Phenolic Compounds in Fractionated Blackcurrant Leaf Extracts in Relation to the Biological Activity of the Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Content and Antioxidant Activity
2.2. Biological Properties
2.3. Chromatographic Analyses
2.4. PCA Analysis
3. Materials and Methods
3.1. Plant Material and Extraction
3.2. Chemical Composition and Biological Activity
3.2.1. Total Phenolic Compounds (TP)
3.2.2. Total Flavonoids (TF)
3.2.3. Antiradical Activity (AA)
3.2.4. Anticancer Properties
3.3. Chromatographic Analyses
3.3.1. LC-MS Analysis
3.3.2. HPLC-DAD Analysis
3.4. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lean, M.E. Principles of human nutrition. Medicine 2019, 47, 140–144. [Google Scholar] [CrossRef]
- Oulahal, N.; Degraeve, P. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides? Front. Microbiol. 2022, 12, 753518. [Google Scholar] [CrossRef] [PubMed]
- Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Basilio Heredia, J. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Food Agric. 2016, 2, 1131412. [Google Scholar] [CrossRef]
- Cuevas-Cianca, S.I.; Romero-Castillo, C.; Galves-Romero, J.L.; Juarez, Z.N.; Hernandez, L.R. Antioxidant and anti-inflammatory compounds with anticancer activity and their potential use as drugs. Molecules 2023, 28, 1488. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Antioxidant Capacity of Black Currant Varies with Organ, Season, and Cultivar. J. Agric. Food Chem. 2006, 54, 6271–6276. [Google Scholar] [CrossRef] [PubMed]
- Karjalainen, R.; Anttonen, M.; Saviranta, N.; Stewart, D.; McDougall, G.J.; Hilz, H.; Mattila, P.; Törrönen, R. A review on bioactive compounds in black currants (Ribes nigrum L.) And their potential health-promoting properties. Acta Hortic. 2008, 839, 301–307. [Google Scholar] [CrossRef]
- Olsson, M.E.; Gustavsson, K.-E.; Andersson, S.; Nilsson, Å.; Duan, R.-D. Inhibition of Cancer Cell Proliferation in Vitro by Fruit and Berry Extracts and Correlations with Antioxidant Levels. J. Agric. Food Chem. 2004, 52, 7264–7271. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Alakomi, H.-L.; Oksman-Caldentey, K.-M. Bioactive berry compounds-novel tools against human pathogens. Appl. Microbiol. Biotechnol. 2004, 67, 8–18. [Google Scholar] [CrossRef]
- Wu, Q.K.; Koponen, J.M.; Mykkänen, H.M.; Törrönen, A.R. Berry Phenolic Extracts Modulate the Expression of p21WAF1and Bax but Not Bcl-2 in HT-29 Colon Cancer Cells. J. Agric. Food Chem. 2007, 55, 1156–1163. [Google Scholar] [CrossRef]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.-O.; Dommes, J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crops Prod. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Dobson, G. Leaf lipids of Ribes nigrum: A plant containing 16:3, α-18:3, γ-18:3 and 18:4 fatty acids. Biochem. Soc. Trans. 2000, 28, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Xiong, Y.L.; Kong, B.; Liu, Q.; Xia, X. Radical scavenging activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on gastric cancer cell proliferation via induction of apoptosis. J. Funct. Foods 2012, 4, 382–390. [Google Scholar] [CrossRef]
- Luzak, B.; Boncler, M.; Rywaniak, J.; Dudzinska, D.; Rozalski, M.; Krajewska, U.; Balcerczak, E.; Podsedek, A.; Redzynia, M.; Watala, C. Extract from Ribes nigrum leaves in vitro activates nitric oxide synthase (eNOS) and increases CD39 expression in human endothelial cells. J. Physiol. Biochem. 2014, 70, 1007–1019. [Google Scholar] [CrossRef]
- Paunović, S.M.; Mašković, P. Phenolic Compounds, Antioxidant and Cytotoxic Activity in Berry and Leaf Extracts of Black Currant (Ribes nigrum L.) as affected by Soil Management Systems. Erwerbs-Obstbau 2020, 62, 293–300. [Google Scholar] [CrossRef]
- Milenkovic-Andjelkovic, A.S.; Andjelkovic, M.Z.; Radovanovic, A.N.; Radovanovic, B.C.; Randjelovic, V. Phenol composition, radical scavenging activity and antimicrobial activity of berry leaf extracts. Bulg. Chem. Commun. 2016, 48, 27–32. [Google Scholar]
- Raudsepp, P.; Koskar, J.; Anton, D.; Meremäe, K.; Kapp, K.; Laurson, P.; Bleive, U.; Kaldmäe, H.; Roasto, M.; Püssa, T. Antibacterial and antioxidative properties of different parts of garden rhubarb, blackcurrant, chokeberry and blue honeysuckle. J. Sci. Food Agric. 2018, 99, 2311–2320. [Google Scholar] [CrossRef]
- Declume, C. Anti-inflammatory evaluation of a hydroalcoholic extract of black currant leaves (Ribes nigrum). J. Ethnopharmacol. 1989, 27, 91–98. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Sci. Rep. 2021, 11, 3240. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liimatainen, J.; Alanne, A.-L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef]
- Amarowicz, R.; Shahidi, F. Antioxidant activity of green tea catechins in a beta-carotene linoleate system. J. Food Lipids 1995, 2, 47–56. [Google Scholar] [CrossRef]
- Zielonka-Brzezicka, J.; Nowak, A.; Zielińska, M.; Klimowicz, A. Comparison of the antioxidant properties of selected parts of raspberry (Rubus idaeus) and blackberry (Rubus fruticosus). J. Life Sci. 2016, 62, 52–59. [Google Scholar]
- Esghaei, M.; Ghaffari, H.; Esboei, B.R.; Tapeh, Z.E.; Salim, F.B.; Motevalian, M. Evaluation of anticancer activity of Camellia sinensis in the Caco-2 colorectal cancer cell line. Asian Pac. J. Cancer Prev. APJCP 2018, 19, 1697. [Google Scholar] [CrossRef]
- Chilczuk, B.; Marciniak, B.; Kontek, R.; Materska, M. Diversity of the Chemical Profile and Biological Activity of Capsicum annuum L. Extracts in Relation to Their Lipophilicity. Molecules 2021, 26, 5215. [Google Scholar] [CrossRef]
- Chilczuk, B.; Marciniak, B.; Stochmal, A.; Pecio, Ł.; Kontek, R.; Jackowska, I.; Materska, M. Anticancer Potential and Capsianosides Identification in Lipophilic Fraction of Sweet Pepper (Capsicum annuum L.). Molecules 2020, 25, 3097. [Google Scholar] [CrossRef]
- Pabich, M.; Marciniak, B.; Kontek, R. Phenolic Compound Composition and Biological Activities of Fractionated Soybean Pod Extract. Appl. Sci. 2021, 11, 10233. [Google Scholar] [CrossRef]
- Kwak, Y.; Ju, J. Glycine max Merr. leaf extract possesses anti-oxidant properties, decreases inflammatory mediator production in murine macrophages, and inhibits growth, migration, and adhesion in human cancer cells. Food Sci. Biotechnol. 2017, 26, 245–253. [Google Scholar] [CrossRef]
- Milella, R.A.; De Rosso, M.; Gasparro, M.; Gigante, I.; Debiase, G.; Forleo, L.R.; Marsico, A.D.; Perniola, R.; Tutino, V.; Notarnicola, M.; et al. Correlation between antioxidant and anticancer activity and phenolic profile of new Apulian table grape genotypes (Vinifera L.). Front. Plant Sci. 2023, 13, 1064023. [Google Scholar] [CrossRef] [PubMed]
- Niksic, H.; Becic, F.; Koric, E.; Gusic, I.; Omeragic, E.; Muratovic, S.; Miladinovic, B.; Duric, K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Rep. 2021, 11, 13178. [Google Scholar] [CrossRef] [PubMed]
- Barlow, M.; Down, L.; Mounce, L.T.A.; Merriel, S.W.D.; Watson, J.; Martins, T.; Bailey, S.E.R. Ethnic differences in prostate-specific antigen levels in men without prostate cancer: A systematic review. Prostate Cancer PD 2023, 26, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, M.; Prathiraja, O.; Caldera, D.; Jena, R.; Coffie-Pierre, J.A.; Silva, M.S.; Siddiqui, O.S. Colon Cancer Screening Methods: 2023 Update. Cureus 2023, 15, e37509. [Google Scholar] [CrossRef] [PubMed]
- Cyboran, S.; Bonarska-Kujawa, D.; Pruchnik, H.; Żyłka, R.; Oszmiański, J.; Kleszczyńska, H. Phenolic content and biological activity of extracts of blackcurrant fruit and leaves. Food Res. Int. 2014, 65, 47–58. [Google Scholar] [CrossRef]
- D’Urso, G.; Montoro, P.; Piacente, S. Detection and comparison of phenolic compounds in different extracts of black currant leaves by liquid chromatography coupled with high-resolution ESI-LTQ-Orbitrap MS and high-sensitivity ESI-Qtrap MS. J. Pharm. Biomed. Anal. 2020, 179, 112926. [Google Scholar] [CrossRef]
- Piotrowski, W.; Łabanowska, B.H.; Kozak, M. Assessment of Infestation of Selected Blackcurrant (Ribes nigrum L.) Genotypes by the Blackcurrant Leaf Midge (Dasineura tetensi Rübs.) in Poland. Insects 2021, 12, 492. [Google Scholar] [CrossRef]
- Téglás, T.; Mihok, E.; Cziáky, Z.; Oláh, N.-K.; Nyakas, C.; Máthé, E. The Flavonoid Rich Black Currant (Ribes nigrum) Ethanolic Gemmotherapy Extract Elicits Neuroprotective Effect by Preventing Microglial Body Swelling in Hippocampus and Reduces Serum TNF-α Level: Pilot Study. Molecules 2023, 28, 3571. [Google Scholar] [CrossRef]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef] [PubMed]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016, 8, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Puganen, A.; Alakomi, H.-L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. [Google Scholar] [CrossRef] [PubMed]
- Navarra, M.; Ferlazzo, N.; Cirmi, S.; Trapasso, E.; Bramanti, P.; Lombardo, G.E.; Minciullo, P.L.; Calapai, G.; Gangemi, S. Effects of bergamot essential oil and its extractive fractions on SH-SY5Y human neuroblastoma cell growth. J. Pharm. Pharmacol. 2015, 67, 1042–1053. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Russo, C.; Gangemi, S.; Calapai, G.; Cirmi, S.; Navarra, M. Bergamottin and 5-Geranyloxy-7-methoxycoumarin Cooperate in the Cytotoxic Effect of Citrus bergamia (Bergamot) Essential Oil in Human Neuroblastoma SH-SY5Y Cell Line. Toxins 2021, 13, 275. [Google Scholar] [CrossRef]
- Delle Monache, S.; Sanità, P.; Trapasso, E.; Ursino, M.R.; Dugo, P.; Russo, M.; Ferlazzo, N.; Calapai, G.; Angelucci, A.; Navarra, M. Mechanisms underlying the anti-tumoral effects of Citrus Bergamia juice. PLoS ONE 2013, 8, e61484. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Fusco, R.; D’Amico, R.; Peditto, M.; Oteri, G.; Di Paola, R.; Cuzzocrea, S.; Navarra, M. Treatment With a Flavonoid-Rich Fraction of Bergamot Juice Improved Lipopolysaccharide-Induced Periodontitis in Rats. Front. Pharmacol. 2019, 9, 1563. [Google Scholar] [CrossRef]
- Klaunig, J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2018, 24, 4771–4778. [Google Scholar] [CrossRef]
- Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E.C.; Trus, C.; Ciobica, A.; Timofte, D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxid. Med. Cell. Longev. 2021, 2021, 9965916. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review. Oxid. Med. Cell. Longev. 2016, 2016, 9130976. [Google Scholar] [CrossRef] [PubMed]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, W.; Jiang, J. Prevention and treatment of cancer targeting chronic inflammation: Research progress, potential agents, clinical studies and mechanisms. Sci. China Life Sci. 2017, 60, 601–616. [Google Scholar] [CrossRef] [PubMed]
- Germolec, D.R.; Shipkowski, K.A.; Frawley, R.P.; Evans, E. Markers of Inflammation. Methods Mol. Biol. 2018, 1803, 57–79. [Google Scholar]
- Xue, Z.; Wang, J.; Chen, Z.; Ma, Q.; Guo, Q.; Gao, X.; Chen, H. Antioxidant, antihypertensive, and anticancer activities of the flavonoid fractions from green, oolong, and black tea infusion waste. J. Food Biochem. 2018, 42, 12690. [Google Scholar] [CrossRef]
- Jayameena, P.; Sivakumari, K.; Ashok, K.; Rajesh, S. Rutin: A potential anticancer drug against human colon cancer (HCT116) cells. Int. J. Biol. Pharm. Allied Sci. 2018, 7, 1731–1745. [Google Scholar] [CrossRef]
- Bal, E.; Özkan, A.D.; Bets, Z. Determination of the effect of rutin on epithhelial and mesenchimal transition in prostate cancer cells. Acta Med. Nicomedia 2023, 6, 131–136. [Google Scholar] [CrossRef]
- Miao, M.; Xiang, L. Pharmacological action and potential targets of chlorogenic acid. Adv. Pharmacol. 2020, 87, 71–88. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, Z.; Xu, X.; Qi, H.; Cheng, Z.; Chen, L. Anticancer effects of rosmarinic acid in human oral cancer cells is mediated via endoplasmic reticulum stress, apoptosis, G2/M cell cycle arrest and inhibition of cell migration. J. Buon. 2020, 25, 1245–1250. [Google Scholar]
- Bittner Fialová, S.; Kello, M.; Čoma, M.; Slobodníková, L.; Drobná, E.; Holková, I.; Garajová, M.; Mrva, M.; Zachar, V.; Lukáč, M. Derivatization of Rosmarinic Acid Enhances its in vitro Antitumor, Antimicrobial and Antiprotozoal Properties. Molecules 2019, 24, 1078. [Google Scholar] [CrossRef]
- Boeing, T.; Costa, P.; Venzon, L.; Meurer, M.; Mariano, L.N.B.; França, T.C.S.; Gouveia, L.; de Bassi, A.C.; Steimbach, V.; de Souza, P.; et al. Gastric healing effect of p-coumaric acid isolated from Baccharis dracunculifolia DC on animal model. Naunyn Schmiedeberg’s Arch. Pharmacol. 2020, 394, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yu, J.; Liu, Y.; Zhou, J.; Sun, L.; Wang, J.; Zhu, J.; Peng, H.; Lu, W.; Yu, L.; et al. Tumor-penetrating Peptide Conjugated and Doxorubicin Loaded T1-T2 Dual Mode MRI Contrast Agents Nanoparticles for Tumor Theranostics. Theranostics 2018, 8, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Nile, A.; Nile, S.H.; Shin, J.; Park, G.; Oh, J.-W. Quercetin-3-Glucoside Extracted from Apple Pomace Induces Cell Cycle Arrest and Apoptosis by Increasing Intracellular ROS Levels. Int. J. Mol. Sci. 2021, 22, 10749. [Google Scholar] [CrossRef] [PubMed]
- Elsharkawy, E.R. Isolation of phytoconstituents and evaluation of anticancer and Antioxidant potential of Launaea mucronata (Forssk.) Muschl. subsp. Pak. J. Pharm. Sci. 2017, 30, 399–405. [Google Scholar]
- Velmurugan, B.K.; Lin, J.-T.; Mahalakshmi, B.; Chuang, Y.-C.; Lin, C.-C.; Lo, Y.-S.; Hsieh, M.-J.; Chen, M.-K. Luteolin-7-O-Glucoside Inhibits Oral Cancer Cell Migration and Invasion by Regulating Matrix Metalloproteinase-2 Expression and Extracellular Signal-Regulated Kinase Pathway. Biomolecules 2020, 10, 502. [Google Scholar] [CrossRef]
- Mitra, S.; Tareq, A.M.; Das, R.; Emran, T.B.; Nainu, F.; Chakraborty, A.J.; Ahmad, I.; Tallei, T.E.; Idris, A.M.; Simal-Gandara, J. Polyphenols: A first evidence in the synergism and bioactivities. Food Rev. Int. 2022, 39, 4419–4441. [Google Scholar] [CrossRef]
- Day, A.J.; Williamson, G. Biomarkers for exposure to dietary flavonoids: A review of the current evidence for identification of quercetin glycosides in plasma. Br. J. Nutr. 2001, 86, S105–S110. [Google Scholar] [CrossRef]
- Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct. 2015, 6, 1399–1417. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Zhisten, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Gođevac, D.; Vujisić, L.; Mojović, M.; Ignjatović, A.; Spasojević, I.; Vajs, V. Evaluation of antioxidant capacity of Allium ursinum L. volatile oil and its effect on membrane fluidity. Food Chem. 2008, 107, 1692–1700. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: https://nhiso.com/wp-content/uploads/2018/05/ISO-10993-5-2009.pdf (accessed on 25 March 2022).
- Abe, K.; Matsuki, N. Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci. Res. 2000, 38, 325–329. [Google Scholar] [CrossRef]
TP 1 | TF 2 | AADPPH 3 | AAABTS 3 | |
---|---|---|---|---|
E | 2055.62 b ± 52.07 | 0.3355 b ± 0.005 | 230.73 b ± 0.47 | 368.72 b ± 8.7 |
F1 | 864.33 c ± 26.03 | 0.0769 d ± 0.004 | 43.81 c ± 1.71 | ppd 4 |
F2 | 2532.88 a ± 144.96 | 0.6282 a ± 0.004 | 288.07 a ± 1.03 | 561.84 a ± 3.49 |
F3 | 905.67 c ± 45.56 | 0.1378 c ± 0.005 | 45.32 c ± 2.17 | ppd 4 |
No | Rt | Name * | Molecular Formula | Mobs | Mteor | m/z | E | F1 | F2 | F3 | XlogP3 ** | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.522 | Epigallocatechin | C15H14O7 | 306.074 | 306.0739 | 307.0813 | + | + | + | + | 0 | [40] |
2 | 0.539 | Isorhamnetin-3-O-Rut-7-O-Glc | C34H42O21 | 786.2206 | 786.2219 | 787.2307 | + | + | - | + | −2.8 | [41] |
3 | 0.559 | 3-Hydroxybenzoic acid | C7H6O3 | 138.0313 | 138.0317 | 139.0386 | + | - | + | - | 1.5 | [42] |
4 | 0.575 | p-CoumaroylGlc | C15H18O8 | 326.1002 | 326.1002 | 327.1136 | + | + | + | + | −0.8 | [41] |
5 | 0.575 | Epicatechin | C15H14O6 | 290.0807 | 290.0790 | 291.0881 | + | - | + | + | 0.4 | [41] |
6 | 0.58 | Chlorogenic acid | C16H18O9 | 354.0956 | 354.0951 | 377.0833 | + | + | - | + | −0.4 | standard |
7 | 0.58 | Neochlorogenic acid | C16H18O9 | 354.0937 | 354.0951 | 355.1022 | + | + | + | + | −0.4 | standard |
8 | 0.58 | p-Coumaroylquinic acid | C16H18O8 | 338.1002 | 338.1002 | 339.312 | + | + | + | + | −0.1 | [40] |
9 | 0.642 | Gallic acid | C7H6O5 | 170.0221 | 170.0215 | 171.0293 | + | + | - | + | 0.7 | standard |
10 | 0.656 | Myricetin | C15H10O8 | 318.0383 | 318.0376 | 319.0453 | + | - | - | + | 1.2 | [42] |
11 | 0.659 | Rosmarinic acid | C18H16O8 | 360.0845 | 360.0845 | 361.0912 | + | - | + | - | 2.4 | standard |
12 | 0.696 | Myricetin 3-O-Gal | C21H20O13 | 480.0912 | 480.0904 | 481.0983 | + | - | + | + | 0 | [26] |
13 | 0.739 | Quercetin-3-O-Rut | C27H30O16 | 610.1543 | 610.1534 | 633.1428 | + | - | + | - | −1.3 | standard |
14 | 0.796 | Kaempferol-di-hexoside | C27H30O16 | 610.1582 | 610.1534 | 611.1649 | + | - | - | + | −1.1 | [40] |
15 | 0.842 | Quercetin-3-O-Glc | C21H20O12 | 464.0964 | 464.0955 | 303.0497 | + | - | + | + | 0.4 | standard |
16 | 0.913 | Quercetin-3-O-Gal | C21H20O12 | 464.0957 | 464.0955 | 465.1031 | + | - | + | + | 0.4 | standard |
17 | 0.939 | Kaempferol-3-O-Rut | C27H30O15 | 594.1589 | 594.1585 | 595.1654 | + | + | - | + | −0.9 | [25,26] |
18 | 0.946 | p-Coumaric acid | C9H8O3 | 164.0475 | 164.0473 | 165.0547 | + | - | + | + | 1.5 | standard |
19 | 0.992 | Quercetin-3-O-malonyl-Glc | C24H22O15 | 550.0963 | 550.0959 | 551.1036 | + | + | + | + | 0.1 | standard |
20 | 1.022 | Ferulic acid | C10H10O4 | 194.0578 | 194.0579 | 195.065 | + | - | + | - | 1.5 | standard |
21 | 1.096 | Isorhamnetin-3-O- Rut | C28H32O16 | 624.1688 | 624.169 | 625.1792 | + | - | - | + | −1 | [43] |
22 | 1.112 | Kaempferol -7-O- Glc | C21H20O11 | 448.101 | 448.1006 | 471.09 | + | + | - | + | 0.7 | standard |
23 | 1.112 | Quercetin-3-O-Ara | C20H18O11 | 434.0878 | 434.0849 | 435.0354 | + | + | - | + | 0.4 | [25] |
24 | 1.246 | Kaempferol-3-O-Gal | C21H20O11 | 448.1012 | 448.1006 | 449.1082 | + | + | - | + | 0.7 | [26] |
25 | 1.246 | Isorhamnetin-3-O-Glc | C22H22O12 | 478.1133 | 478.1111 | 479.1197 | + | - | - | + | 0.7 | [40] |
26 | 1.388 | Naringenin | C15H12O5 | 272.069 | 272.0685 | 273.0762 | + | - | - | + | 2.4 | [41] |
27 | 1.412 | Quercetin-3-O-acetylGlc | C23H22O13 | 506.106 | 506.106 | 507.1154 | + | - | - | + | 0.4 | [40] |
28 | 1.495 | Kaempferol-3-O-malonyl-Gal | C24H22O14 | 534.1014 | 534.101 | 557.0907 | + | - | - | + | 0.4 | [25] |
29 | 2.188 | Kaempferol-3-O-acetyl Glc | C23H22O12 | 490.118 | 490.1111 | 491.1186 | + | - | - | + | 0.7 | [40] |
30 | 4.918 | Quercetin | C15H10O7 | 302.0432 | 302.0427 | 303.0498 | + | - | - | + | 1.5 | standard |
No | Rt [min] | Compound * | E | F1 | F2 | F3 |
---|---|---|---|---|---|---|
9 | 9.55 | Gallic acid | 2.821 ± 0.011 | 1.74 ± 0.02 | n.d. | 0.332 ± 0.011 |
6 | 10.20 | Chlorogenic acid | 2.85 ± 0.002 | 0.12 ± 0.01 | n.d. | 0.171 ± 0.001 |
7 | 11.10 | Neochlorogenic acid | 1.364 ± 0.002 | 0.025 ± 0.013 | 0.738 ± 0.011 | n.d. |
18 | 16.45 | p-Coumaric acid | 0.433 ± 0.011 | n.d. | 1.800 ± 0.009 | 0.594 ± 0.011 |
13 | 17.51 | Quercetin-3-O-Rut | 0.386 ± 0.004 | n.d. | 0.254 ± 0.003 | n.d. |
20 | 17.99 | Ferulic acid | 1.637 ± 0.017 | n.d. | 24.663 ± 0.012 | n.d. |
22 | 18.28 | Kaempferol 7-O-Glc | 0.029 ± 0.019 | n.d. | 1.359 ± 0.002 | 0.170 ± 0.012 |
15 | 18.39 | Quercetin-3-O-Glc | 2.303 ± 0.014 | n.d. | 68.499 ± 0.022 | 0.285 ± 0.017 |
16 | 19.17 | Quercetin-3-O-Gal | 1.090 ± 0.008 | n.d. | 27.112 ± 0.023 | 0.382 ± 0.012 |
19 | 21.01 | Quercetin 3-O-malonyl-Glc | 2.085 ± 0.006 | 0.121 ± 0.014 | 0.152 ± 0.012 | 41.852 ± 0.015 |
11 | 22.53 | Rosmarinic acid | 0.254 ± 0.012 | n.d. | 15.336 ± 0.012 | n.d. |
12 | 33.19 | Quercetin | 0.692 ± 0.021 | n.d. | n.d. | 7.92 ± 0.052 |
Total | 15.944 | 2.006 | 139.913 | 51.706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staszowska-Karkut, M.; Chilczuk, B.; Materska, M.; Kontek, R.; Marciniak, B. Phenolic Compounds in Fractionated Blackcurrant Leaf Extracts in Relation to the Biological Activity of the Extracts. Molecules 2023, 28, 7459. https://doi.org/10.3390/molecules28227459
Staszowska-Karkut M, Chilczuk B, Materska M, Kontek R, Marciniak B. Phenolic Compounds in Fractionated Blackcurrant Leaf Extracts in Relation to the Biological Activity of the Extracts. Molecules. 2023; 28(22):7459. https://doi.org/10.3390/molecules28227459
Chicago/Turabian StyleStaszowska-Karkut, Monika, Barbara Chilczuk, Małgorzata Materska, Renata Kontek, and Beata Marciniak. 2023. "Phenolic Compounds in Fractionated Blackcurrant Leaf Extracts in Relation to the Biological Activity of the Extracts" Molecules 28, no. 22: 7459. https://doi.org/10.3390/molecules28227459
APA StyleStaszowska-Karkut, M., Chilczuk, B., Materska, M., Kontek, R., & Marciniak, B. (2023). Phenolic Compounds in Fractionated Blackcurrant Leaf Extracts in Relation to the Biological Activity of the Extracts. Molecules, 28(22), 7459. https://doi.org/10.3390/molecules28227459