Neodymium-Mediated Coordinative Chain Transfer Polymerization of Isoprene in the Presence of External Donors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belaid, I.; Macqueron, B.; Poradowski, M.-N.; Bouaouli, S.; Thuilliez, J.; Cruz-Boisson, F.D.; Monteil, V.; D’Agosto, F.; Perrin, L.; Boisson, C. Identification of a Transient but Key Motif in the Living Coordinative Chain Transfer Cyclocopolymerization of Ethylene with Butadiene. ACS Catal. 2019, 9, 9298–9309. [Google Scholar] [CrossRef]
- Göttker-Schnetmann, I.; Kenyon, P.; Mecking, S. Coordinative Chain Transfer Polymerization of Butadiene with Functionalized Aluminum Reagents. Angew. Chem. Int. Ed. 2019, 58, 17777–17781. [Google Scholar] [CrossRef]
- Hassanian-Moghaddam, D.; Mortazavi, S.M.M.; Ahmadjo, S.; Doveirjavi, M.; Rahmati, A.; Ahmadi, M. Resolving long-chain branch formation in tandem catalytic coordinative chain transfer polymerization of ethylene via thermal analysis. J. Polym. Res. 2021, 29, 3. [Google Scholar] [CrossRef]
- Valente, A.; Zinck, P.; Mortreux, A.; Bria, M.; Visseaux, M. Half-lanthanocene/dialkylmagnesium-mediated coordinative chain transfer copolymerization of styrene and hexene. J. Polym. Sci. Polym. Chem. 2011, 49, 3778–3782. [Google Scholar] [CrossRef]
- Valente, A.; Zinck, P.; Mortreux, A.; Visseaux, M. Borohydrido rare earth based coordinative chain transfer copolymerization: A convenient tool for tuning the microstructure of isoprene/styrene copolymers. J. Polym. Sci. Polym. Chem. 2011, 49, 1615–1620. [Google Scholar] [CrossRef]
- Valente, A.; Zinck, P.; Vitorin, M.J.; Mortreux, A.; Visseaux, M. Rare rarths/main group metal alkyls catalytic systems for the 1,4-trans stereoselective coordinative chain transfer polymerization of isoprene. J. Polym. Sci. Polym. Chem. 2010, 48, 4640–4647. [Google Scholar] [CrossRef]
- Zinck, P.; Valente, A.; Bonnet, F.; Violante, A.; Mortreux, A.; Visseaux, M.; Ilinca, S.; Duchateau, R.; Roussel, P. Reversible Coordinative Chain Transfer Polymerization of Styrene by Rare Earth Borohydrides, Chlorides/Dialkylmagnesium Systems. J. Polym. Sci. Polym. Chem. 2010, 48, 802–814. [Google Scholar] [CrossRef]
- Cavalcante de Sá, M.C.; Córdova, A.M.T.; Díaz de León Gómez, R.E.; Pinto, J.C. Modeling of Isoprene Solution Coordinative Chain Transfer Polymerization. Macromol. React. Eng. 2021, 15, 2100005. [Google Scholar] [CrossRef]
- Gao, H.; Lu, X.; Chen, S.; Du, B.; Yin, X.; Kang, Y.; Zhang, K.; Liu, C.; Pan, L.; Wang, B.; et al. Preparation of Well-Controlled Isotactic Polypropylene-Based Block Copolymers with Superior Physical Performance via Efficient Coordinative Chain Transfer Polymerization. Macromolecules 2022, 55, 5038–5048. [Google Scholar] [CrossRef]
- Georges, S.; Touré, A.O.; Visseaux, M.; Zinck, P. Coordinative chain transfer copolymerization and terpolymerization of conjugated dienes. Macromolecules 2014, 47, 4538–4547. [Google Scholar] [CrossRef]
- Valente, A.; Stoclet, G.; Bonnet, F.; Mortreux, A.; Visseaux, M.; Zinck, P. Isoprene–styrene chain shuttling copolymerization mediated by a lanthanide half-sandwich complex and a lanthanidocene: Straightforward access to a new type of thermoplastic elastomers. Angew. Chem. Int. Ed. 2014, 53, 4638–4641. [Google Scholar] [CrossRef]
- Georges, S.; Bonnet, F.; Roussel, P.; Visseaux, M.; Zinck, P. β-Diketiminate-supported magnesium alkyl: Synthesis, structure and application as co-catalyst for polymerizations mediated by a lanthanum half-sandwich complex. Appl. Organomet. Chem. 2016, 30, 26–31. [Google Scholar] [CrossRef]
- Valente, A.; Zinck, P.; Mortreux, A.; Visseaux, M. Catalytic Chain Transfer (co-)Polymerization: Unprecedented Polyisoprene CCG and a New Concept to Tune the Composition of a Statistical Copolymer. Macromol. Rapid Commun. 2009, 30, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Phuphuak, Y.; Bonnet, F.; Stoclet, G.; Bria, M.; Zinck, P. Isoprene chain shuttling polymerisation between cis and trans regulating catalysts: Straightforward access to a new material. Chem. Commun. 2017, 53, 5330–5333. [Google Scholar] [CrossRef]
- Jian, Z.; Cui, D.; Hou, Z.; Li, X. Living catalyzed-chain-growth polymerization and block copolymerization of isoprene by rare-earth metal allyl precursors bearing a constrained-geometry-conformation ligand. Chem. Commun. 2010, 46, 3022–3024. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.; Chenal, T.; Bria, M.; Bonnet, F.; Zinck, P.; Ngono-Ravache, Y.; Balanzat, E.; Visseaux, M. Trans-stereospecific polymerization of butadiene and random copolymerization with styrene using borohydrido neodymium/magnesium dialkyl catalysts. Eur. Polym. J. 2013, 49, 4130–4140. [Google Scholar] [CrossRef]
- Loughmari, S.; Hafid, A.; Bouazza, A.; El Bouadili, A.; Zinck, P.; Visseaux, M. Highly stereoselective coordination polymerization of β-myrcene from a lanthanide-based catalyst: Access to bio-sourced elastomers. J. Polym. Sci. Polym. Chem. 2012, 50, 2898–2905. [Google Scholar] [CrossRef]
- Wolff, P.; Dickert, A.; Kretschmer, W.P.; Kempe, R. iPP/PE Multiblock Copolymers for Plastic Blend Recycling Synthesized by Coordinative Chain Transfer Polymerization. Macromolecules 2022, 55, 6435–6442. [Google Scholar] [CrossRef]
- Baulu, N.; Poradowski, M.-N.; Verrieux, L.; Thuilliez, J.; Jean-Baptiste-dit-Dominique, F.; Perrin, L.; D’Agosto, F.; Boisson, C. Design of selective divalent chain transfer agents for coordinative chain transfer polymerization of ethylene and its copolymerization with butadiene. Polym. Chem. 2022, 13, 1970–1977. [Google Scholar] [CrossRef]
- Hashmi, O.H.; Visseaux, M.; Champouret, Y. Evidence of coordinative chain transfer polymerization of isoprene using iron iminopyridine/ZnEt2 catalytic systems. Polym. Chem. 2021, 12, 4626–4631. [Google Scholar] [CrossRef]
- Belaid, I.; Poradowski, M.-N.; Bouaouli, S.; Thuilliez, J.; Perrin, L.; D’Agosto, F.; Boisson, C. Dialkenylmagnesium Compounds in Coordinative Chain Transfer Polymerization of Ethylene. Reversible Chain Transfer Agents and Tools To Probe Catalyst Selectivities toward Ring Formation. Organometallics 2018, 37, 1546–1554. [Google Scholar] [CrossRef]
- Nzahou Ottou, W.; Norsic, S.; Belaid, I.; Boisson, C.; D’Agosto, F. Amino end-functionalized polyethylenes and corresponding telechelics by coordinative chain transfer polymerization. Macromolecules 2017, 50, 8372–8377. [Google Scholar] [CrossRef]
- Baulu, N.; Langlais, M.; Ngo, R.; Thuilliez, J.; Jean-Baptiste-dit-Dominique, F.; D’Agosto, F.; Boisson, C. Switch from Anionic Polymerization to Coordinative Chain Transfer Polymerization: A Valuable Strategy to Make Olefin Block Copolymers. Angew. Chem. Int. Ed. 2022, 61, e202204249. [Google Scholar] [CrossRef]
- Baulu, N.; Langlais, M.; Dugas, P.-Y.; Thuilliez, J.; Jean-Baptiste-dit-Dominique, F.; Lansalot, M.; Boisson, C.; D’Agosto, F. Ethylene-Coordinative Chain-Transfer Polymerization-Induced Self-Assembly (CCTPISA). Chem. Eur. J. 2022, 28, e202202089. [Google Scholar] [CrossRef] [PubMed]
- Friebe, L.; Nuyken, O.; Obrecht, W. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization. In Neodymium Based Ziegler Catalysts-Fundamental Chemistry; Nuyken, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 204, pp. 1–154. [Google Scholar]
- Zhang, Z.; Cui, D.; Wang, B.; Liu, B.; Yang, Y. Polymerization of 1,3-conjugated dienes with rare-earth metal precursors. Struct. Bond. 2010, 137, 49–108. [Google Scholar]
- Valente, A.; Mortreux, A.; Visseaux, M.; Zinck, P. Coordinative chain transfer polymerization. Chem. Rev. 2013, 113, 3836–3857. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Hu, Y.; Zhang, X. Lanthanide complexes mediated coordinative chain transfer polymerization of conjugated dienes. Sci. China Technol. Sci. 2018, 61, 1286–1294. [Google Scholar] [CrossRef]
- Wang, W.-X.; Zhao, W.-P.; Dong, J.; Zhang, H.-Q.; Wang, F.; Liu, H.; Zhang, X.-Q. Polyisoprene Bearing Dual Functionalized Mini-Blocky Chain-Ends Prepared from Neodymium-mediated Coordinative Chain Transfer Polymerizations. Chin. J. Polym. Sci. 2023, 41, 720–727. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, M.; Liu, H.; Hu, Y.; Zhang, X. Randomly Coordinative Chain Transfer Copolymerization of 1,3-Butadiene and Isoprene: A Highly Atom-Economic Way for Accessing Butadiene/Isoprene Rubber. Ind. Eng. Chem. Res. 2020, 59, 10754–10762. [Google Scholar] [CrossRef]
- Fan, C.; Bai, C.; Cai, H.; Dai, Q.; Zhang, X.; Wang, F. Preparation of high cis-1,4 polyisoprene with narrow molecular weight distribution via coordinative chain transfer polymerization. J. Polym. Sci. Polym. Chem. 2010, 48, 4768–4774. [Google Scholar] [CrossRef]
- Tang, Z.; Liang, A.; Liang, H.; Zhao, J.; Xu, L.; Zhang, J. Reversible Coordinative Chain Transfer Polymerization of Butadiene Using a Neodymium Phosphonate Catalyst. Macromol. Res. 2019, 27, 789–794. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Zheng, W.; Guo, J.; Zhang, C.; Zhao, L.; Zhang, H.; Hu, Y.; Bai, C.; Zhang, X. Fully-reversible and semi-reversible coordinative chain transfer polymerizations of 1,3-butadiene with neodymium-based catalytic systems. Polymer 2013, 54, 6716–6724. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.-y.; Hu, Y.-m.; Jia, X.-y.; Bai, C.-x.; Zhang, X.-q. Reversible coordinative chain transfer polymerization of isoprene and copolymerization with ε-caprolactone by neodymium-based catalyst. Polymer 2012, 53, 6027–6032. [Google Scholar] [CrossRef]
- Córdova, T.; Enríquez-Medrano, F.J.; Cartagena, E.M.; Villanueva, A.B.; Valencia, L.; Álvarez, E.N.C.; González, R.L.; Díaz-de-León, R. Coordinative Chain Transfer Polymerization of Sustainable Terpene Monomers Using a Neodymium-Based Catalyst System. Polymers 2022, 14, 2907. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, Q.; Dong, J.; Wang, F.; Luo, F.; Liu, H.; Zhang, X. Neodymium-based one-precatalyst/dual-cocatalyst system for chain shuttling polymerization to access cis-1,4/trans-1,4 multiblock polybutadienes. Mater. Today Commun. 2021, 27, 102453. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, L.; Cong, R.; Dong, J.; Wu, G.; Wang, F.; Liu, H.; Zhang, X. In-situ Block Copolymerization of 1,3-Butadiene with Cyclohexene Oxide and Trimethylene Carbonate via Combination of Coordinative Chain Transfer Polymerization and Ring Opening Polymerization by Neodymium-based Catalyst System. Eur. Polym. J. 2021, 148, 110355. [Google Scholar] [CrossRef]
- Ubaldo-Alarcón, A.; Soriano-Corral, F.; Córdova, T.; Zapata-González, I.; Díaz-de-León, R. Terpene Coordinative Chain Transfer Polymerization: Understanding the Process through Kinetic Modeling. Polymers 2022, 14, 2352. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Dong, J.; Zhang, H.; Zhang, C.; Liu, H.; Zhang, X. Influence of external N-containing donors on the neodymium-based catalytic system for 1,3-butadiene polymerization. J. Appl. Polym. Sci. 2022, 139, e52817. [Google Scholar] [CrossRef]
- Kwag, G. A highly reactive and monomeric neodymium catalyst. Macromolecules 2002, 35, 4875–4879. [Google Scholar] [CrossRef]
- Kwag, G.; Kim, P.; Han, S.; Choi, H. Ultra high cis polybutadiene by monomeric neodymium catalyst and its tensile and dynamic properties. Polymer 2005, 46, 3782–3788. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Sakakibara, M.; Shibata, T. Process for Producing Conjugated Diene Polymer Using a Solubilized Lanthanum Carboxylate Catalyst. U.S. Patent 4,461,883, 24 July 1984. [Google Scholar]
- Zhiquan, S.; Jun, O.; Fusong, W.; Zhenya, H.; Fusheng, Y.; Baogong, Q. The characteristics of lanthanide coordination catalysts and the cis-polydienes prepared therewith. J. Polym. Sci. Poly. Chem. Ed. 1980, 18, 3345–3357. [Google Scholar] [CrossRef]
- Zhiquan, S.; Xiangyu, S.; Shuxiu, X.; Jipo, Y.; Xianglan, K. Coordination copolymerization of butadiene and isoprene with rare earth chloride–alcohol–aluminum trialkyl catalytic systems. J. Appl. Polym. Sci. 1983, 28, 1585–1597. [Google Scholar] [CrossRef]
- Bonnet, F.; Jones, C.E.; Semlali, S.; Bria, M.; Roussel, P.; Visseaux, M.; Arnold, P.L. Tuning the catalytic properties of rare earth borohydrides for the polymerisation of isoprene. Dalton Trans. 2013, 42, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Friebe, L.; Nuyken, O.; Windisch, H.; Obrecht, W. Polymerization of 1,3-butadiene initiated by neodymium versatate/diisobutylaluminium hydride/ethylaluminium sesquichloride: Kinetics and conclusions about the reaction mechanism. Macromol. Chem. Phys. 2002, 203, 1055–1064. [Google Scholar] [CrossRef]
- Wang, F.; Dong, B.; Liu, H.; Guo, J.; Zheng, W.; Zhang, C.; Zhao, L.; Bai, C.; Hu, Y.; Zhang, X. Synthesis of Block Copolymers Containing Polybutadiene Segments by Combination of Coordinative Chain Transfer Polymerization, Ring-Opening Polymerization, and Atom Transfer Radical Polymerization. Macromol. Chem. Phys. 2015, 216, 321–328. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, W.; Masuda, T. Novel methylaluminoxane-activated neodymium isopropoxide catalysts for 1,3-butadiene polymerization and 1,3-butadiene/isoprene copolymerization. Macromol. Chem. Phys. 2013, 214, 2172–2180. [Google Scholar] [CrossRef]
Entry | (D)/(Nd) | Yield (wt %) | Mn × 10−4 b | Mw/Mn b | Microstructure (%) c | Np d | |
---|---|---|---|---|---|---|---|
1,4 | 3,4 | ||||||
1 | 0 | 100 | 1.85 | 1.61 | 97.0 | 3.0 | 3.67 |
2 | 0.01 | 100 | 1.94 | 1.66 | 96.8 | 3.2 | 3.50 |
3 | 0.1 | 100 | 2.01 | 1.61 | 96.1 | 3.9 | 3.38 |
4 | 0.5 | 100 | 2.53 | 1.70 | 96.5 | 3.5 | 2.69 |
5 | 1 | 100 | 3.12 | 2.45 | 97.3 | 2.7 | 2.18 |
6 | 3 | 100 | 3.69 | 2.95 | 98.0 | 2.0 | 1.84 |
Entry | Aging Order | Yield (wt %) | Mn × 10−4 b | Mw/Mn b | Microstructure (%) c | Np d | |
---|---|---|---|---|---|---|---|
1,4 | 3,4 | ||||||
1 | (Nd + BD + Al) → P → Cl | 100 | 1.94 | 1.66 | 96.8 | 3.2 | 3.50 |
2 | (Nd + P) → BD → Al → Cl | 100 | 1.95 | 1.73 | 96.9 | 3.1 | 3.49 |
3 | Nd → BD → (Al + P) → Cl | 100 | 2.21 | 1.76 | 96.1 | 3.9 | 3.08 |
Entry a | (Al)/(Nd) | (Cl)/(Nd) | Yield (wt %) | Mnb × 10−4 b | Mw/Mn b | Microstructure (%) c | |
---|---|---|---|---|---|---|---|
1,4 | 3,4 | ||||||
1 | 10 | 2.0 | - | - | - | - | - |
2 | 15 | 2.0 | 71 | 5.24 | 2.46 | 96.5 | 3.5 |
3 | 20 | 2.0 | 80 | 4.22 | 2.90 | 96.8 | 3.2 |
4 | 25 | 2.0 | 100 | 1.94 | 1.66 | 96.8 | 3.2 |
5 | 30 | 2.0 | 100 | 1.53 | 1.74 | 96.9 | 3.1 |
6 | 25 | 0.5 | 60 | 0.45 | 2.06 | 96.0 | 4.0 |
7 | 25 | 1.0 | 73 | 1.16 | 1.64 | 96.7 | 3.3 |
8 | 25 | 3.0 | 100 | 2.95 | 1.80 | 97.0 | 3.0 |
9 | 25 | 5.0 | 97 | 2.31 | 1.70 | 97.1 | 2.9 |
Entry a | D | (D)/(Nd) | Yield (wt %) | Mnb × 10−4 b | Mw/Mn b | Microstructure (%) c | |
---|---|---|---|---|---|---|---|
1,4 | 3,4 | ||||||
1 | - | - | 100 | 1.85 | 1.61 | 97.0 | 3.0 |
2 | P | TnBP | 100 | 1.70 | 1.64 | 96.9 | 3.1 |
3 | TtBP | 100 | 1.94 | 1.66 | 96.8 | 3.2 | |
4 | TOP | 100 | 1.71 | 1.65 | 97.1 | 2.9 | |
5 | TPP | 100 | 1.88 | 1.75 | 93.9 | 6.1 | |
6 | DPMP | 100 | 1.76 | 1.71 | 96.2 | 3.8 | |
7 | O | DEE | 71 | 7.40 | 3.22 | 96.2 | - |
8 | DBE | 100 | 1.90 | 1.58 | 96.5 | 3.5 | |
9 | PME | 100 | 1.86 | 1.66 | 96.0 | 4.0 | |
10 | HO | 100 | 2.04 | 1.79 | 96.7 | 3.3 | |
11 | UO | 100 | 2.13 | 1.63 | 96.4 | 3.6 | |
12 | N | TEA | 70 | 1.94 | 1.67 | 96.6 | 3.4 |
13 | TOA | 100 | 2.03 | 1.75 | 96.8 | 3.2 | |
14 | DIEA | 100 | 2.20 | 1.77 | 96.1 | 3.9 | |
15 | DIBA | 100 | 2.09 | 1.95 | 96.9 | 3.1 | |
16 | PEA | 100 | 1.86 | 1.78 | 96.0 | 4.0 |
Entry a | (Ip)/(Nd) | Yield (wt %) | Mnb × 10−4 b | Mw/Mn b | Microstructure (%) c | |
---|---|---|---|---|---|---|
1,4 | 3,4 | |||||
1 | 100 | 100 | 0.34 | 1.45 | 95.6 | 3.4 |
2 | 200 | 100 | 0.54 | 1.54 | 96.1 | 3.9 |
3 | 500 | 100 | 1.40 | 1.63 | 96.9 | 3.1 |
4 | 800 | 100 | 1.62 | 1.50 | 97.0 | 3.0 |
5 | 1000 | 100 | 1.94 | 1.66 | 96.8 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, A.; Fang, L.; Zhang, C.; Liu, H.; Zhang, X.; Liao, J. Neodymium-Mediated Coordinative Chain Transfer Polymerization of Isoprene in the Presence of External Donors. Molecules 2023, 28, 7364. https://doi.org/10.3390/molecules28217364
Ding A, Fang L, Zhang C, Liu H, Zhang X, Liao J. Neodymium-Mediated Coordinative Chain Transfer Polymerization of Isoprene in the Presence of External Donors. Molecules. 2023; 28(21):7364. https://doi.org/10.3390/molecules28217364
Chicago/Turabian StyleDing, Aiwu, Liang Fang, Chunyu Zhang, Heng Liu, Xuequan Zhang, and Jianhe Liao. 2023. "Neodymium-Mediated Coordinative Chain Transfer Polymerization of Isoprene in the Presence of External Donors" Molecules 28, no. 21: 7364. https://doi.org/10.3390/molecules28217364
APA StyleDing, A., Fang, L., Zhang, C., Liu, H., Zhang, X., & Liao, J. (2023). Neodymium-Mediated Coordinative Chain Transfer Polymerization of Isoprene in the Presence of External Donors. Molecules, 28(21), 7364. https://doi.org/10.3390/molecules28217364