Comparative Study of Augmented Classical Least Squares Models for UV Assay of Co-Formulated Antiemetics Together with Related Impurities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization Parameters
2.2. Data Analysis Results and Discussion
2.3. Instrumental Consideration
2.4. Statistical Comparison to Reference HPLC Method
2.5. Figures of Merit
3. Materials and Methods
3.1. Instrument
3.2. Samples
3.3. Pharmaceutical Formulations
3.4. Solvents
3.5. Standard Solutions
4. Procedures
4.1. Linearity
4.2. Experimental Design
4.2.1. Calibration Set
4.2.2. Validation/Test Set
4.3. Assay of Pharmaceutical Formulations
4.4. Instrumental Stability
4.5. Software
4.6. Augmented CLS Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- British Pharmacopoeia Commission. British Pharmacopoeia; British Pharmacopoeia Commission: London, UK, 2013; Volume 1. [Google Scholar]
- Dipiro, J.T.; Talbert, R.L.; Yee, G.C.; Matzke, G.R.; Wells, B.G.; Posey, L.M. Pharmacotherapy: A Pathophysiologic Approach; McGraw-Hill Medical: New York, NY, USA, 2014. [Google Scholar]
- Katzung, B.G. Basic and Clinical Pharmacology; Mc Graw Hill: New York, NY, USA, 2012; ISBN 007176402X. [Google Scholar]
- Friedman, O.M.; Gofstein, R.M.; Seligman, A.M. Preparation of Azo Compounds for the Study of Inhibition of Tumor Growth. J. Am. Chem. Soc. 1949, 71, 3010–3013. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Suzuki, T.; Tayama, S. Metabolism and Toxicity of Benzophenone in Isolated Rat Hepatocytes and Estrogenic Activity of Its Metabolites in MCF-7 Cells. Toxicology 2000, 156, 27–36. [Google Scholar] [CrossRef]
- Rhodes, M.C.; Bucher, J.R.; Peckham, J.C.; Kissling, G.E.; Hejtmancik, M.R.; Chhabra, R.S. Carcinogenesis Studies of Benzophenone in Rats and Mice. Food Chem. Toxicol. 2007, 45, 843–851. [Google Scholar] [CrossRef] [PubMed]
- El-Gindy, A.; Emara, S.; Mostafa, A. Spectrophotometric and LC Determination of Two Binary Mixtures Containing Antihistamins. Il Farmaco 2004, 59, 713–722. [Google Scholar] [CrossRef]
- El-Gindy, A. Spectrophotometric and LC Determination of Two Binary Mixtures Containing Pyridoxine Hydrochloride. J. Pharm. Biomed. Anal. 2003, 32, 277–286. [Google Scholar] [CrossRef]
- AL-Jallad, T.; AL-Kurdi, Z.; Badwan, A.; Jaber, A.M.Y. Simultaneous Determination of Pyridoxine Hydrochloride and Meclizine Hydrochloride in Tablet Formulations by HPLC. Pharm. Pharmacol. Commun. 1999, 5, 479–483. [Google Scholar] [CrossRef]
- Habib, N.M.; Abdelwhab, N.S.; Abdelrahman, M.M.; Ali, N.W. Spectrophotometric Methods for Analysis of Different Dosage Forms Containing Pyridoxine Hydrochloride. Eur. J. Chem. 2016, 7, 30–36. [Google Scholar] [CrossRef]
- Shinde, S.A.; Sayyed, Z.M.; Chaudhari, B.P.; Chaware, V.J.; Biyani, K.R. Development and Validation of Spectrophotometric Method for Simultaneous Estimation of Meclizine Hydrochloride and Pyridoxine Hydrochloride in Tablet Dosage Form. J. Pharm. Sci. Biosci. Res. 2016, 6, 137–143. [Google Scholar]
- Arayne, M.S.; Sultana, N.; Siddiqui, F.A.; Zuberi, M.H.; Mirza, A.Z. Spectrophotometric Methods for the Simultaneous Analysis of Meclezine Hydrochloride and Pyridoxine Hydrochloride in Bulk Drug and Pharmaceutical Formulations. Pak. J. Pharm. Sci. 2007, 20, 149–156. [Google Scholar]
- Habib, N.M.; Abdelrahman, M.M.; Abdelwhab, N.S.; Ali, N.W. Validated Chromatographic Methods for the Analysis of Two Binary Mixtures Containing Pyridoxine Hydrochloride. J. AOAC Int. 2017, 100, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.S.; Naguib, I.A.; Draz, M.E.; Zaazaa, H.E.; Lashien, A.S. Validated Analytical Methods for the Determination of Drugs Used in the Treatment of Hyperemesis Gravidarum in Multiple Formulations. J. AOAC Int. 2018, 101, 427–436. [Google Scholar] [CrossRef]
- Saad, A.S.; Draz, M.E.; Naguib, I.A.; Zaazaa, H.E.; Lashien, A.S.; Abdallah, F.F. Adoption of Advanced Chemometric Methods for Determination of Pyridoxine HCl, Cyclizine HCl, and Meclizine HCl in Presence of Related Impurities: A Comparative Study. J. AOAC Int. 2021, 105, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Ivanovic, D.; Medenica, M.; Jancic, B.; Kenezevic, N.; Malenovic, A.; Milic, J. Validation of an Analytical Procedure for Simultaneous Determination of Hydrochlorothiazide, Lisinopril, and Their Impurities. Acta Chromatogr. 2007, 18, 143–156. [Google Scholar]
- Nadler, B.; Coifman, R.R. The Prediction Error in CLS and PLS: The Importance of Feature Selection Prior to Multivariate Calibration. J. Chemom. A J. Chemom. Soc. 2005, 19, 107–118. [Google Scholar] [CrossRef]
- Elzanfaly, E.S.; Hegazy, M.A.; Saad, S.S.; Salem, M.Y.; Abd El Fattah, L.E. Validated Green High-performance Liquid Chromatographic Methods for the Determination of Coformulated Pharmaceuticals: A Comparison with Reported Conventional Methods. J. Sep. Sci. 2015, 38, 757–763. [Google Scholar] [CrossRef] [PubMed]
- ICH International Conference on Harmonization (ICH), Q2B: Validation of Analytical Procedures: Methodology. International Conference On Harmonisation Of Technical Requirements For Registration Tripartite Guideline. 1996. Available online: https://somatek.com/wp-content/uploads/2014/06/sk140605h.pdf (accessed on 25 February 2023).
- Nawaz, M. A New Validated Stability Indicating RP-HPLC Method for Simultaneous Estimation of Pyridoxine Hydrochloride and Meclizine Hydrochloride in Pharmaceutical Solid Dosage Forms. Chromatogr. Res. Int. 2013, 2013, 747060. [Google Scholar] [CrossRef]
- Naguib, I.A.; Abdallah, F.F. Ultraviolet Cutoff Area and Predictive Ability of Partial Least Squares Regression Method: A Pharmaceutical Case Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 231, 118116. [Google Scholar] [CrossRef]
- Brereton, R.G. Multilevel Multifactor Designs for Multivariatecalibration. Analyst 1997, 122, 1521–1529. [Google Scholar] [CrossRef]
- Olivieri, A.C.; Goicoechea, H.C.; Inón, F.A. MVC1: An Integrated MatLab Toolbox for First-Order Multivariate Calibration. Chemom. Intell. Lab. Syst. 2004, 73, 189–197. [Google Scholar] [CrossRef]
- Kramer, R. Chemometric Techniques for Quantitative Analysis; CRC Press: Boca Raton, FL, USA, 1998; ISBN 0203909801. [Google Scholar]
- Wold, S.; Antti, H.; Lindgren, F.; Öhman, J. Orthogonal Signal Correction of Near-Infrared Spectra. Chemom. Intell. Lab. Syst. 1998, 44, 175–185. [Google Scholar] [CrossRef]
- Goicoechea, H.C.; Olivieri, A.C. MULTIVAR. A Program for Multivariate Calibration Incorporating Net Analyte Signal Calculations. TrAC Trends Anal. Chem. 2000, 19, 599–605. [Google Scholar] [CrossRef]
- Goicoechea, H.C.; Olivieri, A.C. A Comparison of Orthogonal Signal Correction and Net Analyte Preprocessing Methods. Theoretical and Experimental Study. Chemom. Intell. Lab. Syst. 2001, 56, 73–81. [Google Scholar] [CrossRef]
- Rodríguez, D.; Boschetti, C.E.; Olivieri, A.C. Near-Infrared Spectroscopic Determination of Antioxidants and Organic Acids in Rubbers Assisted by a New Multivariate Calibration Method Based on Direct Orthogonalization. Analyst 2002, 127, 304–309. [Google Scholar] [CrossRef]
- Haaland, D.M.; Thomas, E. V Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Anal. Chem. 1988, 60, 1193–1202. [Google Scholar] [CrossRef]
PYR | CYC | MEC | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training Set | CLS | OSC/CLS | DOSC/CLS | NAP/CLS | Training Set | CLS | OSC/CLS | DOSC/CLS | NAP/CLS | Training Set | CLS | OSC/CLS | DOSC/CLS | NAPCLS |
Taken (µg/mL) | % R | %R | %R | %R | Taken (µg/mL) | % R | %R | %R | %R | Taken (µg/mL) | % R | %R | %R | %R |
10.00 | 98.61 | 100.41 | 100.42 | 100.73 | 8.50 | 104.93 | 97.71 | 97.69 | 98.95 | 10 | 98.47 | 100.27 | 100.29 | 99.72 |
10.00 | 99.66 | 99.65 | 99.48 | 99.61 | 4.50 | 102.93 | 98.89 | 98.91 | 98.68 | 5 | 109.05 | 101.61 | 101.57 | 102.98 |
5.00 | 99.53 | 99.8 | 98.72 | 99.90 | 4.50 | 110.83 | 101.91 | 101.96 | 99.19 | 15 | 99.12 | 99.03 | 98.99 | 100.13 |
5.00 | 98.44 | 98.17 | 98.90 | 97.94 | 12.50 | 105.37 | 100.05 | 100.04 | 100.37 | 7.5 | 90.18 | 100.31 | 100.34 | 100.39 |
15.00 | 99.63 | 99.93 | 100.29 | 100.01 | 6.50 | 108.98 | 100.80 | 100.85 | 101.82 | 15 | 93.16 | 100.91 | 100.93 | 100.97 |
7.50 | 98.03 | 99.44 | 99.76 | 99.76 | 12.50 | 102.08 | 101.13 | 101.09 | 100.50 | 10 | 96.36 | 98.82 | 98.86 | 98.09 |
15.00 | 99.32 | 99.91 | 99.99 | 100.06 | 8.50 | 102.87 | 102.12 | 102.08 | 98.76 | 7.5 | 94.96 | 97.96 | 97.98 | 97.88 |
10.00 | 98.52 | 98.87 | 99.07 | 99.08 | 6.50 | 97.94 | 101.51 | 101.47 | 99.54 | 7.5 | 100.8 | 98.19 | 98.19 | 99.86 |
7.50 | 100.07 | 99.7 | 100.35 | 99.89 | 6.50 | 97.82 | 101.52 | 101.43 | 102.26 | 12.5 | 102.28 | 101.22 | 101.24 | 101.64 |
7.50 | 98.91 | 99.46 | 99.79 | 99.66 | 10.50 | 95.33 | 99.52 | 99.60 | 100.50 | 15 | 98.57 | 98.68 | 98.67 | 99.36 |
12.50 | 99.41 | 99.74 | 99.88 | 99.86 | 12.50 | 98.25 | 100.50 | 100.53 | 99.89 | 12.5 | 99.31 | 100.73 | 100.71 | 101.60 |
15.00 | 99.4 | 99.27 | 99.75 | 99.29 | 10.50 | 96.94 | 99.43 | 99.46 | 98.62 | 10 | 93.66 | 98.84 | 98.86 | 99.79 |
12.50 | 100.46 | 99.14 | 99.18 | 98.86 | 8.50 | 100.37 | 96.18 | 96.14 | 99.55 | 15 | 98.84 | 99.88 | 99.89 | 99.95 |
10.00 | 101.42 | 101.18 | 100.59 | 101.08 | 12.50 | 101.57 | 99.49 | 99.47 | 99.73 | 15 | 101.83 | 101.48 | 101.45 | 101.61 |
15.00 | 100.74 | 100.24 | 99.99 | 100.01 | 12.50 | 101.13 | 100.02 | 100.03 | 100.26 | 5 | 106.78 | 101.27 | 101.23 | 100.90 |
15.00 | 100.31 | 99.96 | 99.76 | 99.89 | 4.50 | 104.27 | 103.36 | 103.30 | 97.96 | 12.5 | 101.51 | 100.82 | 100.82 | 99.98 |
5.00 | 104.48 | 101.59 | 101.34 | 100.72 | 10.50 | 102.4 | 101.65 | 101.70 | 99.30 | 5 | 100.5 | 102.41 | 102.36 | 103.01 |
12.50 | 101.67 | 101.3 | 101.25 | 101.21 | 4.50 | 100.19 | 103.56 | 103.65 | 102.34 | 10 | 103.54 | 100.50 | 100.49 | 100.41 |
5.00 | 103.51 | 100.85 | 100.69 | 100.22 | 8.50 | 100.26 | 101.98 | 101.95 | 99.63 | 12.5 | 102.64 | 98.58 | 98.61 | 97.22 |
10.00 | 100.15 | 101.14 | 100.75 | 101.32 | 10.50 | 95.35 | 100.25 | 100.24 | 99.80 | 12.5 | 110.27 | 101.25 | 101.26 | 99.35 |
12.50 | 99.71 | 99.65 | 99.15 | 99.57 | 10.50 | 99.68 | 98.96 | 98.94 | 101.67 | 7.5 | 98.89 | 95.23 | 95.20 | 95.24 |
12.50 | 101.13 | 101 | 100.80 | 100.94 | 6.50 | 96.45 | 98.75 | 98.77 | 101.05 | 5 | 102.81 | 97.94 | 97.93 | 97.10 |
7.50 | 98.72 | 98.49 | 98.80 | 98.56 | 4.50 | 83.91 | 95.69 | 95.71 | 101.66 | 7.5 | 104.28 | 99.62 | 99.66 | 98.86 |
5.00 | 100.34 | 100.07 | 100.38 | 100.23 | 6.50 | 89.21 | 96.98 | 96.98 | 98.23 | 10 | 101.13 | 100.02 | 100.04 | 99.22 |
7.50 | 100.23 | 100.93 | 100.92 | 101.20 | 8.50 | 94.14 | 99.03 | 99.03 | 100.05 | 5 | 109.1 | 106.47 | 106.44 | 107.65 |
Mean % | 100.10 | 99.99 | 100.00 | 99.98 | 99.73 | 100.04 | 100.04 | 100.01 | 100.72 | 100.08 | 100.08 | 100.12 | ||
SD | 1.50 | 0.89 | 0.75 | 0.85 | 5.72 | 2.03 | 2.03 | 1.23 | 4.97 | 2.05 | 2.05 | 2.38 | ||
RMSEC | 0.109 | 0.078 | 0.066 | 0.077 | 0.374 | 0.134 | 0.134 | 0.084 | 0.454 | 0.151 | 0.151 | 0.170 |
PYR | CYC | MEC | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Validation Set | CLS | OSC/CLS | DOSC/CLS | NAP/CLS | Training Set | CLS | OSC/CLS | DOSC/CLS | NAP/CLS | Training Set | CLS | OSC/CLS | DOSC/CLS | NAP/CLS |
Taken (µg/mL) | % R | %R | %R | %R | Taken (µg/mL) | % R | %R | %R | %R | Taken (µg/mL) | % R | %R | %R | %R |
In Space | ||||||||||||||
7.00 | 97.82 | 94.29 | 93.47 | 93.41 | 12 | 108.42 | 100.86 | 100.73 | 100.29 | 10 | 91.34 | 96.46 | 96.46 | 96.52 |
8.00 | 95.58 | 92.50 | 92.07 | 91.81 | 8 | 107.41 | 97.26 | 97.12 | 94.33 | 10 | 90.30 | 96.02 | 96.01 | 96.79 |
14.00 | 98.07 | 96.14 | 95.97 | 95.58 | 10 | 111.87 | 98.49 | 98.46 | 97.57 | 10 | 81.68 | 95.21 | 95.18 | 96.68 |
8.00 | 96.86 | 95.25 | 94.40 | 94.96 | 6 | 109.02 | 100.21 | 100.00 | 95.00 | 12 | 99.08 | 99.02 | 99.00 | 99.22 |
10.00 | 99.66 | 99.60 | 99.48 | 99.61 | 4.5 | 102.93 | 98.89 | 98.91 | 98.68 | 5 | 109.05 | 101.61 | 101.57 | 102.98 |
7.50 | 98.03 | 99.47 | 99.76 | 99.76 | 12.5 | 102.08 | 101.13 | 101.09 | 100.50 | 10 | 96.36 | 98.82 | 98.86 | 98.09 |
7.50 | 98.91 | 99.47 | 99.79 | 99.65 | 10.5 | 95.33 | 99.52 | 99.60 | 100.50 | 15 | 98.57 | 98.68 | 98.67 | 99.36 |
10.00 | 100.15 | 101.10 | 100.75 | 101.32 | 10.5 | 95.35 | 100.25 | 100.24 | 99.80 | 12.5 | 110.27 | 101.25 | 101.26 | 99.35 |
Mean % | 98.14 | 97.22 | 96.96 | 97.01 | 104.05 | 99.58 | 99.52 | 98.33 | 97.08 | 98.38 | 98.38 | 98.62 | ||
SD | 1.48 | 3.09 | 3.38 | 3.51 | 6.25 | 1.31 | 1.31 | 2.48 | 9.56 | 2.35 | 2.35 | 2.15 | ||
Out Space | ||||||||||||||
8.00 | 96.46 | 94.5 | 93.85 | 94.06 | 10 | 104.70 | 99.07 | 98.94 | 97.42 | 5 | 97.40 | 98.11 | 98.08 | 99.54 |
5.00 | 95.47 | 93.6 | 92.06 | 93.15 | 10 | 102.74 | 99.80 | 99.66 | 95.41 | 5 | 105.46 | 98.02 | 98.01 | 97.27 |
18.50 | 98.65 | 96.86 | 96.77 | 96.37 | 5.5 | 122.33 | 101.49 | 101.47 | 95.88 | 6 | 71.70 | 93.10 | 93.08 | 93.89 |
16.00 | 98.81 | 97.19 | 96.93 | 96.73 | 8 | 110.84 | 99.33 | 99.25 | 96.43 | 8 | 84.95 | 93.79 | 93.79 | 93.43 |
5.00 | 93.65 | 88.4 | 89.89 | 87.62 | 7 | 100.19 | 93.59 | 93.47 | 92.59 | 17 | 91.59 | 99.03 | 99.06 | 99.29 |
17.00 | 97.18 | 95.59 | 95.56 | 95.17 | 5 | 120.30 | 101.77 | 101.70 | 93.87 | 10 | 79.59 | 94.85 | 94.87 | 94.18 |
18.00 | 98.85 | 97.28 | 97.22 | 96.84 | 6 | 115.74 | 100.09 | 100.10 | 95.92 | 6 | 71.32 | 93.61 | 93.60 | 94.20 |
5.00 | 96.24 | 93.6 | 93.99 | 93.34 | 7 | 95.88 | 96.37 | 96.22 | 95.94 | 15 | 98.14 | 97.64 | 97.67 | 97.12 |
Mean % | 96.91 | 94.63 | 94.53 | 94.16 | 109.09 | 98.94 | 98.85 | 95.43 | 87.52 | 96.02 | 96.02 | 96.11 | ||
SD | 1.85 | 2.94 | 2.60 | 3.03 | 9.72 | 2.72 | 2.76 | 1.52 | 12.71 | 2.41 | 2.42 | 2.50 | ||
RMSEP | 0.283 | 0.509 | 0.520 | 0.566 | 0.755 | 0.191 | 0.197 | 0.338 | 1.307 | 0.354 | 0.353 | 0.369 |
Parameters | CLS | OSC-CLS | DOSC-CLS | NAP-CLS | Reported HPLC Method [7] a | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PYR | CYC | PYR | CYC | PYR | CYC | PYR | CYC | PYR | CYC | ||
Emetrex® tablets (B.N.151307) | Mean % | 97.91 | 97.62 | 99.60 | 103.64 | 99.25 | 103.69 | 99.81 | 101.69 | 100.13 | 105.60 |
SD | 1.62 | 0.59 | 1.53 | 0.61 | 1.58 | 0.58 | 1.46 | 1.27 | 1.86 | 0.98 | |
n | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Student’s t-test | −2.200 (2.228) * | 11.682 (2.228) * | 0.736 (2.228) * | −1.663 (2.228) * | 0.876 (2.228) * | −1.785 (2.228) * | 0.330 (2.228) * | 1.856 (2.228) * | ------- | ------- | |
F-value | 1.320 (5.050) * | 2.548 (5.050) * | 1.472 (5.050) * | 2.335 (5.050) * | 1.396 (5.050) * | 2.605 (5.050) * | 1.625 (5.050) * | 1.837 (5.050) * | -------- | ------- | |
Dizerest B6® tablets (B.N. 33053) | CLS | OSC-CLS | DOSC-CLS | NAP-CLS | Reported HPLC method [20] b | ||||||
PYR | MEC | PYR | MEC | PYR | MEC | PYR | MEC | PYR | MEC | ||
Mean % | 100.36 | 106.72 | 102.75 | 97.86 | 101.18 | 97.96 | 103.37 | 89.46 | 98.80 | 98.67 | |
SD | 1.37 | 0.87 | 1.37 | 0.64 | 1.28 | 0.63 | 1.34 | 1.21 | 1.72 | 1.38 | |
n | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Student’s t-test | −0.632 (2.228) * | −12.092 (2.228) * | −3.300 (2.228) * | 1.308 (2.228) * | −1.585 (2.228) * | 1.149 (2.228) * | −4.011 (2.228) * | 12.30 (2.228) * | -------- | ------- | |
F-value | 1.568 (5.050) * | 2.501 (5.050) * | 1.575 (5.050) * | 4.643 (5.050) * | 1.781 (5.050) * | 4.805 (5.050) * | 1.625 (5.050) * | 1.299 (5.050) * | -------- | ------- |
Figures of Merit | PYR | CYC | MEC | ||||||
---|---|---|---|---|---|---|---|---|---|
OSC/CLS | DOSC/CLS | NAP/CLS | OSC/CLS | DOSC/CLS | NAP/CLS | OSC/CLS | DOSC/CLS | NAP/CLS | |
Sensitivity a | 0.071 | 0.15 | 0.067 | 0.023 | 0.11 | 0.006 | 0.014 | 0.12 | 0.011 |
Analytical sensitivity b | 54 | 110 | 48 | 62 | 220 | 17 | 39 | 270 | 29 |
Selectivity c | 0.46 | 1 | 0.44 | 0.21 | 1 | 0.055 | 0.12 | 1 | 0.086 |
NO | PYR | CYC | MEC | BEP | BEH | NO | PYR | CYC | MEC | BEP | BEH |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10 | 8.5 | 10 | 0.25 | 0.25 | 14 | 10 | 12.5 | 15 | 0.15 | 0.3 |
2 * | 10 | 4.5 | 5 | 0.35 | 0.2 | 15 | 15 | 12.5 | 5 | 0.3 | 0.15 |
3 | 5 | 4.5 | 15 | 0.2 | 0.35 | 16 | 15 | 4.5 | 12.5 | 0.15 | 0.25 |
4 | 5 | 12.5 | 7.5 | 0.35 | 0.25 | 17 | 5 | 10.5 | 5 | 0.25 | 0.3 |
5 | 15 | 6.5 | 15 | 0.25 | 0.2 | 18 | 12.5 | 4.5 | 10 | 0.3 | 0.3 |
6 * | 7.5 | 12.5 | 10 | 0.2 | 0.2 | 19 | 5 | 8.5 | 12.5 | 0.3 | 0.2 |
7 * | 15 | 8.5 | 7.5 | 0.2 | 0.3 | 20 | 10 | 10.5 | 12.5 | 0.2 | 0.15 |
8 | 10 | 6.5 | 7.5 | 0.3 | 0.35 | 21 | 12.5 | 10.5 | 7.5 | 0.15 | 0.2 |
9 | 7.5 | 6.5 | 12.5 | 0.35 | 0.3 | 22 | 12.5 | 6.5 | 5 | 0.2 | 0.25 |
10 | 7.5 | 10.5 | 15 | 0.3 | 0.25 | 23 | 7.5 | 4.5 | 7.5 | 0.25 | 0.15 |
11 | 12.5 | 12.5 | 12.5 | 0.25 | 0.35 | 24 | 5 | 6.5 | 10 | 0.15 | 0.15 |
12 | 15 | 10.5 | 10 | 0.35 | 0.35 | 25 | 7.5 | 8.5 | 5 | 0.15 | 0.35 |
13 | 12.5 | 8.5 | 15 | 0.35 | 0.15 |
NO | PYR | CYC | MEC | BEP | BEH | Position |
---|---|---|---|---|---|---|
1 | 7.00 | 12.00 | 10.00 | 0.20 | 0.20 | IN |
2 | 8.00 | 8.00 | 10.00 | 0.25 | 0.25 | IN |
3 | 14.00 | 10.00 | 10.00 | 0.35 | 0.25 | IN |
4 | 8.00 | 6.00 | 12.00 | 0.15 | 0.25 | IN |
5 | 10.00 | 4.50 | 5.00 | 0.35 | 0.20 | IN |
6 | 7.50 | 12.50 | 10.00 | 0.20 | 0.20 | IN |
7 | 7.50 | 10.50 | 15.00 | 0.30 | 0.25 | IN |
8 | 10.00 | 10.50 | 12.50 | 0.20 | 0.15 | IN |
9 | 8.00 | 10.00 | 5.00 | 0.25 | 0.30 | OUT |
10 | 5.00 | 10.00 | 5.00 | 0.15 | 0.25 | OUT |
11 | 18.50 | 5.50 | 6.00 | 0.30 | 0.20 | OUT |
12 | 16.00 | 8.00 | 8.00 | 0.25 | 0.25 | OUT |
13 | 5.00 | 7.00 | 17.00 | 0.30 | 0.20 | OUT |
14 | 17.00 | 5.00 | 10.00 | 0.15 | 0.25 | OUT |
15 | 18.00 | 6.00 | 6.00 | 0.25 | 0.30 | OUT |
16 | 5.00 | 7.00 | 15.00 | 0.30 | 0.20 | OUT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saleem, M.S.M.; Darwish, H.W.; Naguib, I.A.; Draz, M.E. Comparative Study of Augmented Classical Least Squares Models for UV Assay of Co-Formulated Antiemetics Together with Related Impurities. Molecules 2023, 28, 7044. https://doi.org/10.3390/molecules28207044
Al-Saleem MSM, Darwish HW, Naguib IA, Draz ME. Comparative Study of Augmented Classical Least Squares Models for UV Assay of Co-Formulated Antiemetics Together with Related Impurities. Molecules. 2023; 28(20):7044. https://doi.org/10.3390/molecules28207044
Chicago/Turabian StyleAl-Saleem, Muneera S. M., Hany W. Darwish, Ibrahim A. Naguib, and Mohammed E. Draz. 2023. "Comparative Study of Augmented Classical Least Squares Models for UV Assay of Co-Formulated Antiemetics Together with Related Impurities" Molecules 28, no. 20: 7044. https://doi.org/10.3390/molecules28207044
APA StyleAl-Saleem, M. S. M., Darwish, H. W., Naguib, I. A., & Draz, M. E. (2023). Comparative Study of Augmented Classical Least Squares Models for UV Assay of Co-Formulated Antiemetics Together with Related Impurities. Molecules, 28(20), 7044. https://doi.org/10.3390/molecules28207044