New Steroidal Selenides as Proapoptotic Factors
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
4.1. Synthesis
4.2. Cells Culture
4.3. Relative Gene Expression Analysis
4.4. Statistical Analysis
4.5. Molecular Docking
4.6. Molecular Dynamics
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jastrzebska, I.; Grzes, P.A.; Niemirowicz-Laskowska, K.; Car, H. Selenosteroids—Promising hybrid compounds with pleiotropic biological activity: Synthesis and biological aspects. J. Steroid Biochem. Mol. Biol. 2021, 213, 105975. [Google Scholar] [CrossRef] [PubMed]
- Romero-Hernández, L.L.; Merino-Montiel, P.; Montiel-Smith, S.; Meza-Reyes, S.; Vega-Báez, J.L.; Abasolo, I.; Schwartz, S.; López, Ó.; Fernández-Bolaños, J.G. Diosgenin-based thio(seleno)ureas and triazolyl glycoconjugates as hybrid drugs. Antioxidant and antiproliferative profile. Eur. J. Med. Chem. 2015, 99, 67–81. [Google Scholar] [CrossRef]
- Fuentes-Aguilar, A.; Romero-Hernández, L.L.; Arenas-González, A.; Merino-Montiel, P.; Montiel-Smith, S.; Meza-Reyes, S.; Vega-Báez, J.L.; Plata, G.B.; Padrón, J.M.; López, Ó.; et al. New selenosteroids as antiproliferative agents. Org. Biomol. Chem. 2017, 15, 5041–5054. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Peng, Z.; Wei, M.; Gan, C.; Zhang, Y.; Chen, S.; Xiao, J.; Cui, J. Synthesis and antiproliferative evaluation of some novel estradiol selenocyanates. Steroids 2022, 181, 108992. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Peng, Z.; Wei, M.; Pang, L.; Cheng, Y.; Xiao, J.-A.; Gan, C.; Cui, J. Straightforward synthesis of steroidal selenocyanates through oxidative umpolung selenocyanation of steroids and their antitumor activity. J. Steroid Biochem. Mol. Biol. 2023, 225, 106203. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Cheng, Y.; Peng, Z.-N.; Pang, L.-P.; Li, J.-Y.; Xiao, J.-A.; Zhang, Y.-F.; Cui, J.-G. Synthesis and antitumor activity of some cholesterol-based selenocyanate compounds. Steroids 2023, 194, 109217. [Google Scholar] [CrossRef]
- Chen, P.; Wang, P.; Song, N.; Li, M. Convergent synthesis and cytotoxic activities of 26-thio- and selenodioscin. Steroids 2013, 78, 959–966. [Google Scholar] [CrossRef]
- Cui, J.; Pang, L.; Wei, M.; Gan, C.; Liu, D.; Yuan, H.; Huang, Y. Synthesis and antiproliferative activity of 17-[1′,2′,3′]-selenadiazolylpregnenolone compounds. Steroids 2018, 140, 151–158. [Google Scholar] [CrossRef]
- Jastrzebska, I.; Mellea, S.; Salerno, V.; Grzes, P.A.; Siergiejczyk, L.; Niemirowicz-Laskowska, K.; Bucki, R.; Monti, B.; Santi, C. PhSeZnCl in the Synthesis of Steroidal β-Hydroxy-Phenylselenides Having Antibacterial Activity. Int. J. Mol. Sci. 2019, 20, 2121. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, M.; Peng, Z.; Cheng, Y.; Zhang, Y.; Li, J.; Xiao, J.; Gan, C.; Cui, J. Synthesis of estrone selenocyanate Compounds, anti-tumor activity evaluation and Structure-activity relationship analysis. Bioorg. Med. Chem. 2022, 76, 117086. [Google Scholar] [CrossRef]
- Grześ, P.A.; Monti, B.; Wawrusiewicz-Kurylonek, N.; Bagnoli, L.; Sancineto, L.; Jastrzebska, I.; Santi, C. Simple Zn-Mediated Seleno- and Thio-Functionalization of Steroids at C-1 Position. Int. J. Mol. Sci. 2022, 23, 3022. [Google Scholar] [CrossRef] [PubMed]
- Izadi, M.; Ali, T.A.; Pourkarimi, E. Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int. J. Mol. Sci. 2021, 22, 12466. [Google Scholar] [CrossRef] [PubMed]
- Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Cholesterol and beyond—The role of the mevalonate pathway in cancer biology. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188351. [Google Scholar] [CrossRef]
- Lepesheva, G.I.; Waterman, M.R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta Gen. Subj. 2007, 1770, 467–477. [Google Scholar] [CrossRef]
- Saunier, E.; Benelli, C.; Bortoli, S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents: Pyruvate dehydrogenase complex in cancer. Int. J. Cancer 2016, 138, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Dorstyn, L.; Akey, C.W.; Kumar, S. New insights into apoptosome structure and function. Cell Death Differ. 2018, 25, 1194–1208. [Google Scholar] [CrossRef]
- Zou, H.; Henzel, W.J.; Liu, X.; Lutschg, A.; Wang, X. Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3. Cell 1997, 90, 405–413. [Google Scholar] [CrossRef]
- Billen, L.P.; Shamas-Din, A.; Andrews, D.W. Bid: A Bax-like BH3 protein. Oncogene 2008, 27, S93–S104. [Google Scholar] [CrossRef]
- Grzes, P.A.; Sawicka, A.; Niemirowicz-Laskowska, K.; Wielgat, P.; Sawicka, D.; Car, H.; Jastrzebska, I. Metal-promoted synthesis of steroidal ethynyl selenides having anticancer activity. J. Steroid Biochem. Mol. Biol. 2023, 227, 106232. [Google Scholar] [CrossRef]
- Cui, J.; Wei, M.; Pang, L.; Gan, C.; Xiao, J.; Shi, H.; Zhan, J.; Liu, Z.; Huang, Y. Synthesis and antiproliferative evaluation of novel steroid-benzisoselenazolone hybrids. Steroids 2019, 152, 108502. [Google Scholar] [CrossRef]
- Juarez, D.; Fruman, D.A. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021, 7, 525–540. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, L.; Dai, T.; Pei, X.; Xia, L.; Zeng, G.; Ye, M.; Liu, K.; Zeng, F.; Han, W.; et al. SQLE Mediates Metabolic Reprogramming to Promote LN Metastasis in Castration-Resistant Prostate Cancer. OncoTargets Ther. 2021, 14, 4285–4295. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, S.; Tang, Q.; Xia, H.; Bi, F. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188394. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Zhao, Y.; Shi, X.; Tan, Z.; Chi, X.; He, M.; Jiang, G.; Ji, L.; Li, H. Squalene epoxidase promotes the proliferation and metastasis of lung squamous cell carcinoma cells though extracellular signal-regulated kinase signaling. Thorac. Cancer 2019, 10, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.N.; Caffa, I.; Cirmena, G.; Piras, D.; Garuti, A.; Gallo, M.; Alberti, S.; Nencioni, A.; Ballestrero, A.; Zoppoli, G. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer. Sci. Rep. 2016, 6, 19435. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Li, H.-M.; Yu, Z.; Yu, X.; Guo, K. Expression and significance of squalene epoxidase in squamous lung cancerous tissues and pericarcinoma tissues: Expression of SQLE mRNA and protein. Thorac. Cancer 2014, 5, 275–280. [Google Scholar] [CrossRef]
- Micheau, O.; Tschopp, J. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell 2003, 114, 181–190. [Google Scholar] [CrossRef]
- Berghe, T.V.; van Loo, G.; Saelens, X.; van Gurp, M.; Brouckaert, G.; Kalai, M.; Declercq, W.; Vandenabeele, P. Differential Signaling to Apoptotic and Necrotic Cell Death by Fas-associated Death Domain Protein FADD. J. Biol. Chem. 2004, 279, 7925–7933. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lee, S.; Malladi, S.; Chen, M.-D.; Mastrandrea, N.J.; Zhang, Z.; Bratton, S.B. The Apaf-1 apoptosome induces formation of caspase-9 homo- and heterodimers with distinct activities. Nat Commun. 2016, 7, 13565. [Google Scholar] [CrossRef]
- Bunik, V.I.; Tylicki, A.; Lukashev, N.V. Thiamin diphosphate-dependent enzymes: From enzymology to metabolic regulation, drug design and disease models. FEBS J. 2013, 280, 6412–6442. [Google Scholar] [CrossRef]
- Maliszewski, D.; Demirel, R.; Wróbel, A.; Baradyn, M.; Ratkiewicz, A.; Drozdowska, D. s-Triazine Derivatives Functionalized with Alkylating 2-Chloroethylamine Fragments as Promising Antimicrobial Agents: Inhibition of Bacterial DNA Gyrases, Molecular Docking Studies, and Antibacterial and Antifungal Activity. Pharmaceuticals 2023, 16, 1248. [Google Scholar] [CrossRef]
- Wróbel, A.; Baradyn, M.; Ratkiewicz, A.; Drozdowska, D. Synthesis, Biological Activity, and Molecular Dynamics Study of Novel Series of a Trimethoprim Analogs as Multi-Targeted Compounds: Dihydrofolate Reductase (DHFR) Inhibitors and DNA-Binding Agents. Int. J. Mol. Sci. 2021, 22, 3685. [Google Scholar] [CrossRef]
- Mahipal, S.; Kya, M.; Xiaoling, M. Effect of dimethyl sulfoxide on in vitro proliferation of skin fibroblast cells. J. Biotech Res. 2017, 8, 78–82. [Google Scholar]
- Timm, M.; Saaby, L.; Moesby, L.; Hansen, E.W. Considerations regarding use of solvents in in vitro cell based assays. Cytotechnology 2013, 65, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Da Violante, G.; Zerrouk, N.; Richard, I.; Provot, G.; Chaumeil, J.C.; Arnaud, P. Evaluation of the Cytotoxicity Effect of Dimethyl Sulfoxide (DMSO) on Caco2/TC7 Colon Tumor Cell Cultures. Biol. Pharm. Bull. 2002, 25, 1600–1603. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 2.2.3. Copyright Schrodinger LLC. Available online: https://pymol.org (accessed on 30 October 2021).
- Jo, S.; Kim, T.; Im, W. Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations. PLoS ONE 2007, 2, e880. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Botet-Carreras, A.; Montero, M.T.; Sot, J.; Domènech, Ò.; Borrell, J.H. Characterization of monolayers and liposomes that mimic lipid composition of HeLa cells. Colloids Surfaces B Biointerfaces 2020, 196, 111288. [Google Scholar] [CrossRef]
- Singh, U.C.; Kollman, P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129–145. [Google Scholar] [CrossRef]
- Hub, J.S.; Winkler, F.K.; Merrick, M.; De Groot, B.L. Potentials of Mean Force and Permeabilities for Carbon Dioxide, Ammonia, and Water Flux across a Rhesus Protein Channel and Lipid Membranes. J. Am. Chem. Soc. 2010, 132, 13251–13263. [Google Scholar] [CrossRef] [PubMed]
- Wennberg, C.L.; Van Der Spoel, D.; Hub, J.S. Large Influence of Cholesterol on Solute Partitioning into Lipid Membranes. J. Am. Chem. Soc. 2012, 134, 5351–5361. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
Types of Genes | Gene/Locus | Function of Encoded Protein |
---|---|---|
Related to cholesterol synthesis | HMGCR/5q13.3 | 3-hydroxy-3-methylglutaryl-CoA reductase—a transmembrane enzyme, bound to endoplasmic reticulum; catalyzes the conversion of (3S)-hydroxy-3-methylglutaryl-CoA to mevalonate, which is the rate-limiting step in the synthesis of cholesterol and other isoprenoids, playing a significant role in cellular cholesterol homeostasis; is regulated by a negative feedback mechanism through sterols and non-sterol metabolites derived from mevalonate. |
SQLE/8q24.13 | squalene epoxidase—an enzyme with monooxygenase activity; catalyzes the stereospecific oxidation of squalene to (S)-2,3-epoxysqualene—the first oxygenation step in sterol biosynthesis. | |
CYP51A1/7q21.2 | lanosterol 14-alpha-demethylase, monooxygenase— a member of the cytochrome P450 superfamily (Cytochrome P450 Family 51, Subfamily A, Member 1); is an endoplasmic reticulum protein which catalyzes reactions involved in the synthesis of cholesterol, steroids, and other lipids; is an essential housekeeping enzyme and is evolutionarily highly conserved. | |
PDHB/3p14.3 | pyruvate dehydrogenase E1 subunit beta—is a nuclear-encoded mitochondrial multienzyme complex member that catalyzes the overall conversion of pyruvate to acetyl-CoA and carbon dioxide; provides a link between glycolysis and the tricarboxylic acid cycle. | |
Related to apoptosis | APAF1/12q23.1 | apoptotic peptidase activating factor 1, a cytoplasmic protein that initiates apoptosis through the autocatalytic activation of procaspase 9 (dependent on ATP) and then caspase 3; is a component of the apoptosome |
BID/22q11.21 | BH3 interacting domain death agonist, a proapoptotic protein that regulates apoptosis through binding to proteins BAX and /or BCL2; protein is activated by caspase-8, which is activated in the extrinsic apoptosis pathway; the BID protein is associated with cytochrome c release from mitochondria, thereby amplifying the apoptosis signal and contributing to the activation of the apoptosome. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jastrzebska, I.; Wawrusiewicz-Kurylonek, N.; Grześ, P.A.; Ratkiewicz, A.; Grabowska, E.; Czerniecka, M.; Czyżewska, U.; Tylicki, A. New Steroidal Selenides as Proapoptotic Factors. Molecules 2023, 28, 7528. https://doi.org/10.3390/molecules28227528
Jastrzebska I, Wawrusiewicz-Kurylonek N, Grześ PA, Ratkiewicz A, Grabowska E, Czerniecka M, Czyżewska U, Tylicki A. New Steroidal Selenides as Proapoptotic Factors. Molecules. 2023; 28(22):7528. https://doi.org/10.3390/molecules28227528
Chicago/Turabian StyleJastrzebska, Izabella, Natalia Wawrusiewicz-Kurylonek, Paweł A. Grześ, Artur Ratkiewicz, Ewa Grabowska, Magdalena Czerniecka, Urszula Czyżewska, and Adam Tylicki. 2023. "New Steroidal Selenides as Proapoptotic Factors" Molecules 28, no. 22: 7528. https://doi.org/10.3390/molecules28227528
APA StyleJastrzebska, I., Wawrusiewicz-Kurylonek, N., Grześ, P. A., Ratkiewicz, A., Grabowska, E., Czerniecka, M., Czyżewska, U., & Tylicki, A. (2023). New Steroidal Selenides as Proapoptotic Factors. Molecules, 28(22), 7528. https://doi.org/10.3390/molecules28227528