Effects of Radiation-Induced Skin Injury on Hyaluronan Degradation and Its Underlying Mechanisms
Abstract
:1. Introduction
2. Results
2.1. Modeling of γ-Ray Irradiation Injury in HaCaT Cells
2.1.1. γ-Ray Irradiation Enhanced HaCaT Cell DNA Damage
2.1.2. γ-Ray Irradiation Reduced HaCaT Cell Viability
2.1.3. γ-Ray Irradiation Reduced HaCaT Cell Migratory Ability and Level of Fibrosis
2.2. Impact of γ-Ray Irradiation on HA Degradation in HaCaT Cells
2.3. Mechanisms of γ-Ray Irradiation on HA Degradation in HaCaT Cells
2.3.1. Effect of γ-Ray Irradiation on Gene Expression of HA-Related Metabolic Enzymes in HaCaT Cells
2.3.2. Effect of γ-Ray Irradiation on Protein Expression of HA-Related Metabolic Enzymes in HaCaT Cells
2.3.3. Effect of γ-Ray Irradiation on ROS Production in HaCaT Cells
2.3.4. Potential Mechanism Underlying the Effect of γ-Ray Irradiation on the MEK5/ERK5 Pathway and Inflammatory Factors Involved in HA Degradation in HaCaT Cells
2.4. Modeling of γ-Ray RISI in C57BL/6J Mice
2.4.1. γ-Ray Irradiation Induced Changes in Mice’s Skin Histopathology
2.4.2. γ-Ray Irradiation Altered the Physiological Indices of Mice
2.5. Impact of γ-Ray Irradiation on HA Degradation in C57BL/6J Mice
2.6. Mechanisms Underlying the Effect of γ-Ray Irradiation on HA Degradation in C57BL/6J Mice
2.6.1. Effect of γ-Ray Irradiation on HA-Related Metabolic Enzyme Gene Expression in C57BL/6J Mice
2.6.2. Effect of γ-Ray Irradiation on HA-Related Metabolic Enzyme Protein Expression in C57BL/6J Mice
2.6.3. γ-Ray Irradiation Induced Oxidative Stress in C57BL/6J Mice
2.6.4. Potential Mechanism Underlying the Effect of γ-Ray Irradiation on the MEK5/ERK5 Pathway and Inflammatory Factors Involved in HA Degradation in C57BL/6J Mice
3. Discussion
4. Materials and Methods
4.1. Animals and Cells
4.2. γ-Ray Irradiation
4.3. ELISA of HA
4.4. Reverse Transcription Quantitative Real-Time PCR Assay
4.5. Western Blotting
4.6. Wound-Healing Assay
4.7. Cell Viability Assay
4.8. Analysis of γ-H2AX
4.9. Analysis of ROS
4.10. Hematoxylin and Eosin Staining Assay
4.11. Masson Staining Assay
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milowska, K.; Grabowska, K.; Gabryelak, T. Applications of electromagnetic radiation in medicine. Postepy. Hig. Med. Dosw. 2014, 68, 473–482. [Google Scholar] [CrossRef]
- Jang, W.H.; Shim, S.; Wang, T.; Yoon, Y.; Jang, W.S.; Myung, J.K.; Park, S.; Kim, K.H. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy. Sci. Rep. 2016, 6, 19216. [Google Scholar] [CrossRef] [PubMed]
- Gravitz, L. Skin. Nature 2018, 563, S83. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.L.; Calpena, A.C.; Souto, E.B.; Clares, B. Therapy for prevention and treatment of skin ionizing radiation damage: A review. Int. J. Radiat. Biol. 2019, 95, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Iddins, C.J.; DiCarlo, A.L.; Ervin, M.D.; Herrera-Reyes, E.; Goans, R.E. Cutaneous and local radiation injuries. J. Radiol. Prot. 2022, 42, 011001. [Google Scholar] [CrossRef]
- Kirkwood, M.L.; Arbique, G.M.; Guild, J.B.; Timaran, C.; Valentine, R.J.; Anderson, J.A. Radiation-induced skin injury after complex endovascular procedures. J. Vasc. Surg. 2014, 60, 742–748. [Google Scholar] [CrossRef]
- Hymes, S.R.; Strom, E.A.; Fife, C. Radiation dermatitis: Clinical presentation, pathophysiology, and treatment 2006. J. Am. Acad. Dermatol. 2006, 54, 28–46. [Google Scholar] [CrossRef]
- Kim, J.H.; Kolozsvary, A.; Jenrow, K.A.; Brown, S.L. Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat. Biol. 2013, 89, 311–318. [Google Scholar] [CrossRef]
- Burnett, L.R.; Hughes, R.T.; Rejeski, A.F.; Moffatt, L.T.; Shupp, J.W.; Christy, R.J.; Winkfield, K.M. Review of the terminology describing ionizing radiation-induced skin injury: A case for standardization. Technol. Cancer. Res. Treat. 2021, 20, 1533–1538. [Google Scholar] [CrossRef]
- Zheng, K.; Zhu, X.; Guo, S.; Zhang, X. Gamma-ray-responsive drug delivery systems for radiation protection. Chem. Eng. J. 2023, 463, 142522. [Google Scholar] [CrossRef]
- Hopewell, J.W. The skin: Its structure and response to ionizing radiation. Int. J. Radiat. Biol. 1990, 57, 751–773. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Lee, D.W.; Choi, W.H.; Jeon, Y.R.; Kim, S.H.; Cho, H.; Lee, E.J.; Hong, Z.Y.; Lee, W.J.; Cho, J. Development of a porcine skin injury model and characterization of the dose-dependent response to high-dose radiation. J. Radiat. Res. 2013, 54, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Y.; Song, X.; Zhu, J.; Zhu, Q. The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats. Cell. Transplant. 2019, 28, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.G.; Song, T.L.; Zhen, L.; Zhang, Y.; Zhang, K.H.; Yang, Z.H.; Yu, G.Y. 125I seed implant brachytherapy-assisted surgery with preservation of the facial nerve for treatment of malignant parotid gland tumors. Int. J. Oral. Maxillofac. Surg. 2008, 37, 515–520. [Google Scholar] [CrossRef]
- Wilson, V.G. Growth and differentiation of HaCaT keratinocytes. Methods. Mol. Biol. 2014, 1195, 33–41. [Google Scholar]
- Lin, K.T.; Chang, T.C.; Lai, F.Y.; Lin, C.S.; Chao, H.L.; Lee, S.Y. Rhodiola crenulata attenuates γ-ray induced cellular injury via modulation of oxidative stress in human skin cells. Am. J. Chin. Med. 2018, 46, 175–190. [Google Scholar] [CrossRef]
- Lee, J.; Jang, H.; Park, S.; Myung, H.; Kim, K.; Kim, H.; Jang, W.S.; Lee, S.J.; Myung, J.K.; Shim, S. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. J. Transl. Med. 2019, 17, 295. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, J.; Ge, Y.; Cao, H.; Ge, X.; Luo, J.; Xue, J.; Yang, H.; Zhang, S.; Cao, J. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression. J. Radiat. Res. 2014, 55, 1056–1065. [Google Scholar] [CrossRef]
- Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. Adv. Biol. Earth. Sci. 2023, 8, 140–146. [Google Scholar]
- Jalilova, A.R.; Magarramova, K.K.; Aliyev, I.I.; Suleymanova, L.M. Resistance of the functional activity of dunaliella salina ippas D-294 cells modified with 2,6 DI-test-butyl phenol to the action of acute doses of UV-B radiation under optimal and high salinity conditions. Adv. Biol. Earth. Sci. 2023, 8, 52–57. [Google Scholar]
- Ramazanli, V.N. Effect of pH and temperature on the synthesis of silver nano particles extracted from olive leaf. Adv. Biol. Earth. Sci. 2021, 6, 169–173. [Google Scholar]
- Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of hyaluronic acid and itscombination with other bioactive ingredients in cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic acid-based wound dressings: A review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef] [PubMed]
- Laurent, T.C. Biochemistry of hyaluronan. Acta. Otolaryngol. Suppl. 1987, 442, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Buhren, B.A.; Schrumpf, H.; Gorges, K.; Reiners, O.; Bölke, E.; Fischer, J.W.; Homey, B.; Gerber, P.A. Dose- and time-dependent effects of hyaluronidase on structural cells and the extracellular matrix of the skin. Eur. J. Med. Res. 2020, 25, 60. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Chanmee, T.; Itano, N. Hyaluronan: Metabolism and function. Biomolecules 2020, 10, 1525. [Google Scholar] [CrossRef]
- Ding, Y.W.; Wang, Z.Y.; Ren, Z.W.; Zhang, X.W.; Wei, D.X. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater. Sci. 2022, 10, 3393–3409. [Google Scholar] [CrossRef]
- Silva, C.R.; Babo, P.S.; Gulino, M.; Costa, L.; Oliveira, J.M.; Silva-Correia, J.; Domingues, R.M.A.; Reis, R.L.; Gomes, M.E. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater. 2018, 77, 155–171. [Google Scholar] [CrossRef]
- Harada, H.; Takahashi, M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem. 2007, 282, 5597–5607. [Google Scholar] [CrossRef]
- Skandalis, S.S.; Karalis, T.; Heldin, P. Intracellular hyaluronan: Importance for cellular functions. Semin. Cancer. Biol. 2020, 62, 20–30. [Google Scholar] [CrossRef]
- Avenoso, A.; Bruschetta, G.; D’Ascola, A.; Scuruchi, M.; Mandraffino, G.; Gullace, R.; Saitta, A.; Campo, S.; Campo, G.M. Hyaluronan fragments produced during tissue injury: A signal amplifying the inflammatory response. Arch. Biochem. Biophys. 2019, 663, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Ryoo, S.B.; Heo, K.; Kim, J.G.; Son, T.G.; Moon, C.; Yang, K. Attenuating effects of granulocyte-colony stimulating factor (G-CSF) in radiation induced intestinal injury in mice. Food. Chem. Toxicol. 2012, 50, 3174–3180. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Q.; Fang, F.; Lu, Z.Y.; Kuang, F.W.; Xu, F. N-acetylcysteine protects alveolar epithelial cells from hydrogen peroxide-induced apoptosis through scavenging reactive oxygen species and suppressing c-Jun N-terminal kinase. Exp. Lung. Res. 2010, 36, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Tusa, I.; Menconi, A.; Tubita, A.; Rovida, E. Pathophysiological impact of the MEK5/ERK5 pathway in oxidative stress. Cells 2023, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsen, K.; Xu, F.; Farrar, K.; Tran, A.; Khakpour, S.; Sundar, S.; Prakash, A.; Wang, J.; Gray, N.S.; Hellman, J. Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci. Signal. 2015, 8, ra86. [Google Scholar] [CrossRef] [PubMed]
- Finegan, K.G.; Perez-Madrigal, D.; Hitchin, J.R.; Davies, C.C.; Jordan, A.M.; Tournier, C. ERK5 is a critical mediator of inflammation-driven cancer. Cancer. Res. 2015, 75, 742–753. [Google Scholar] [CrossRef]
- Bertheim, U.; Hellström, S. The distribution of hyaluronan in human skin and mature, hypertrophic and keloid scars. Br. J. Plast. Surg. 1994, 47, 483–489. [Google Scholar] [CrossRef]
- DiCarlo, A.L.; Tamarat, R.; Rios, C.I.; Benderitter, M.; Czarniecki, C.W.; Allio, T.C.; Macchiarini, F.; Maidment, B.W.; Jourdain, J.R. Cellular therapies for treatment of radiation injury: Report from a NIH/NIAID and IRSN workshop. Radiat. Res. 2017, 188, e54–e75. [Google Scholar] [CrossRef]
- Wang, H.; Sim, M.K.; Loke, W.K.; Chinnathambi, A.; Alharbi, S.A.; Tang, F.R.; Sethi, G. Potential protective effects of ursolic acid against gamma irradiation-induced damage are mediated through the modulation of diverse inflammatory mediators. Front. Pharmacol. 2017, 8, 352. [Google Scholar] [CrossRef]
- Juhlin, L. Hyaluronan in skin. J. Intern. Med. 1997, 242, 61–66. [Google Scholar] [CrossRef]
- Saito, T.; Kawana, H.; Azuma, K.; Toyoda, A.; Fujita, H.; Kitagawa, M.; Harigaya, K. Fragmented hyaluronan is an autocrine chemokinetic motility factor supported by the HAS2-HYAL2/CD44 system on the plasma membrane. Int. J. Oncol. 2011, 39, 1311–1320. [Google Scholar] [PubMed]
- Jumeau, R.; Renard-Oldrini, S.; Courrech, F.; Buchheit, I.; Oldrini, G.; Vogin, G.; Peiffert, D. High dose rate brachytherapy with customized applicators for malignant facial skin lesions. Cancer. Radiother. 2016, 20, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Tao, R.; Cao, X.; Bao, Q.; Wang, D.; Zhao, Y. Innate lymphoid cells regulate radiation-induced skin damage via CCR10 signaling. Int. J. Radiat. Biol. 2020, 96, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Fu, X.B.; Ge, S.L.; Zhou, G.; Jiang, D.Y.; Sun, T.Z.; Sheng, Z.Y. Gene expression of extracellular-signal regulated protein kinase 5 and their MAPKK in fetal skin hypertrophic scars. Zhonghua Zheng Xing Wai Ke Za Zhi 2004, 20, 222–224. [Google Scholar]
- Parry, J.P. Life exposed: Biological citizens after chernobyl. J. R. Anthropol. Inst. 2004, 10, 213. [Google Scholar]
- Žádníková, P.; Šínová, R.; Pavlík, V.; Šimek, M.; Šafránková, B.; Hermannová, M.; Nešporová, K.; Velebný, V. The Degradation of Hyaluronan in the Skin. Biomolecules 2022, 12, 251. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermato-endocrinology 2012, 4, 308–319. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef]
- Toole, P.B.; Wight, T.N.; Tammi, M.I. Hyaluronan-cell interactions in cancer and vascular disease. J. Biol. Chem. 2002, 277, 4593–4596. [Google Scholar] [CrossRef]
- Tammi, I.M.; Day, A.J.; Turley, E.A. Hyaluronan and homeostasis: A balancing act. J. Biol. Chem. 2002, 277, 4581–4584. [Google Scholar] [CrossRef]
- Muto, J.; Sayama, K.; Gallo, R.L.; Kimata, K. Emerging evidence for the essential role of hyaluronan in cutaneous biology. J. Dermatol. Sci. 2019, 94, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Berdiaki, A.; Neagu, M.; Spyridaki, I.; Kuskov, A.; Perez, S.; Nikitovic, D. Hyaluronan and reactive oxygen species signaling-novel Cues from the Matrix? Antioxidants 2023, 12, 824. [Google Scholar] [CrossRef] [PubMed]
- Avenoso, A.; Bruschetta, G.; Ascola, A.; Scuruchi, M.; Mandraffino, G.; Saitta, A.; Campo, S.; Campo, G.M. Hyaluronan fragmentation during inflammatory pathologies: A signal that empowers tissue damage. Mini. Rev. Med. Chem. 2020, 20, 54–65. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Ren, B.; Tian, Y.; Peng, G.; Zhai, H.; Meng, Z.; Gu, R.; Gan, H.; Wu, Z.; Sun, Y.; et al. Effects of Radiation-Induced Skin Injury on Hyaluronan Degradation and Its Underlying Mechanisms. Molecules 2023, 28, 7449. https://doi.org/10.3390/molecules28217449
Dong J, Ren B, Tian Y, Peng G, Zhai H, Meng Z, Gu R, Gan H, Wu Z, Sun Y, et al. Effects of Radiation-Induced Skin Injury on Hyaluronan Degradation and Its Underlying Mechanisms. Molecules. 2023; 28(21):7449. https://doi.org/10.3390/molecules28217449
Chicago/Turabian StyleDong, Jiahui, Boyuan Ren, Yunfei Tian, Guanqun Peng, Huiting Zhai, Zhiyun Meng, Ruolan Gu, Hui Gan, Zhuona Wu, Yunbo Sun, and et al. 2023. "Effects of Radiation-Induced Skin Injury on Hyaluronan Degradation and Its Underlying Mechanisms" Molecules 28, no. 21: 7449. https://doi.org/10.3390/molecules28217449
APA StyleDong, J., Ren, B., Tian, Y., Peng, G., Zhai, H., Meng, Z., Gu, R., Gan, H., Wu, Z., Sun, Y., Dou, G., & Liu, S. (2023). Effects of Radiation-Induced Skin Injury on Hyaluronan Degradation and Its Underlying Mechanisms. Molecules, 28(21), 7449. https://doi.org/10.3390/molecules28217449