Probing the Potential Energy Profile of the I + (H2O)3 → HI + (H2O)2OH Forward and Reverse Reactions: High Level CCSD(T) Studies with Spin-Orbit Coupling Included
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, T.R.; Gómez Martín, J.C.; Blitz, M.A.; Cuevas, C.A.; Plane, J.M.C.; Saiz-Lopez, A. Determination of the absorption cross sections of higher-order iodine oxides at 355 and 532 nm. Atmos. Chem. Phys. 2020, 20, 10865–10887. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, X.; Fung, J.C.H.; Sarwar, G.; Li, Z.; Li, Q.; Saiz-Lopez, A.; Lau, A.K.H. Effect of bromine and iodine chemistry on tropospheric ozone over Asia-Pacific using the CMAQ model. Chemosphere 2021, 262, 127595. [Google Scholar] [CrossRef] [PubMed]
- Dix, B.; Baidar, S.; Bresch, J.F.; Hall, S.R.; Schmidt, K.S.; Wang, S.; Volkamer, R. Detection of iodine monoxide in the tropical free troposphere. Proc. Natl. Acad. Sci. USA 2013, 110, 2035–2040. [Google Scholar] [CrossRef] [Green Version]
- Saiz-Lopez, A.; Mahajan, A.S.; Salmon, R.A.; Bauguitte, S.J.B.; Jones, A.E.; Roscoe, H.K.; Plane, J.M.C. Boundary layer halogens in coastal Antarctica. Science 2007, 317, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Chameides, W.L.; Davis, D.D. The free radical chemistry of cloud droplets and its impact upon the composition of rain. J. Geophys. Res. 1982, 87, 4863–4877. [Google Scholar] [CrossRef]
- Solomon, S.; Garcia, R.R.; Ravishankara, A.R. On the role of iodine in ozone depletion. J. Geophys. Res. 1994, 99, 20491. [Google Scholar] [CrossRef]
- Leod, H.M.; Balestra, C.; Jourdain, J.L.; Laverdet, G.; Bras, G.L. Kinetic study of the reaction OH + HI by laser photolysis-resonance fluorescence. Int. J. Chem. Kinet. 1990, 22, 1167–1176. [Google Scholar] [CrossRef]
- Takacs, G.A.; Glass, G.P. Reactions of hydroxyl radicals with some hydrogen halides. J. Phys. Chem. 1973, 77, 1948–1951. [Google Scholar] [CrossRef]
- Lancar, I.T.; Mellouki, A.; Poulet, G. Kinetics of the Reactions of hydrogen iodide with hydroxyl and nitrate radicals. Chem. Phys. Lett. 1991, 177, 554–558. [Google Scholar] [CrossRef]
- Campuzano-Jost, P.; Crowley, J.N. Kinetics of the reaction of OH with HI between 246 and 353 K. J. Phys. Chem. A 1999, 103, 2712–2719. [Google Scholar] [CrossRef]
- Moise, A.; Parker, D.H.; ter Meulen, J.J. State-to-state inelastic scattering of OH by HI: A comparison with OH-HCl and OH-HBr. J. Chem. Phys. 2007, 126, 124302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inada, Y.; Akagane, K. Non-empirical analysis of the chemical reactions of iodine with steam; I + H2O → HI + OH and I + H2O → IOH + H, in severe light water reactor accidents. J. Nucl. Sci.Technol. 1997, 34, 217–221. [Google Scholar] [CrossRef]
- Hao, Y.; Gu, J.; Guo, Y.; Zhang, M.; Xie, Y.; Schaefer, H.F. Spin-orbit corrected potential energy surface features for the I(2P3/2) + H2O → HI + OH forward and reverse reactions. Phys. Chem. Chem. Phys. 2014, 16, 2641–2646. [Google Scholar] [CrossRef] [PubMed]
- Lillington, J.N. Light Water Reactor Safety; Elsevier: New York, NY, USA, 1995. [Google Scholar]
- Wang, H.; Li, G.; Li, Q.-S.; Xie, Y.; Schaefer, H.F. I + (H2O)2 → HI + (H2O)OH forward and reverse reactions. CCSD(T) studies including spin–orbit coupling. J. Phys. Chem. B 2016, 120, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, Q.-S.; Xie, Y.; Schaefer, H.F. From gas-phase to liquid-water chemical reactions: The fluorine atom plus water trimer system. Angew. Chem. Int. Ed. 2015, 54, 11223–11226. [Google Scholar] [CrossRef]
- Li, G.; Yao, Y.; Lu, S.; Xie, Y.; Douberly, G.E.; Schaefer, H.F. Potential energy profile for the Cl + (H2O)3 → HCl + (H2O)2OH reaction. A CCSD(T) study. Phys. Chem. Chem. Phys. 2021, 23, 26837–26842. [Google Scholar] [CrossRef]
- Li, G.; Yao, Y.; Lin, Y.; Meng, Y.; Xie, Y.; Schaefer, H.F. The reaction between the bromine atom and the water trimer: High level theoretical studies. Phys. Chem. Chem. Phys. 2022, 24, 26164–26169. [Google Scholar] [CrossRef]
- Howard, J.C.; Tschumper, G.S. Wavefunction methods for the accurate characterization of water clusters. WIREs Comput. Mol. Sci. 2014, 4, 199–224. [Google Scholar] [CrossRef]
- Miliordos, E.; Aprà, E.; Xantheas, S.S. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2–6, and several hexamer local minima at the CCSD(T) level of theory. J. Chem. Phys. 2013, 139, 114302. [Google Scholar] [CrossRef]
- Ch’ng, L.C.; Samanta, A.K.; Wang, Y.; Bowman, J.M.; Reisler, H. Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3. J. Phys. Chem. A 2013, 117, 7207–7216. [Google Scholar] [CrossRef]
- Wang, Y.; Shepler, B.C.; Braams, B.J.; Bowman, J.M. Full-dimensional, ab initio potential energy and dipole moment surfaces for water. J. Chem. Phys. 2009, 131, 054511. [Google Scholar] [CrossRef] [PubMed]
- Keutsch, F.N.; Cruzan, J.D.; Saykally, R.J. The water trimer. Chem. Rev. 2003, 103, 2533–2577. [Google Scholar] [CrossRef]
- Fowler, J.E.; Schaefer, H.F. Detailed study of the water trimer potential energy surface. J. Am. Chem. Soc. 1995, 177, 446–452. [Google Scholar] [CrossRef]
- Pugliano, N.; Saykally, R.J. Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. Science 1992, 257, 1937–1940. [Google Scholar] [CrossRef]
- Burnham, C.J.; Xantheas, S.S.; Miller, M.A.; Applegate, B.E.; Miller, R.E. The formation of cyclic water complexes by sequential ring insertion: Experiment and theory. J. Chem. Phys. 2002, 117, 1109–1122. [Google Scholar] [CrossRef]
- Tsuji, K.; Shibuya, K. Infrared spectroscopy and quantum chemical calculations of OH-(H2O)n complexes. J. Phys. Chem. A 2009, 113, 9945. [Google Scholar] [CrossRef]
- Moudens, A.; Georges, R.; Goubet, M.; Makarewicz, J.; Lokshtanov, S.E.; Vigasin, A.A. Direct absorption spectroscopy of water clusters formed in a continuous slit nozzle expansion. J. Chem. Phys. 2009, 131, 204312. [Google Scholar] [CrossRef]
- Huber, K.P.; Herzberg, G. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules; van Nostrand Reinhold: New York, NY, USA, 1979. [Google Scholar]
- Berning, A.; Schweizer, M.; Werner, H.-J.; Knowles, P.J.; Palmieri, P. Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions. Mol. Phys. 2000, 98, 1823–1833. [Google Scholar] [CrossRef]
- Werner, H.-J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M.; Celani, P.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; et al. MOLPRO, Version 2015.1, a Package of Ab Initio Programs. 2015. Available online: http://www.molpro.net (accessed on 22 March 2018).
- Minnhagen, L. The energy levels of neutral atomic iodine. Ark. Fys. 1962, 21, 415–478. [Google Scholar]
- Lynch, B.J.; Fast, P.L.; Harris, M.; Truhlar, D.G. Adiabatic connection kinetics. J. Phys. Chem. A 2000, 104, 4811–4815. [Google Scholar] [CrossRef]
- Li, G.; Zhou, L.; Li, Q.-S.; Xie, Y.; Schaefer, H.F. The entrance complex, transition state, and exit complex for the F + H2O → HF + OH reaction. Definitive predictions. Comparison with popular density functional methods. Phys. Chem. Chem. Phys. 2012, 14, 10891–10895. [Google Scholar] [CrossRef] [PubMed]
- Purvis, G.D.; Bartlett, R.J.A. Full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Scuseria, G.E.; Janssen, C.L.; Schaefer, H.F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 1988, 89, 7382–7387. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations I: The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.A.; Shepler, B.C.; Figgen, D.; Stoll, H. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 2006, 110, 13877–13883. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Hratchian, H.P.; Schlegel, H.B. Accurate reaction paths using a hessian based predictor-corrector integrator. J. Chem. Phys. 2004, 120, 9918–9924. [Google Scholar] [CrossRef]
- Hratchian, H.P.; Schlegel, H.B. Theory and Applications of Computational Chemistry: The First 40 Years; Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Hratchian, H.P.; Schlegel, H.B. Using hessian updating to increase the efficiency of a hessian based predictor-corrector reaction path following method. J. Chem. Theory Comput. 2005, 1, 61–69. [Google Scholar] [CrossRef]
- Stanton, J.F.; Gauss, J.; Harding, M.E.; Szalay, P.G.; Auer, A.A.; Bartlett, R.J.; Benedikt, U.; Berger, C.; Bernholdt, D.E.; Bomble, Y.J.; et al. CFOUR. A Quantum Chemical Program Package; Watts and the Integral Packages MOLECULE (Almlöf, J.; Taylor, P.R.), PROPS (Taylor, P.R.), ABACUS (Helgaker, T.; Jensen, H.J. Aa.; Jørgensen, P.; Olsen, J.), and ECP Routines by Mitin, A.V.; van Wüllen., C.; Gaussian Inc.: Wallingford, CT, USA, 2010; Available online: https://cfour.uni-mainz.de/cfour/ (accessed on 13 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, X.; Lin, Y.; Meng, Y.; Li, G.; Xie, Y.; Schaefer, H.F., III. Probing the Potential Energy Profile of the I + (H2O)3 → HI + (H2O)2OH Forward and Reverse Reactions: High Level CCSD(T) Studies with Spin-Orbit Coupling Included. Molecules 2023, 28, 904. https://doi.org/10.3390/molecules28020904
Zhang X, Chen X, Lin Y, Meng Y, Li G, Xie Y, Schaefer HF III. Probing the Potential Energy Profile of the I + (H2O)3 → HI + (H2O)2OH Forward and Reverse Reactions: High Level CCSD(T) Studies with Spin-Orbit Coupling Included. Molecules. 2023; 28(2):904. https://doi.org/10.3390/molecules28020904
Chicago/Turabian StyleZhang, Xinyuan, Xiaoting Chen, Yan Lin, Yan Meng, Guoliang Li, Yaoming Xie, and Henry F. Schaefer, III. 2023. "Probing the Potential Energy Profile of the I + (H2O)3 → HI + (H2O)2OH Forward and Reverse Reactions: High Level CCSD(T) Studies with Spin-Orbit Coupling Included" Molecules 28, no. 2: 904. https://doi.org/10.3390/molecules28020904
APA StyleZhang, X., Chen, X., Lin, Y., Meng, Y., Li, G., Xie, Y., & Schaefer, H. F., III. (2023). Probing the Potential Energy Profile of the I + (H2O)3 → HI + (H2O)2OH Forward and Reverse Reactions: High Level CCSD(T) Studies with Spin-Orbit Coupling Included. Molecules, 28(2), 904. https://doi.org/10.3390/molecules28020904