Addition of Organic Acids to Base Wines: Impacts on the Technological Characteristics and the Foam Quality of Sparkling Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Parameters and Buffering Capacity
2.2. Foam Quality
3. Materials and Methods
3.1. Experimental Wines
3.1.1. Base Wines and Acidification Treatments
3.1.2. Sparkling Wine Production
3.2. Wine Analyses
3.2.1. Materials
3.2.2. Main Analytical Parameters
3.2.3. Total Polysaccharides
3.2.4. Amino Acid Analysis
3.2.5. Buffering Capacity
3.2.6. Foam Quality
3.2.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Appendix A
Sample Code | Residual Sugars (g/L) | Ethanol (% v/v) | Volatile Acidity (g/L of Acetic Acid) | Total SO2 (mg/L) |
---|---|---|---|---|
FSC | 1.23 ± 0.04 | 12.14 ± 0.05 | 0.17 ± 0.00 | 33.00 ± 0.00 |
FST | 1.28 ± 0.38 | 11.66 ± 0.54 | 0.19 ± 0.01 | 34.50 ± 0.58 |
FSM | 2.24 ± 0.89 | 11.03 ± 0.14 | 0.18 ± 0.00 | 34.75 ± 2.06 |
FSCi | 1.67 ± 0.30 | 11.80 ± 0.16 | 0.32 ± 0.06 | 33.00 ± 0.82 |
FSL | 1.87 ± 0.05 | 11.65 ± 0.08 | 0.34 ± 0.01 | 34.00 ± 0.00 |
BSC | 3.56 ± 0.17 | 12.44 ± 0.23 | 0.33 ± 0.04 | 85.75 ± 0.96 |
BST | 5.17 ± 0.10 | 12.49 ± 0.05 | 0.38 ± 0.01 | 85.50 ± 0.58 |
BSM | 4.11 ± 0.10 | 12.56 ± 0.19 | 0.38 ± 0.00 | 83.00 ± 1.15 |
BSCi | 3.56 ± 0.34 | 11.31 ± 0.36 | 0.35 ± 0.02 | 86.50 ± 2.38 |
BSL | 3.93 ± 0.66 | 12.58 ± 0.49 | 0.47 ± 0.00 | 75.50 ± 0.58 |
References
- OIV Focus—The Global Sparkling Wine Market. Available online: https://www.oiv.int/public/medias/7291/oiv-sparklingfocus-2020.pdf (accessed on 17 May 2022).
- Torchio, F.; Segade, S.R.; Gerbi, V.; Cagnasso, E.; Rolle, L. Changes in chromatic characteristics and phenolic composition during winemaking and shelf-life of two types of red sweet sparkling wines. Food Res. Int. 2011, 44, 729–738. [Google Scholar] [CrossRef]
- González-Lázaro, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestaran, B.; Bueno-Herrera, M.; López de la Cuesta, P.; Pérez-Magariño, S. Evaluation of grape ripeness, carbonic maceration and pectolytic enzymes to improve the chemical and sensory quality of red sparkling wines. J. Sci. Food Agric. 2020, 100, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Moio, L.; Addeo, F.; Iannini, B.; Pilone, N. The Falanghina vine from Benevento area: Evolution of chemical parameters during grape maturation and wine composition. Vignevini 1991, 18, 39–44. [Google Scholar]
- Kemp, B.; Wiles, B.; Inglis, D. Gushing of Sparkling Wine at Disgorging, Reasons and Remedies; Practical Winery and Vineyard: San Rafael, CA, USA, 2015; pp. 58–63. [Google Scholar]
- Pueyo, E.; Martín-Alvarez, P.J.; Polo, M.C. Relationship between foam characteristics and chemical composition in wines and cavas (sparkling wines). Am. J. Enol. Vitic. 1995, 46, 518–524. [Google Scholar] [CrossRef]
- Mercadé, P.; Giménez, P.; Vilomara, G.; Conde, M.; Cantos, A.; Rozès, N.; Ferrer, S.; Canals, J.M.; Zamora, F. New insights about the influence of yeasts autolysis on sparkling wines composition and quality. In Grapes and Wine; Morata, A., Loira, I., González, C., Eds.; IntechOpen: London, UK, 2021. [Google Scholar]
- Obreque-Slier, E.; Espínola-Espínola, V.; López-Solís, R. Wine pH prevails over buffering capacity of human saliva. J. Agric. Food Chem. 2016, 64, 8154–8159. [Google Scholar] [CrossRef]
- Torija, M.J.; Beltran, G.; Novo, M.; Poblet, M.; Rozès, N.; Mas, A.; Guillamón, J.M. Effect of organic acids and nitrogen source on alcoholic fermentation: Study of their buffering capacity. J. Agric. Food Chem. 2003, 51, 916–922. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Pretorius, I.S. Biology of Microorganisms on Grapes, in Must and in Wine; Springer: Berlin/Heidelberg, Germany, 2009; pp. 209–231. [Google Scholar]
- Petropoulos, S.; Metafa, M.; Kotseridis, Y.; Paraskevopoulos, I.; Kallithraka, S. Amino acid content of Agiorgitiko (Vitis vinifera L. cv.) grape cultivar grown in representative regions of Nemea. Eur. Food Res. Technol. 2018, 244, 2041–2050. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Bouloumpasi, E.; Tsarchopoulos, C.; Biliaderis, C.G. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chem. 2003, 80, 261–273. [Google Scholar] [CrossRef]
- Ünal, M.Ü.; Şener, A.; Şen, K.; Yilmaztekin, M. Seasonal variation in amino acid and phenolic compound profiles of three Turkish white wine grapes. Turk. J. Agric. For. 2015, 39, 984–991. [Google Scholar] [CrossRef]
- Bisson, L.F. Influence of nitrogen on yeast and fermentation of grapes. In Proceedings of the International Symposium on Nitrogen in Grapes and Wine, Seattle, WA, USA, 18–19 June 1991; pp. 78–89. [Google Scholar]
- Feuillat, M. Autolyse des levures, 450–454. In Oenologie: Fondements Scientifiques et Technologiques; Tec & Doc Lavoisier: Paris, France, 1998; pp. 450–454. [Google Scholar]
- Fornairon-Bonnefond, C.; Camarasa, C.; Moutounet, M.; Salmon, J.M. New trends on yeast autolysis and wine ageing on lees: A bibliographic review. OENO One 2002, 36, 49–69. [Google Scholar] [CrossRef]
- Andrés-Lacueva, C.; López-Tamames, E.; Lamuela-Raventós, R.M.; Buxaderas, S.; de la Torre-Boronat, M.D.C. Characteristics of sparkling base wines affecting foam behavior. J. Agric. Food Chem. 1996, 44, 989–995. [Google Scholar] [CrossRef]
- López-Barajas, M.; López-Tamames, E.; Buxaderas, S.; De la Torre-Boronat, M.C. Effect of vinification and variety on foam capacity of wine. Am. J. Enol. Vitic. 1998, 49, 397–402. [Google Scholar] [CrossRef]
- Girbau-Sola, T.; Lopez-Tamames, E.; Bujan, J.; Buxaderas, S. Foam aptitude of Trepat and Monastrell red varieties in Cava elaboration. 1. Base wine characteristics. J. Agric. Food Chem. 2002, 50, 5596–5599. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Buxaderas, S.; de la Torre-Boronat, M.D.C. Influence of variety and aging on foaming properties of cava (sparkling wine). 2. J. Agric. Food Chem. 1997, 45, 2520–2525. [Google Scholar] [CrossRef]
- Troupe, R.A.; Aspy, W.L.; Schrodt, P.R. Viscosity and density of aqueous lactic acid solutions. Ind. Eng. Chem. 1951, 43, 1143–1146. [Google Scholar] [CrossRef]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement; Elsevier: San Diego, CA, USA, 2002; pp. 59–81. [Google Scholar]
- Maeda, K.; Yokoi, S.; Kamada, K.; Kamimura, M. Foam stability and physicochemical properties of beer. J. Am. Soc. Brew. Chem. 1991, 49, 14–18. [Google Scholar] [CrossRef]
- Buxaderas, S.; López-Tamames, E. Sparkling wines: Features and trends from tradition. Adv. Food Nutr. Res. 2012, 66, 1–45. [Google Scholar]
- Glusker, J.P. Citrate conformation and chelation: Enzymic implications. Acc. Chem. Res. 1980, 13, 345–352. [Google Scholar] [CrossRef]
- Gardner, R.J. Surface viscosity and gushing. J. Inst. Brew. 1972, 78, 391–399. [Google Scholar] [CrossRef]
- Peyron, D.; Boukharta, M.; Cuby, A.; Feuillat, M. Dosage des polysaccharides dans les vins rouges. Interactions avec les composes phénoliques. Sci. Aliment. 1993, 13, 761–767. [Google Scholar]
- Péron, N.; Cagna, A.; Valade, M.; Bliard, C.; Aguié-Béghin, V.; Douillard, R. Layers of macromolecules at the Champagne/air interface and the stability of Champagne bubbles. Langmuir 2001, 17, 791–797. [Google Scholar] [CrossRef]
- Abdallah, Z.; Aguié-Béghin, V.; Abou-Saleh, K.; Douillard, R.; Bliard, C. Isolation and analysis of macromolecular fractions responsible for the surface properties in native Champagne wines. Food Res. Int. 2010, 43, 982–987. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Ayestarán, B.; Guadalupe, Z. Grapes and Wine; InTechOpen: London, UK, 2018; pp. 195–223. [Google Scholar]
- Condé, B.C.; Bouchard, E.; Culbert, J.A.; Wilkinson, K.L.; Fuentes, S.; Howell, K.S. Soluble protein and amino acid content affects the foam quality of sparkling wine. J. Agric. Food Chem. 2017, 65, 9110–9119. [Google Scholar] [CrossRef]
- Portaro, L.; Maioli, F.; Canuti, V.; Picchi, M.; Lencioni, L.; Mannazzu, I.; Domizio, P. Schizosaccharomyces japonicus/Saccharomyces cerevisiae mixed starter cultures: New perspectives for the improvement of Sangiovese aroma, taste, and color stability. LWT 2022, 156, 113009. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; Hermosín-Gutiérrez, I.; García-Romero, E. Simultaneous HPLC analysis of biogenic amines, amino acids, and ammonium ion as aminoenone derivatives in wine and beer samples. J. Agric. Food Chem. 2007, 55, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Heras, M.; Pérez-Magariño, S.; Del-Villar-Garrachón, V.; González-Huerta, C.; Moro Gonzalez, L.C.; Guadarrama Rodriguez, A.; Martin de la Helguera, S. Study of the effect of vintage, maturity degree, and irrigation on the amino acid and biogenic amine content of a white wine from the Verdejo variety. J. Agric. Food Chem. 2014, 94, 2073–2082. [Google Scholar] [CrossRef]
- Gallart, M.; Tomas, X.; Suberbiola, G.; López-Tamames, E.; Buxaderas, S. Relationship between foam parameters obtained by the gas-sparging method and sensory evaluation of sparkling wines. J. Agric. Food Chem. 2004, 84, 127–133. [Google Scholar] [CrossRef]
Sample Code | Residual Sugar (g/L) | pH | Ethanol (% v/v) | Total Acidity (g/L of Tartaric Acid) | Total SO2 (mg/L) |
---|---|---|---|---|---|
FSC | 0.26 ± 0.01 | 3.13 ± 0.01 | 11.03 ± 0.01 | 9.82 ± 0.00 | 49.50 ± 0.71 |
BSC | 0.19 ± 0.01 | 2.98 ± 0.00 | 11.60 ± 0.01 | 6.90 ± 0.00 | 102.00 ± 1.41 |
After Organic Acid Addition | After 1 Year of Aging Sur Lie | |||
---|---|---|---|---|
Sample Code | pH | Titratable Acidity (g/L of tartaric acid) | pH | Titratable Acidity (g/L of tartaric acid) |
FSC | 3.12 ± 0.02 A | 9.79 ± 0.04 C | 3.14 ± 0.02 AB | 9.90 ± 0.32 B |
FST | 2.96 ± 0.03 B | 11.57 ± 0.07 AB | 3.26 ± 0.01 A * | 10.91 ± 0.05 A * |
FSM | 3.03 ± 0.01 AB | 12.06 ± 0.20 A | 3.03 ± 0.05 BC | 10.99 ± 0.05 A * |
FSCi | 3.02 ± 0.03 B | 11.84 ± 0.12 AB | 2.90 ± 0.06 C | 11.08 ± 0.13 A * |
FSL | 3.03 ± 0.02 AB | 11.29 ± 0.04 B | 2.98 ± 0.02 C | 10.78 ± 0.08 A * |
BSC | 2.98 ± 0.03 A | 6.83 ± 0.11 C | 2.99 ± 0.04 A | 6.84 ± 0.08 C |
BST | 2.88 ± 0.02 B | 8.95 ± 0.06 A | 2.82 ± 0.03 B | 8.44 ± 0.00 AB * |
BSM | 2.94 ± 0.01 AB | 9.04 ± 0.04 A | 2.91 ± 0.03 AB | 8.44 ± 0.05 AB * |
BSCi | 2.90 ± 0.03 AB | 9.11 ± 0.06 A | 2.81 ± 0.03 B | 8.96 ± 0.21 A |
BSL | 2.93 ± 0.02 AB | 8.66 ± 0.06 B | 2.66 ± 0.01 C | 8.31 ± 0.19 B |
Sample Code | Tartaric Acid | Malic Acid | Citric Acid | d-Lactic Acid | l-Lactic Acid |
---|---|---|---|---|---|
FSC | 3.08 ± 0.01 b | 5.14 ± 0.02 b | 0.46 ± 0.48 b | 0.09 ± 0.00 b | 0.02 ± 0.00 b |
FST | 5.21 ± 0.02 a | 5.01 ± 0.08 b | 0.47 ± 0.47 b | 0.09 ± 0.00 b | 0.01 ± 0.00 b |
FSM | 2.97 ± 0.03 c | 6.19 ± 0.09 a | 0.48 ± 0.48 b | 0.09 ± 0.00 b | 0.01 ± 0.00 b |
FSCi | 2.99 ± 0.01 c | 5.15 ± 0.02 b | 1.67 ± 0.02 a | 0.09 ± 0.00 b | 0.01 ± 0.00 b |
FSL | 2.99 ± 0.01 c | 5.13 ± 0.08 b | 0.48 ± 0.48 b | 0.14 ± 0.00 a | 1.75 ± 0.03 a |
BSC | 4.73 ± 0.02 b | 1.40 ± 0.03 b | 0.26 ± 0.23 b | 0.11 ± 0.00 a | 0.01 ± 0.00 b |
BST | 6.80 ± 0.02 a | 1.41 ± 0.02 b | 0.23 ± 0.23 b | 0.11 ± 0.00 b | 0.01 ± 0.00 b |
BSM | 4.55 ± 0.02 d | 3.16 ± 0.06 a | 0.24 ± 0.23 b | 0.11 ± 0.00 b | 0.02 ± 0.01 b |
BSCi | 4.60 ± 0.01 c | 1.41 ± 0.02 b | 1.58 ± 0.01 a | 0.11 ± 0.00 b | 0.01 ± 0.00 b |
BSL | 4.58 ± 0.01 cd | 1.41 ± 0.04 b | 0.24 ± 0.24 b | 0.16 ± 0.00 b | 1.82 ± 0.08 a |
Control | Tartaric Acid | Malic Acid | Citric Acid | Lactic Acid | |
---|---|---|---|---|---|
Aspartic acid | 6.56 ± 0.24 a | 6.49 ± 0.31 a | 5.94 ± 0.23 a | 5.83 ± 0.04 a | 6.43 ± 0.15 a |
Glutamic acid | 5.74 ± 0.18 a | 5.83 ± 0.29 a | 5.18 ± 0.27 a | 5.32 ± 0.03 a | 5.47 ± 0.24 a |
Asparagine | 4.72 ± 0.52 b | 6.14 ± 0.31 a | 6.56 ± 0.28 a | 6.61 ± 0.25 a | 5.85 ± 0.07 ab |
Serine | 3.55 ± 0.35 a | 3.58 ± 0.15 a | 3.29 ± 0.22 a | 3.23 ± 0.11 a | 3.42 ± 0.22 a |
Glutamine | 2.83 ± 0.33 a | 3.35 ± 0.08 a | 3.27 ± 0.12 a | 2.82 ± 0.34 a | 3.08 ± 0.26 a |
Histidine | 8.73 ± 0.38 ab | 7.87 ± 0.27 bc | 8.97 ± 0.09 a | 7.15 ± 0.14 c | 7.94 ± 0.21 c |
Glycine | 4.88 ± 0.28 a | 4.04 ± 0.26 a | 4.30 ± 0.33 a | 4.24 ± 0.26 a | 4.89 ± 0.26 a |
Threonine | 9.36 ± 1.11 a | 9.93 ± 0.45 a | 9.12 ± 0.43 a | 9.55 ± 0.13 a | 10.42 ± 0.06 a |
Arginine | 8.35 ± 0.20 a | 8.44 ± 0.31 a | 9.26 ± 0.35 a | 9.18 ± 0.38 a | 9.25 ± 0.29 a |
α-Alanine | 9.58 ± 0.74 a | 9.57 ± 0.04 a | 9.95 ± 0.37 a | 9.78 ± 0.15 a | 10.11 ± 0.07 a |
GABA | 35.69 ± 0.69 ab | 36.41 ± 0.89 a | 32.79 ± 0.34 c | 32.44 ± 0.16 c | 33.73 ± 0.25 bc |
Proline | 45.16 ± 2.95 a | 41.84 ± 0.40 ab | 37.55 ± 0.57 b | 37.15 ± 0.31 b | 41.78 ± 0.30 ab |
Tyrosine | 54.63 ± 1.37 a | 53.92 ± 1.23 a | 44.65 ± 0.39 b | 45.11 ± 0.30 b | 38.36 ± 0.46 c |
Valine | 6.98 ± 0.25 a | 6.24 ± 0.12 b | 6.30 ± 0.14 ab | 6.33 ± 0.14 ab | 6.98 ± 0.18 a |
Methionine | 6.30 ± 0.12 a | 4.80 ± 0.26 b | 3.76 ± 0.23 c | 4.16 ± 0.18 bc | 4.28 ± 0.30 c |
Cysteine | 5.47 ± 0.11 ab | 5.76 ± 0.18 ab | 5.84 ± 0.05 a | 5.82 ± 0.10 ab | 5.37 ± 0.11 b |
Isoleucine | 5.80 ± 0.22 a | 5.23 ± 0.04 ab | 4.06 ± 0.21 c | 3.97 ± 0.10 c | 4.52 ± 0.28 bc |
Tryptophan | 4.77 ± 0.52 a | 4.82 ± 0.33 a | 4.46 ± 0.11 a | 4.52 ± 0.05 a | 4.01 ± 0.10 a |
Leucine | 7.13 ± 0.18 a | 7.11 ± 0.23 a | 6.42 ± 0.27 ab | 6.05 ± 0.23 b | 6.18 ± 0.21 b |
Phenylalanine | 5.46 ± 0.27 a | 4.90 ± 0.18 a | 5.01 ± 0.37 a | 5.21 ± 0.25 a | 4.68 ± 0.33 a |
Lysine | 10.84 ± 0.31 a | 10.04 ± 0.29 ab | 9.15 ± 0.22 b | 9.09 ± 0.08 b | 9.34 ± 0.36 b |
Control | Tartaric Acid | Malic Acid | Citric Acid | Lactic Acid | |
---|---|---|---|---|---|
Aspartic acid | 4.42 ± 0.43 a | 3.74 ± 0.52 a | 3.76 ± 0.06 a | 4.19 ± 0.15 a | 4.12 ± 0.35 a |
Glutamic acid | 3.23 ± 0.52 a | 2.40 ± 0.48 a | 2.45 ± 0.15 a | 2.13 ± 0.15 a | 2.90 ± 0.02 a |
Asparagine | 3.47 ± 0.25 a | 3.42 ± 0.24 a | 3.55 ± 0.05 a | 3.49 ± 0.19 a | 3.61 ± 0.04 a |
Serine | 1.56 ± 0.02 b | 1.95 ± 0.12 a | 2.16 ± 0.06 a | 2.10 ± 0.10 a | 2.16 ± 0.13 a |
Glutamine | 0.66 ± 0.06 a | 0.70 ± 0.08 a | 0.84 ± 0.05 a | 0.82 ± 0.06 a | 0.69 ± 0.05 a |
Histidine | 2.57 ± 0.32 a | 2.58 ± 0.27 a | 2.48 ± 0.17 a | 2.47 ± 0.15 a | 2.68 ± 0.02 a |
Glycine | 3.22 ± 0.32 a | 2.99 ± 0.25 ab | 2.60 ± 0.02 ab | 2.30 ± 0.24 b | 2.63 ± 0.02 ab |
Threonine | 1.21 ± 0.18 a | 1.28 ± 0.02 a | 1.49 ± 0.04 a | 1.22 ± 0.17 a | 1.25 ± 0.16 a |
Arginine | 3.91 ± 0.50 a | 4.00 ± 0.99 a | 3.73 ± 0.07 a | 3.64 ± 0.06 a | 4.14 ± 0.09 a |
α-alanine | 9.50 ± 0.86 a | 9.80 ± 0.53 a | 8.23 ± 0.20 a | 8.56 ± 0.30 a | 9.14 ± 0.02 a |
GABA | 38.83 ± 0.60 a | 36.10 ± 0.52 b | 39.06 ± 0.53 a | 37.80 ± 0.74 ab | 38.08 ± 0.08 ab |
Proline | 28.08 ± 0.88 a | 21.12 ± 0.11 b | 17.24 ± 1.34 b | 18.37 ± 0.53 b | 19.62 ± 3.04 b |
Tyrosine | 8.85 ± 0.69 a | 8.10 ± 0.65 a | 8.14 ± 0.86 a | 7.64 ± 0.29 a | 8.64 ± 0.71 a |
Valine | 25.79 ± 1.64 a | 23.62 ± 0.75 a | 24.34 ± 0.28 a | 25.15 ± 0.46 a | 25.73 ± 0.83 a |
Methionine | 12.40 ± 0.40 a | 11.88 ± 0.25 a | 12.32 ± 1.38 a | 11.19 ± 0.08 a | 10.87 ± 0.30 a |
Cysteine | 0.95 ± 0.05 a | 0.82 ± 0.00 a | 0.82 ± 0.05 a | 0.72 ± 0.16 a | 0.76 ± 0.06 a |
Isoleucine | 1.14 ± 0.20 a | 1.26 ± 0.05 a | 1.09 ± 0.07 a | 0.96 ± 0.15 a | 1.20 ± 0.12 a |
Tryptophan | 3.61 ± 0.26 a | 2.99 ± 0.21 a | 3.05 ± 0.11 a | 3.03 ± 0.15 a | 3.39 ± 0.02 a |
Leucine | 3.21 ± 0.19 a | 2.82 ± 0.11 ab | 2.62 ± 0.06 b | 2.68 ± 0.10 b | 2.96 ± 0.04 ab |
Phenylalanine | 2.21 ± 0.27 a | 2.17 ± 0.38 a | 1.94 ± 0.04 a | 1.85 ± 0.08 a | 2.18 ± 0.06 a |
Lysine | 3.00 ± 0.24 a | 2.63 ± 0.04 a | 2.87 ± 0.33 a | 2.58 ± 0.02 a | 2.94 ± 0.22 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domizio, P.; Luciano, A.; Marino, A.; Picariello, L.; Forino, M.; Errichiello, F.; Blaiotta, G.; Moio, L.; Gambuti, A. Addition of Organic Acids to Base Wines: Impacts on the Technological Characteristics and the Foam Quality of Sparkling Wines. Molecules 2023, 28, 7423. https://doi.org/10.3390/molecules28217423
Domizio P, Luciano A, Marino A, Picariello L, Forino M, Errichiello F, Blaiotta G, Moio L, Gambuti A. Addition of Organic Acids to Base Wines: Impacts on the Technological Characteristics and the Foam Quality of Sparkling Wines. Molecules. 2023; 28(21):7423. https://doi.org/10.3390/molecules28217423
Chicago/Turabian StyleDomizio, Paola, Alessandra Luciano, Antigone Marino, Luigi Picariello, Martino Forino, Francesco Errichiello, Giuseppe Blaiotta, Luigi Moio, and Angelita Gambuti. 2023. "Addition of Organic Acids to Base Wines: Impacts on the Technological Characteristics and the Foam Quality of Sparkling Wines" Molecules 28, no. 21: 7423. https://doi.org/10.3390/molecules28217423
APA StyleDomizio, P., Luciano, A., Marino, A., Picariello, L., Forino, M., Errichiello, F., Blaiotta, G., Moio, L., & Gambuti, A. (2023). Addition of Organic Acids to Base Wines: Impacts on the Technological Characteristics and the Foam Quality of Sparkling Wines. Molecules, 28(21), 7423. https://doi.org/10.3390/molecules28217423