Solvent and Substituent Size Influence on the Cyclochiral Rigidity of Aminomethylene Derivatives of Resorcin[4]arene
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Timmerman, P.; Verboom, W.; Reinhoudt, D.N. Resorcinarenes. Tetrahedron 1996, 52, 2663–2704. [Google Scholar] [CrossRef]
- Horin, I.; Slovak, S.; Cohen, Y.J. Diffusion NMR Reveals the Structures of the Molecular Aggregates of Resorcin[4]arenes and Pyrogallol [4] arenes in Aromatic and Chlorinated Solvents. Phys. Chem. Lett. 2022, 13, 10666–10670. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Sakurai, K. Structural Analysis of an Octameric Resorcinarene Self-Assembly in Toluene and its Morphological Transition by Temperature. J. Phys. Chem. Lett. 2021, 12, 6464–6468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Catti, L.; Tiefenbacher, K. Catalysis inside the Hexameric Resorcinarene Capsule. Acc. Chem. Res. 2018, 51, 2107–2114. [Google Scholar] [CrossRef]
- Mannich, C.; Krösche, W. Ueber ein kondensationsprodukt aus formaldehyd, ammoniak und antipyrin. Arch. Pharm. 1912, 250, 647–667. [Google Scholar] [CrossRef]
- Iwanek, W.; Mattay, J. Chiral calixarenes derived from resorcinol. Liebigs Ann. 1995, 8, 1463–1466. [Google Scholar] [CrossRef]
- Matsushita, Y.; Matsui, T. Synthesis of aminomethylated calix [4] resorcinarenes. Tetrahedron Lett. 1993, 34, 7433–7436. [Google Scholar] [CrossRef]
- Iwanek, W.; Wolff, C.; Mattay, J. Chiral calixarenes derived from resorcinol II. Functionalization by mannich reaction with α-aminoalcohols. Tetrahedron Lett. 1995, 36, 8969–8972. [Google Scholar] [CrossRef]
- Wzorek, A.; Mattay, J.; Iwanek, W. Synthesis and structural investigation of the cyclochiral boron resorcinarenes obtained from l-amino acids and phenylboronic acid. Tetrahedron Asymmet. 2012, 23, 271–277. [Google Scholar] [CrossRef]
- Hoskins, C.; Papachristou, A.; Ho, T.M.H.; Hine, J.; Curtis, A.D.M. Investigation into Drug Solubilisation Potential of Sulfonated Calix[4] resorcinarenes. J. Nanomed. Nanotechnol. 2016, 7, 3–7. [Google Scholar]
- Zappacosta, R.; Aschi, M.; Ammazzalorso, A.; Di Profio, P.; Fontana, A.; Siani, G. Embedding calix [4] resorcinarenes in liposomes: Experimental and computational investigation of the effect of resorcinarene inclusion on liposome properties and stability. BBA Biomembr. 2019, 1861, 1252–1259. [Google Scholar] [CrossRef]
- Rezac, J.; Hobza, P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012, 8, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ou, Y.; Zheng, P.; Huang, Y.; Ge, F.; Dral, P.O. Benchmark of general-purpose machine learning-based quantum mechanical method AIQM1 on reaction barrier heights. J. Chem. Phys. 2023, 21, 074103. [Google Scholar] [CrossRef]
- Prasad, V.K.; Otero-de-la-Roza, A.; Di Labio, G.A. Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree−Fock Methods Corrected with Atom-Centered Potentials. J. Chem. Theory Comput. 2022, 18, 2208–2232. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A revised low-cost variant of the B97-D density functional method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.M. r2SCAN-3c: A “Swiss army knife” composite electronic-structure method. J. Chem. Phys. 2021, 154, 064103. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Brandenburg, J.G.; Bannwarth, C.; Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 2015, 143, 054107. [Google Scholar] [CrossRef]
- Santra, G.; Martin, J.M.L. What Types of Chemical Problems Benefit from Density-Corrected DFT? A Probe Using an Extensive and Chemically Diverse Test Suite. J. Chem. Theory Comput. 2021, 17, 1368–1379. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Mardirossian, N.; Head-Gordon, M. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 2016, 144, 214110. [Google Scholar] [CrossRef] [PubMed]
- Santra, G.; Sylvetsky, N.; Martin, J.M.L. Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: RevDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. J. Phys. Chem. A 2019, 123, 5129–5143. [Google Scholar] [CrossRef] [PubMed]
- Iwanek, W. Chiral calixarene derived from resorcinol. Part 4: Diastereoselective closure of the oxazine ring. Tetrahedron Asymmet. 1998, 9, 4289–4290. [Google Scholar] [CrossRef]
- Iwanek, W.; Fröhlich, R.; Schwab, P.; Schurig, V. The synthesis and crystallographic structures of novel bora-oxazino-oxazolidine derivatives of resorcarene. Chem. Commun. 2002, 8, 2516–2517. [Google Scholar] [CrossRef]
- Henkelman, G.; Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parameterized for All spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. J. Chem. Theory Comput. 2021, 17, 4250–4261. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Nesse, F. Software update: The ORCA program system—Version 5.0 WIREs. Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Wersja C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Semiempirical Extended Tight-Binding Program Package xtb Version 6.50. Available online: https://github.com/grimme-lab/xtb (accessed on 15 May 2022).
- James, J.; Stewart, P. MOPAC2016 (Version: 21.237W); Stewart Computational Chemistry: Kolorado Springs, CO, USA, 2016; Available online: http://OpenMOPAC.net (accessed on 1 March 2023).
- Mlatom@XACS Cloud Computing Service. Available online: https://xacs.xmu.edu.cn/ (accessed on 5 June 2023).
AMD-R[4]A/ΔE | HF-D3-ACP | B97-3c | r2scan-3c | PBEh-3c | B38LYP-D4 | M062X | wB97M-V | DH-revDSD-PBEP86-D4 | |
---|---|---|---|---|---|---|---|---|---|
1 | ΔEAF | 32.11 | 38.53 | 35.60 | 39.65 | 33.53 | 36.28 | 31.52 | 33.59 |
ΔEAB | 14.83 | 16.80 | 15.75 | 16.69 | 14.68 | 15.32 | 13.70 | 15.06 | |
2 | ΔEAF | 34.27 | 42.74 | 39.02 | 41.63 | 37.50 | 38.19 | 34.45 | 37.63 |
ΔEAB | 13.39 | 17.49 | 15.73 | 15.59 | 15.31 | 15.13 | 13.69 | 15.37 | |
3 | ΔEAF | 35.68 | 43.04 | 39.58 | 41.34 | 38.27 | 39.10 | 34.89 | 38.87 |
ΔEAB | 18.36 | 21.19 | 19.84 | 19.58 | 19.28 | 19.14 | 17.40 | 19.72 | |
4 | ΔEAF | 38.82 | 46.77 | 43.42 | 45.92 | 42.08 | 45.04 | 39.28 | 41.26 |
ΔEAB | 14.63 | 17.78 | 16.35 | 17.20 | 16.15 | 17.37 | 14.45 | 16.10 | |
5 | ΔEAF | 32.81 | 38.55 | 34.85 | 39.86 | 34.14 | 35.88 | 31.34 | 33.35 |
ΔEAB | 15.00 | 16.80 | 14.96 | 16.46 | 15.32 | 15.09 | 13.69 | 14.98 | |
6 | ΔEAF | 33.70 | 40.42 | 37.61 | 41.53 | 34.75 | 36.94 | 32.20 | 34.33 |
ΔEAB | 22.96 | 24.21 | 23.00 | 25.05 | 22.23 | 22.26 | 20.67 | 22.13 | |
7 | ΔEAF | 15.66 | 18.64 | 16.96 | 19.32 | 16.53 | 17.43 | 15.01 | 15.94 |
ΔEAB | 6.25 | 4.26 | 4.29 | 4.54 | 5.41 | 4.05 | 4.79 | 5.11 | |
8 | ΔEAF | 23.44 | 28.48 | 26.12 | 29.37 | 24.34 | 25.80 | 22.43 | 23.93 |
ΔEAB | 13.31 | 13.21 | 12.60 | 13.60 | 12.52 | 11.85 | 11.50 | 12.42 |
AMD-R[4]A/ΔE | PM6-D3H4 | GFN2-xTB | AIQM1 | |
---|---|---|---|---|
1 | ΔEAF | 31.73 | 28.52 | 33.48 |
ΔEAB | 12.84 | 10.01 | 11.80 | |
2 | ΔEAF | 29.88 | 28.08 | 38.28 |
ΔEAB | 13.22 | 9.39 | 12.60 | |
3 | ΔEAF | 33.02 | 32.03 | 37.03 |
ΔEAB | 16.39 | 15.52 | 16.79 | |
4 | ΔEAF | 46.18 | 34.36 | 40.78 |
ΔEAB | 18.56 | 9.21 | 11.28 | |
5 | ΔEAF | 32.21 | 29.15 | 35.16 |
ΔEAB | 11.25 | 10.53 | 13.83 | |
6 | ΔEAF | 38.69 | 31.18 | 36.52 |
ΔEAB | 14.49 | 13.30 | 18.80 | |
7 | ΔEAF | 18,83 | 14.32 | 18.87 |
ΔEAB | 2.23 | 1.15 | 2.02 | |
8 | ΔEAF | 27.36 | 21.73 | 27.03 |
ΔEAB | 4.56 | 4.90 | 9.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwanek, W. Solvent and Substituent Size Influence on the Cyclochiral Rigidity of Aminomethylene Derivatives of Resorcin[4]arene. Molecules 2023, 28, 7426. https://doi.org/10.3390/molecules28217426
Iwanek W. Solvent and Substituent Size Influence on the Cyclochiral Rigidity of Aminomethylene Derivatives of Resorcin[4]arene. Molecules. 2023; 28(21):7426. https://doi.org/10.3390/molecules28217426
Chicago/Turabian StyleIwanek, Waldemar. 2023. "Solvent and Substituent Size Influence on the Cyclochiral Rigidity of Aminomethylene Derivatives of Resorcin[4]arene" Molecules 28, no. 21: 7426. https://doi.org/10.3390/molecules28217426
APA StyleIwanek, W. (2023). Solvent and Substituent Size Influence on the Cyclochiral Rigidity of Aminomethylene Derivatives of Resorcin[4]arene. Molecules, 28(21), 7426. https://doi.org/10.3390/molecules28217426