Effect of Gamma Irradiation on Cannabinoid, Terpene, and Moisture Content of Cannabis Biomass
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microbial Decontamination Test Results
2.2. Cannabinoid Acid Content
2.3. Total Cannabinoid Content
2.4. Terpene Content
2.5. Moisture Content
3. Materials and Methods
3.1. Cannabis Plant Material
3.2. Gamma Irradiation Treatment Procedures
3.2.1. NIDA DSP Materials Currently Treated
3.2.2. Microbial Contamination
3.2.3. Treatment Study
3.2.4. Dose Verification
3.3. Cannabinoid and Terpene Standards
3.4. Solvents and Reagents
3.5. Determination of Total Cannabinoids Using GC-FID
Calculation of Concentrations
3.6. Quantitative Analysis of Cannabinoid Acids Using HPLC-PDA
3.7. GC/MS Analysis of Terpenes
Preparation of Standard and Sample Solutions for the Analysis of Major Terpenes
3.8. Determination of Moisture Content
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, E.B. History of cannabis and its preparations in saga, science, and sobriquet. Chem. Biodivers. 2007, 4, 1614–1648. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Small, E. Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. Bot. Rev. 2015, 81, 189–294. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Salami, S.A.; Martinelli, F.; Giovino, A.; Bachari, A.; Arad, N.; Mantri, N. It is our turn to get cannabis high: Put cannabinoids in food and health baskets. Molecules 2020, 25, 4036. [Google Scholar] [CrossRef]
- Zandkarimi, F.; Decatur, J.; Casali, J.; Gordon, T.; Skibola, C.; Nuckolls, C. Comparison of the cannabinoid and terpene profiles in commercial cannabis from natural and artificial cultivation. Molecules 2023, 28, 833. [Google Scholar] [CrossRef] [PubMed]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. LWT 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Burczyk, H.; Grabowska, L.; Kołodziej, J.; Strybe, M. Industrial hemp as a raw material for energy production. J. Ind. Hemp 2008, 13, 37–48. [Google Scholar] [CrossRef]
- Casas, X.A.; Rieradevall i Pons, J. Environmental analysis of the energy use of hemp–Analysis of the comparative life cycle: Diesel oil vs. hemp–diesel. Int. J. Agric. Resour. Gov. Ecol. 2005, 4, 133–139. [Google Scholar] [CrossRef]
- Flores-Sanchez, I.J.; Verpoorte, R. Secondary metabolism in cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- Livingston, S.J.; Quilichini, T.D.; Booth, J.K.; Wong, D.C.; Rensing, K.H.; Laflamme-Yonkman, J.; Castellarin, S.D.; Bohlmann, J.; Page, J.E.; Samuels, A.L. Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. Plant J. 2020, 101, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.S.; Karat, M.; Binorkar, S.; Lambat, R.A. Review on Mechanism, Therapeutic Uses and Pharmacological Activities of Cannabis sativa. Acta Sci. Med. Sci. 2022, 6, 8. [Google Scholar] [CrossRef]
- Russo, E.; Mathre, M.L.; Byrne, A.; Velin, R.; Bach, P.J.; Sanchez-Ramos, J.; Kirlin, K.A. Chronic Cannabis Use in the Compassionate Investigational New Drug Program. J. Cannabis Ther. 2002, 2, 3–57. [Google Scholar] [CrossRef]
- Grotenhermen, F. Cannabinoids and the endocannabinoid system. Cannabinoids 2006, 1, 10–14. [Google Scholar]
- Mostafaei, D.M.; Ebadi, A.; Peirovi, A.; Taylor, G.; Salami, S.A. THC and CBD Fingerprinting of an Elite Cannabis Collection from Iran: Quantifying Diversity to Underpin Future Cannabis Breeding. Plants 2022, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Cundell, T. Microbiological attributes of powdered cannabis. Am. Pharm. Rev. 31 July 2015. Available online: https://www.americanpharmaceuticalreview.com/Featured-Articles/177487-Microbiological-Attributes-of-Powdered-Cannabis/ (accessed on 14 December 2022).
- McKernan, K.; Spangler, J.; Helbert, Y.; Lynch, R.C.; Devitt-Lee, A.; Zhang, L.; Orphe, W.; Warner, J.; Foss, T.; Hudalla, C.J.; et al. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Research 2016, 5, 2471. [Google Scholar] [CrossRef] [PubMed]
- Ruchlemer, R.; Amit-Kohn, M.; Raveh, D.; Hanuš, L. Inhaled medicinal cannabis and the immunocompromised patient. Support. Care Cancer 2015, 23, 819–822. [Google Scholar] [CrossRef]
- Bal, A.; Agarwal, A.N.; Das, A.; Suri, V.; Varma, S. Chronic necrotising pulmonary aspergillosis in a marijuana addict: A new cause of amyloidosis. Pathology 2010, 42, 197–200. [Google Scholar] [CrossRef]
- Taylor, D.N.; Wachsmuth, I.K.; Shangkuan, Y.-H.; Schmidt, E.V.; Barrett, T.J.; Schrader, J.S.; Scherach, C.S.; McGee, H.B.; Feldman, R.A.; Brenner, D.J. Salmonellosis associated with marijuana: A multistate outbreak traced by plasmid fingerprinting. N. Engl. J. Med. 1982, 306, 1249–1253. [Google Scholar] [CrossRef]
- Health DDoE. Special Concerns Associated with Marijuana Extractions, Concentrations, Infusions, and Infused Foods. Available online: https://www.denvergov.org/content/dam/denvergov/Portals/771/documents/PHI/Food/SpecialConcerns_AssociatedwithCannabisExtractions.pdf (accessed on 30 August 2022).
- Legare, C.A.; Raup-Konsavage, W.M.; Vrana, K.E. Therapeutic potential of cannabis, cannabidiol, and cannabinoid-based pharmaceuticals. Pharmacology 2022, 107, 131–149. [Google Scholar] [CrossRef]
- U.S. Drug Enforcement Agency Drug Scheduling. Available online: https://www.dea.gov/drug-scheduling (accessed on 30 August 2022).
- National Conference of State Legislatures. Cannabis Overview. Available online: https://www.ncsl.org/civil-and-criminal-justice/cannabis-overview (accessed on 25 December 2022).
- National Conference of State Legislatures, State Medical Cannabis Laws. National Conference of State Legislatures. 2022. Available online: https://www.ncsl.org/health/state-medical-cannabis-laws (accessed on 25 December 2022).
- FDA Cannabis and Cannabis-Derived Compounds: Quality Considerations for Clinical Research Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cannabis-and-cannabis-derived-compounds-quality-considerations-clinical-research-guidance-industry (accessed on 25 April 2023).
- Carroll, L. One in Seven U.S. Adults Used Marijuana in 2017. Available online: https://www.reuters.com/article/us-health-marijuna-us-adults/one-in-seven-u-s-adults-used-marijuana-in-2017-idUSKCN1LC2B7 (accessed on 25 April 2023).
- Diehl, J.F. Radiation Sources and Process Control. In Safety of Irradiated Foods, 2nd ed.; CRC Press: New York, NY, USA, 1995; p. 27. [Google Scholar]
- Hazekamp, A. Evaluating the effects of gamma-irradiation for decontamination of medicinal cannabis. Front. Pharmacol. 2016, 7, 108. [Google Scholar] [CrossRef] [PubMed]
- Jerushalmi, S.; Maymon, M.; Dombrovsky, A.; Freeman, S. Effects of cold plasma, gamma and e-beam irradiations on reduction of fungal colony forming unit levels in medical cannabis inflorescences. J. Cannabis Res. 2020, 2, 12. [Google Scholar] [CrossRef]
- Sterigenics General Guide to Gamma Irradiation. Available online: https://sterigenics.com/technologies/gamma-irradiation/?gclid=EAIaIQobChMIyOLCot-6-QIVBidMCh3IDQD0EAAYAiAAEgJz2_D_BwE (accessed on 9 August 2022).
- da Silva Aquino, K.A. Sterilization by gamma irradiation. In Gamma Radiation; Adrovic, F., Ed.; InTech: Vienna, Austria, 2012; pp. 171–206. [Google Scholar]
- Andress, E.L.; Delaplane, K.S.; Schuler, G.A. Food Irradiation; University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 1998; pp. 1–11. [Google Scholar]
- Kovacs, E.; Keresztes, A. Effect of gamma and UV-B/C radiation on plant cells. Micron 2002, 33, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Emovon, E. Keynote Address: Symposium Irradiation for National Development; Shelda Science and Technology Complex, SHESTCO: Abuja, Nigeria, 1996. [Google Scholar]
- Radwan, M.M.; Chandra, S.; Gul, S.; ElSohly, M.A. Cannabinoids, phenolics, terpenes and alkaloids of cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef] [PubMed]
- USP Convention. General Chapter <61> Microbiological Examination of Nonsterile Products: Microbial Enumeration Tests. USP 42–NF 37. Available online: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q05b_pf_ira_34_6_2008.pdf (accessed on 9 December 2022).
- Sarma, N.D.; Waye, A.; ElSohly, M.A.; Brown, P.N.; Elzinga, S.; Johnson, H.E.; Marles, R.J.; Melanson, J.E.; Russo, E.; Deyton, L. Cannabis inflorescence for medical purposes: USP considerations for quality attributes. J. Nat. Prod. 2020, 83, 1334–1351. [Google Scholar] [CrossRef] [PubMed]
- Gul, W.; Gul, S.W.; Radwan, M.M.; Wanas, A.S.; Mehmedic, Z.; Khan, I.I.; Sharaf, M.H.M.; El Sohly, M.A. Determination of 11 cannabinoids in biomass and extracts of different varieties of cannabis using high-performance liquid chromatography. J. AOAC Int. 2015, 98, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Mehmedic, Z.; Chandra, S.; Slade, D.; Denham, H.; Foster, S.; Patel, A.S.; Ross, S.A.; Khan, I.A.; ElSohly, M.A. Potency trends of Δ9-THC and other cannabinoids in confiscated cannabis preparations from 1993 to 2008. J. Forensic Sci. 2010, 55, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.A.; Wang, M.; Radwan, M.M.; Wanas, A.S.; Majumdar, C.G.; Avula, B.; Wang, Y.-H.; Khan, I.A.; Chandra, S.; Lata, H. Analysis of terpenes in Cannabis sativa L. using GC/MS: Method development, validation, and application. Planta Med. 2019, 85, 431–438. [Google Scholar] [CrossRef]
TYMC (CFU/g) | TAMC (CFU/g) | E. coli and Salmonella spp. | ||||
---|---|---|---|---|---|---|
Sample # | Before Irradiation | After Irradiation | Before Irradiation | After Irradiation | Before Irradiation | After Irradiation |
CS-464 | 13,000 | <10 * | 1000 | No growth | Absent/g | Absent/g |
CS-481 | 10,050 | <100 * | 4100 | <100 | Absent/g | Absent/g |
CS-483 | 4500 | <100 * | 3950 | <100 | Absent/g | Absent/g |
Sample # | Variety | CBD * | Δ9-THC * | CBN | THCV | CBC | CBG | Moisture Content | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | A | B | A | B | A | B | A | B | A | B | A | B | A | ||
CS-326 | THC/CBD Chemovar | 5.97 ± 0.13 | 6.42 ± 0.16 | 3.64 ± 0.20 | 3.85 ± 0.45 | 0.29 | 0.33 | 0.04 | 0.04 | 0.28 | 0.31 | 0.36 | 0.40 | 7.73 | 8.03 |
CS-363 | 6.57 ± 0.45 | 6.49 ± 0.19 | 3.95 ± 0.11 | 3.85 ± 0.25 | 0.26 | 0.28 | 0.03 | 0.03 | 0.31 | 0.31 | 0.28 | 0.28 | 7.93 | 7.90 | |
CS-445 | 4.65 ± 0.16 | 5.23 ± 0.16 | 2.82 ± 0.12 | 3.07 ± 0.20 | 0.24 | 0.23 | 0.03 | 0.03 | 0.25 | 0.21 | 0.29 | 0.25 | 8.05 | 8.22 | |
CS-447 | 4.54 ± 0.16 | 3.96 ± 0.23 | 2.67 ± 0.18 | 2.27 ± 0.10 | 0.20 | 0.19 | ND | ND | 0.21 | 0.18 | 0.21 | 0.18 | 8.28 | 8.37 | |
CS-463 | 5.32 ± 0.17 | 5.73 ± 0.16 | 2.73 ± 0.17 | 2.85 ± 0.06 | 0.37 | 0.43 | ND | ND | 0.23 | 0.25 | 0.22 | 0.24 | 8.1 | 8.23 | |
CS-464 | 4.61 ± 0.27 | 5.03 ± 0.01 | 2.38 ± 0.10 | 2.48 ± 0.27 | 0.34 | 0.43 | ND | ND | 0.18 | 0.26 | 0.31 | 0.28 | 8.01 | 7.65 | |
CS-465 | 4.75 ± 0.17 | 4.13 ± 0.08 | 1.97 ± 0.12 | 1.60 ± 0.10 | 0.40 | 0.35 | ND | ND | 0.20 | 0.18 | 0.21 | 0.18 | 8.14 | 8.47 | |
CS-466 | 3.58 ± 0.15 | 4.12 ± 0.09 | 1.73 ± 0.15 | 1.94 ± 0.14 | 0.22 | 0.27 | ND | ND | 0.17 | 0.14 | 0.27 | 0.25 | 8.45 | 8.55 | |
CS-467 | 3.43 ± 0.17 | 3.77 ± 0.08 | 1.25 ± 0.18 | 1.39 ± 0.11 | 0.25 | 0.28 | ND | ND | 0.16 | 0.13 | 0.11 | 0.11 | 8.18 | 8.10 | |
CS-370 | High CBD Chemovar | 3.79 ± 0.12 | 4.06 ± 0.10 | 0.10 ± 0.08 | 0.11 ± 0.07 | ND | ND | ND | ND | 0.12 | 0.13 | 0.07 | 0.08 | 7.82 | 8.11 |
CS-437 | 3.86 ± 0.32 | 3.75 ± 0.30 | 0.18 ± 0.12 | 0.16 ± 0.09 | 0.02 | 0.01 | ND | ND | 0.14 | 0.16 | 0.14 | 0.16 | 8.66 | 8.35 | |
CS-438 | 3.70 ± 0.04 | 4.00 ± 0.22 | 0.12 ± 0.10 | 0.12 ± 0.03 | 0.07 | 0.08 | ND | ND | 0.14 | 0.14 | 0.07 | 0.08 | 8.94 | 8.27 | |
CS-459 | 10.96 ± 0.06 | 11.14 ± 0.45 | 0.39 ± 0.14 | 0.36 ± 0.03 | 0.06 | 0.05 | 0.03 | 0.03 | 0.36 | 0.36 | 0.32 | 0.29 | 8.04 | 8.12 | |
CS-460 | 5.89 ± 0.05 | 6.22 ± 0.12 | 0.20 ± 0.15 | 0.18 ± 0.08 | ND | ND | ND | ND | 0.21 | 0.25 | 0.15 | 0.16 | 7.77 | 7.90 | |
CS-461 | 5.74 ± 0.12 | 5.71 ± 0.05 | 0.16 ± 0.11 | 0.15 ± 0.04 | ND | ND | ND | ND | 0.20 | 0.20 | 0.12 | 0.12 | 7.75 | 8.05 | |
CS-468 | 3.00 ± 0.12 | 3.17 ± 0.02 | 0.86 ± 0.16 | 0.87 ± 0.07 | 0.20 | 0.21 | ND | ND | 0.11 | 0.12 | 0.11 | 0.11 | 8.61 | 9.34 | |
CS-481 | 4.70 ± 0.11 | 5.49 ± 0.07 | 0.35 ± 0.17 | 0.37 ± 0.08 | 0.03 | 0.03 | 0.01 | 0.01 | 0.24 | 0.27 | 0.12 | 0.14 | 8.00 | 8.16 | |
CS-483 | 5.26 ± 0.13 | 5.44 ± 0.04 | 0.10 ± 0.08 | 0.10 ± 0.02 | 0.14 | 0.16 | 0.01 | 0.01 | 0.31 | 0.30 | 0.25 | 0.24 | 6.41 | 6.40 | |
CS-506 | 4.50 ± 0.08 | 4.37 ± 0.02 | 0.20 ± 0.11 | 0.20 ± 0.01 | 0.03 | 0.04 | 0.01 | 0.01 | 0.30 | 0.24 | 0.09 | 0.08 | 5.64 | 6.28 | |
CS-317 | High THC Chemovar | 0.09 ± 0.01 | ND | 5.61 ± 0.30 | 6.08 ± 0.44 | 0.16 | 0.23 | 0.04 | 0.04 | 0.10 | 0.10 | 0.08 | 0.10 | 10.47 | 10.18 |
CS-441 | 0.15 ± 0.04 | 0.16 ± 0.08 | 6.49 ± 0.16 | 7.52 ± 0.16 | 0.52 | 0.54 | 0.04 | 0.05 | 0.31 | 0.33 | 0.16 | 0.18 | 8.74 | 8.26 | |
CS-442 | 0.06 ± 0.01 | 0.06 ± 0.01 | 6.58 ± 0.50 | 7.02 ± 0.28 | 0.53 | 0.64 | 0.07 | 0.07 | 0.28 | 0.32 | 0.13 | 0.19 | 7.28 | 7.65 | |
CS-469 | ND | ND | 6.54 ± 0.18 | 6.60 ± 0.31 | 0.66 | 0.60 | 0.09 | 0.07 | 0.20 | 0.19 | 0.21 | 0.23 | 8.43 | 8.65 | |
CS-471 | ND | ND | 6.12 ± 0.34 | 6.62 ± 0.12 | 0.54 | 0.57 | 0.05 | 0.04 | 0.19 | 0.16 | 0.18 | 0.17 | 7.44 | 8.14 | |
CS-472 | ND | ND | 7.39 ± 0.10 | 5.97 ± 0.02 | 0.70 | 0.66 | 0.05 | 0.04 | 0.26 | 0.23 | 0.28 | 0.23 | 8.51 | 8.04 | |
CS-473 | ND | ND | 5.49 ± 0.04 | 5.45 ± 0.12 | 0.52 | 0.58 | 0.04 | 0.04 | 0.22 | 0.19 | 0.16 | 0.16 | 7.97 | 7.95 | |
CS-474 | ND | ND | 4.97 ± 0.05 | 5.24 ± 0.02 | 0.49 | 0.58 | 0.03 | 0.03 | 0.18 | 0.19 | 0.14 | 0.15 | 7.92 | 8.13 | |
CS-475 | ND | ND | 5.78 ± 0.15 | 5.87 ± 0.09 | 0.50 | 0.55 | 0.04 | 0.04 | 0.21 | 0.20 | 0.17 | 0.18 | 8.44 | 8.01 | |
CS-476 | ND | ND | 3.40 ± 0.18 | 3.91 ± 0.05 | 0.46 | 0.44 | ND | ND | 0.16 | 0.18 | 0.11 | 0.13 | 7.32 | 7.30 | |
CS-477 | ND | ND | 6.01 ± 0.13 | 5.22 ± 0.10 | 0.57 | 0.55 | 0.05 | 0.04 | 0.22 | 0.19 | 0.18 | 0.16 | 7.9 | 7.52 | |
CS-478 | ND | ND | 2.42 ± 0.07 | 2.63 ± 0.15 | 0.27 | 0.31 | ND | ND | 0.15 | 0.15 | 0.06 | 0.07 | 7.56 | 7.87 | |
CS-479 | ND | ND | 2.22 ± 0.06 | 2.50 ± 0.09 | 0.28 | 0.35 | ND | ND | 0.16 | 0.19 | 0.06 | 0.06 | 7.85 | 7.85 | |
CS-480 | 0.05 ± 0.01 | 0.05 ± 0.04 | 1.44 ± 0.14 | 1.32 ± 0.03 | 0.44 | 0.39 | 0.04 | 0.04 | 0.13 | 0.15 | 0.04 | 0.04 | 7.58 | 7.81 |
Before Irradiation | After Irradiation | t | df | p-Value |
---|---|---|---|---|
CS-326B | CS-326A | −2.354 | 6 | 0.057 |
CS-363B | CS-363A | 1.571 | 6 | 0.167 |
CS-445B | CS-445A | −1.506 | 6 | 0.183 |
CS-447B | CS-447A | 1.475 | 5 | 0.200 |
CS-463B | CS-463A | −2.116 | 5 | 0.088 |
CS-464B | CS-464A | −0.487 | 5 | 0.647 |
CS-465B | CS-465A | 0.946 | 5 | 0.388 |
CS-466B | CS-466A | −1.621 | 5 | 0.166 |
CS-467B | CS-467A | −1.069 | 5 | 0.334 |
CS-370B | CS-370A | −1.782 | 4 | 0.149 |
CS-437B | CS-437A | 1.286 | 4 | 0.268 |
CS-438B | CS-438A | 0.444 | 5 | 0.676 |
CS-459B | CS-459A | −0.933 | 6 | 0.387 |
CS-460B | CS-460A | −1.551 | 4 | 0.196 |
CS-461B | CS-461A | −0.835 | 4 | 0.450 |
CS-468B | CS-468A | −1.313 | 5 | 0.246 |
CS-481B | CS-481A | −1.332 | 6 | 0.231 |
CS-483B | CS-483A | −0.925 | 6 | 0.391 |
CS-506B | CS-506A | −0.658 | 6 | 0.535 |
CS-317B | CS-317A | −0.451 | 5 | 0.671 |
CS-441B | CS-441A | −0.525 | 6 | 0.619 |
CS-442B | CS-442A | −2.116 | 6 | 0.079 |
CS-469B | CS-469A | −0.865 | 5 | 0.427 |
CS-471B | CS-471A | −1.508 | 5 | 0.192 |
CS-472B | CS-472A | 1.475 | 5 | 0.200 |
CS-473B | CS-473A | 0.344 | 5 | 0.745 |
CS-474B | CS-474A | −2.076 | 5 | 0.092 |
CS-475B | CS-475A | 0.621 | 5 | 0.562 |
CS-476B | CS-476A | −0.996 | 4 | 0.376 |
CS-477B | CS-477A | 1.598 | 5 | 0.171 |
CS-478B | CS-478A | −1.838 | 4 | 0.140 |
CS-479B | CS-479A | −1.445 | 4 | 0.222 |
CS-480B | CS-480A | −0.281 | 6 | 0.788 |
Parameter | Description |
---|---|
HPLC instrument | Waters Alliance 2695e HPLC system with a binary HPLC pump and a Waters 2996 PDA detector. |
Column and guard column | Luna C18(2) column (150 × 4.60 mm, 3 µm; Phenomenex, Torrance, CA) equipped with a C18 guard column cartridge (Phenomenex). |
Mobile phase | of 0.1% (v/v) formic acid in water (mobile phase A) and 0.1% (v/v) formic acid in acetonitrile (mobile phase B) according to a gradient elution started at 70% B from 0 to 6 min; then 77% B in 6 min; kept 77% B for 10 min; afterwards, the system was returned to the initial conditions with a total run time of 22.2 min. |
Flow rate | 1.2 mL/min. |
Injection volume | 10 µL. |
PDA wavelength | 220 nm. |
Software | Empower 3 software. |
Parameter | Description |
---|---|
Instrument/ Software | Agilent 7890A series (Agilent) GC. Software (NIST) (Version 2.0f; Standard Reference Data Program of the National Institute of Standards and Technology, as distributed by Agilent Technologies). |
Column | DB-5MS capillary column (30 m × 0.25 mm I.D., 0.25 µm film thickness; Agilent). |
Carrier gas | Helium; flow rate of 1 mL/min. |
Inlet temperature/ Split mode | 250 °C/split ratio 15:1. |
Injection volume | 2 µL. |
Temperature program | The temperature program initiated at 50 °C (held for 2 min), then increased to 85 °C at a rate of 2 °C/min, followed by a ramp to 165 °C at 3 °C/min. Post-run, the temperature was held at 280 °C for 10 min. |
Mass conditions | Full scan mode; from 40 to 450 atomic mass units (amu). The ionization energy = 70 eV. Ion source temperature = 230 °C. Quadrupole temperature = 150 °C. Solvent delay was set to 4 min. Transfer line temperature was 280 °C. Total run time was 56.16 min. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majumdar, C.G.; ElSohly, M.A.; Ibrahim, E.A.; Elhendawy, M.A.; Stanford, D.; Chandra, S.; Wanas, A.S.; Radwan, M.M. Effect of Gamma Irradiation on Cannabinoid, Terpene, and Moisture Content of Cannabis Biomass. Molecules 2023, 28, 7710. https://doi.org/10.3390/molecules28237710
Majumdar CG, ElSohly MA, Ibrahim EA, Elhendawy MA, Stanford D, Chandra S, Wanas AS, Radwan MM. Effect of Gamma Irradiation on Cannabinoid, Terpene, and Moisture Content of Cannabis Biomass. Molecules. 2023; 28(23):7710. https://doi.org/10.3390/molecules28237710
Chicago/Turabian StyleMajumdar, Chandrani G., Mahmoud A. ElSohly, Elsayed A. Ibrahim, Mostafa A. Elhendawy, Donald Stanford, Suman Chandra, Amira S. Wanas, and Mohamed M. Radwan. 2023. "Effect of Gamma Irradiation on Cannabinoid, Terpene, and Moisture Content of Cannabis Biomass" Molecules 28, no. 23: 7710. https://doi.org/10.3390/molecules28237710
APA StyleMajumdar, C. G., ElSohly, M. A., Ibrahim, E. A., Elhendawy, M. A., Stanford, D., Chandra, S., Wanas, A. S., & Radwan, M. M. (2023). Effect of Gamma Irradiation on Cannabinoid, Terpene, and Moisture Content of Cannabis Biomass. Molecules, 28(23), 7710. https://doi.org/10.3390/molecules28237710