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Wang, Z.F.; Du, S.X.; Gao, H.-J.; Liu, F. Prediction of a Dirac state in monolayer TiB2. Phys. Rev. B 2014, 90, 161402. [Google Scholar] [CrossRef]
- Lopez-Bezanilla, A. Interplay between p- and d- orbitals yields multiple Dirac states in one- and two-dimensional CrB4. 2D Mater. 2018, 5, 035041. [Google Scholar] [CrossRef]
- Wang, J.; Khazaei, M.; Arai, M.; Umezawa, N.; Tada, T.; Hosono, H. Semimetallic Two-Dimensional TiB12: Improved Stability and Electronic Properties Tunable by Biaxial Strain. Chem. Mater. 2017, 29, 5922–5930. [Google Scholar] [CrossRef]
- Ozdemir, I.; Kadioglu, Y.; Yüksel, Y.; Akıncı, Ü.; Aktürk, O.Ü.; Aktürk, E.; Ciraci, S. Columnar antiferromagnetic order of a MBene monolayer. Phys. Rev. B 2021, 103, 144424. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Li, X.; Yao, X.; Xu, X.; Guo, T.; He, A.; Wang, B.; Liu, Y.; Zhang, X. TM2B3 monolayers: Intrinsic anti-ferromagnetism and Dirac nodal line semimetal. Appl. Phys. Lett. 2022, 121, 183103. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, X. TM2B6: A newly designed ferromagnetic 2D metal-boride with a high Curie temperature. J. Mater. Chem. C 2020, 8, 14805–14811. [Google Scholar] [CrossRef]
- Yao, X.; Wang, L.; Sun, Y.; Lu, J.; Zhang, X. Designed two dimensional transition metal borides (TM2B12): Robust ferromagnetic half metal and antiferromagnetic semiconductor. Appl. Phys. Lett. 2023, 122, 193103. [Google Scholar] [CrossRef]
- Wu, F.; Yao, X.; Liu, Y.; Zhu, X.; Lu, J.; Zhou, W. and Zhang, X. TMB12: A newly designed 2D transition-metal boride for spintronics and electrochemical catalyst applications. Nanoscale 2023, 15, 2079–2086. [Google Scholar] [CrossRef]
- Puthirath Balan, A.; Radhakrishnan, S.; Woellner, C.F.; Sinha, S.K.; Deng, L.; Reyes, C.D.L.; Rao, B.M.; Paulose, M.; Neupane, R.; Apte, A.; et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 2018, 13, 602–609. [Google Scholar] [CrossRef]
- Puthirath Balan, A.; Radhakrishnan, S.; Kumar, R.; Neupane, R.; Sinha, S.K.; Deng, L.; de los Reyes, C.A.; Apte, A.; Rao, B.M.; Paulose, M.; et al. A Non-van der Waals Two-Dimensional Material from Natural Titanium Mineral Ore Ilmenite. Chem. Mater. 2018, 30, 5923–5931. [Google Scholar] [CrossRef]
- Tai, G.; Hu, T.; Zhou, Y.; Wang, X.; Kong, J.; Zeng, T.; You, Y. and Wang, Q. Synthesis of Atomically Thin Boron Films on Copper Foils. Angew. Chem. 2015, 127, 15693–15697. [Google Scholar] [CrossRef]
- Goodenough, J.B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3. Phys. Rev. 1955, 100, 564–573. [Google Scholar] [CrossRef]
- Kanamori, J. Crystal distortion in magnetic compounds. J. Appl. Phys. 1960, 31, S14–S23. [Google Scholar] [CrossRef]
- Anderson, P.W. New approach to the theory of superexchange interactions. Phys. Rev. 1959, 115, 2–13. [Google Scholar] [CrossRef]
- Cao, K.; Feng, S.; Han, Y.; Gao, L.; Ly, T.H.; Xu, Z. and Lu, Y. Elastic straining of free-standing monolayer graphene. Nat. Commun. 2019, 10, 2284. [Google Scholar]
- Kresse, G.; Furthmuller, J. Effificiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initiomolecular dynamics for openshell transition metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Islam, M.F.; Canali, C.M. Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform. Phys. Rev. B 2018, 97, 155429. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, J.; Li, R.; Zhang, C.; Zhang, H.; Han, P.; Fan, C. DFT+U predictions: Structural stability, electronic and optical properties, oxidation activity of BiOCl photocatalysts with 3d transition metals doping. J. Mater. Sci. 2018, 53, 4494–4506. [Google Scholar] [CrossRef]
- Rezaei, N.; Alaei, M.; Akbarzadeh, H. ESpinS: A program for classical Monte-Carlo simulations of spin systems. Comput. Mater. Sci. 2022, 202, 110947. [Google Scholar] [CrossRef]
- Baroni, S.; Gironcoli, S.D.; Corso, A.D. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
Sys | L | θ | dTM-B | E | ΔE | LMM | Δe | J1 | J2 | TN |
---|---|---|---|---|---|---|---|---|---|---|
VB12 | 4.78 | 83.39 | 2.05–2.30 | −0.68 | 0.07 | 2.05 | 1.05 | −3.88 | −4.81 | 20 |
CrB12 | 4.78 | 83.95 | 2.06–2.32 | −0.63 | 0.08 | 3.18 | 0.93 | −2.09 | −6.93 | 35 |
MnB12 | 4.86 | 82.52 | 2.01–2.35 | −0.74 | 0.34 | 3.86 | 0.93 | −2.80 | −16.03 | 90 |
FeB12 | 4.81 | 81.76 | 1.97–2.34 | −0.58 | 0.18 | 2.79 | 0.66 | −0.85 | −22.58 | 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Guo, N.; Wang, Z.; Xiao, Y.; Zhu, X.; Wang, S.; Yao, X.; Liu, Y.; Zhang, X. Two-Dimensional Transition Metal Boride TMB12 (TM = V, Cr, Mn, and Fe) Monolayers: Robust Antiferromagnetic Semiconductors with Large Magnetic Anisotropy. Molecules 2023, 28, 7945. https://doi.org/10.3390/molecules28247945
Zhang H, Guo N, Wang Z, Xiao Y, Zhu X, Wang S, Yao X, Liu Y, Zhang X. Two-Dimensional Transition Metal Boride TMB12 (TM = V, Cr, Mn, and Fe) Monolayers: Robust Antiferromagnetic Semiconductors with Large Magnetic Anisotropy. Molecules. 2023; 28(24):7945. https://doi.org/10.3390/molecules28247945
Chicago/Turabian StyleZhang, Huiqin, Nini Guo, Ziyu Wang, Yuqi Xiao, Xiangfei Zhu, Shu Wang, Xiaojing Yao, Yongjun Liu, and Xiuyun Zhang. 2023. "Two-Dimensional Transition Metal Boride TMB12 (TM = V, Cr, Mn, and Fe) Monolayers: Robust Antiferromagnetic Semiconductors with Large Magnetic Anisotropy" Molecules 28, no. 24: 7945. https://doi.org/10.3390/molecules28247945
APA StyleZhang, H., Guo, N., Wang, Z., Xiao, Y., Zhu, X., Wang, S., Yao, X., Liu, Y., & Zhang, X. (2023). Two-Dimensional Transition Metal Boride TMB12 (TM = V, Cr, Mn, and Fe) Monolayers: Robust Antiferromagnetic Semiconductors with Large Magnetic Anisotropy. Molecules, 28(24), 7945. https://doi.org/10.3390/molecules28247945